

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc504t-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-20: ADC1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Data B	uffer 0								xxxx
ADC1BUF1	0302								ADC1 Data B	uffer 1								xxxx
ADC1BUF2	0304								ADC1 Data B	uffer 2								xxxx
ADC1BUF3	0306								ADC1 Data B	uffer 3								xxxx
ADC1BUF4	0308								ADC1 Data B	uffer 4								xxxx
ADC1BUF5	030A								ADC1 Data B	uffer 5								xxxx
ADC1BUF6	030C								ADC1 Data B	uffer 6								xxxx
ADC1BUF7	030E		ADC1 Data Buffer 7 xx											xxxx				
ADC1BUF8	0310		ADC1 Data Buffer 8 x1											xxxx				
ADC1BUF9	0312		ADC1 Data Buffer 9 xx												xxxx			
ADC1BUFA	0314		ADC1 Data Buffer 10 xx												xxxx			
ADC1BUFB	0316		ADC1 Data Buffer 11 xx:											xxxx				
ADC1BUFC	0318								ADC1 Data Bu	uffer 12								xxxx
ADC1BUFD	031A								ADC1 Data Bu	uffer 13								xxxx
ADC1BUFE	031C								ADC1 Data Bu	uffer 14								xxxx
ADC1BUFF	031E								ADC1 Data Bu	uffer 15								xxxx
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>		SSRC<2:0	>	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	,	VCFG<2:0	>	—	·	CSCNA	CHP	S<1:0>	BUFS			SMPI<4:0>	>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—		-	SAMC<4:0	>	_		-	-	ADCS	<7:0>				0000
AD1CHS123	0326	_	—	—	—	·	CH123N	NB<1:0>	CH123SB	_	—		—	—	CH123N	A<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	—	—		-	CH0SB<4:0	>	_	CH0NA	—			C	H0SA<4:0	>		0000
AD1CSSH	032E	CSS31	CSS30	—	—		CSS26	CSS25	CSS24	_			—	—	—	—	—	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	-	-	-	ADDMAEN DMABL<2:0>								0>	0000			

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	4-31:	PER	IPHERA	L PIN S	ELECT	INPUT F	REGISTI	ER MAP	FOR ds	sPIC33E	PXXXG	P50X D	EVICES	3 ONLY	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>					—	—	—	—	_			0000
RPINR1	06A2		_			_	_		—			INT2R<6:0> C						
RPINR3	06A6		_	T2CKR<6:0>									0000					
RPINR7	06AE					IC2R<6:0>						IC1R<6:0>						
RPINR8	06B0	_		IC4R<6:0>										IC3R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	-	_	_	_			(DCFAR<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	-	_	_	_			l	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	_	_	-	_	_	_	U2RXR<6:0>						0000	
RPINR22	06CC	_			S	CK2INR<6:0)>			_	SDI2R<6:0>						0000	
RPINR23	06CE	_	_	_	_	_	-	_	_	_	SS2R<6:0>					0000		
RPINR26	06D4	_	_	-		_	—		_		C1RXR<6:0>					0000		

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>	>			_							0000	
RPINR1	06A2	_	_	_	_	_	_	_	_	_				INT2R<6:0>				0000
RPINR3	06A6	_	_	_	_	_	_	_	_	_			-	T2CKR<6:0>	>			0000
RPINR7	06AE	_				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				_	IC3R<6:0>							0000
RPINR11	06B6	_	_	_	_	_	_	_	_	_	OCFAR<6:0>							0000
RPINR12	06B8	_		FLT2R<6:0>						_				FLT1R<6:0>	•			0000
RPINR14	06BC	_		QEB1R<6:0>						_			(QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:()>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	_	_	_	_	U1RXR<6:0>						0000	
RPINR19	06C6	_	_	_	_	_	_	_	_	_	U2RXR<6:0>						0000	
RPINR22	06CC	_			S	CK2INR<6:	0>			_				SDI2R<6:0>				0000
RPINR23	06CE	_	_	_	_	_	-	_	_	_				SS2R<6:0>				0000
RPINR26	06D4	_							_	_			(C1RXR<6:0	>			0000
RPINR37	06EA	_		SYNCI1R<6:0>						_						0000		
RPINR38	06EC	—		DTCMP1R<6:0>						—						0000		
RPINR39	06EE	_		DTCMP3R<6:0>						_	DTCMP2R<6:0>					0000		

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital-only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I^2C^{TM} and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-17). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.4.4.1 Virtual Connections

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices support virtual (internal) connections to the output of the op amp/ comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module"), and the PTG module (see Section 24.0 "Peripheral Trigger Generator (PTG) Module").

In addition, dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support virtual connections to the filtered QEI module inputs: FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)".

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of `b0000001, the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled and its inputs must be connected to a physical RPn pin. Example 11-2 illustrates how the input capture module can be connected to the QEI digital filter.

EXAMPLE 11-2: CONNECTING IC1 TO THE HOME1 QEI1 DIGITAL FILTER INPUT ON PIN 43 OF THE dsPIC33EPXXXMC206 DEVICE

RPINR15 = 0x2500;	/* Connect the QEI1 HOME1 input to RP37 (pin 43) */
RPINR7 = 0x009;	/* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000;	/* Enable the QEI digital filter */
QEI1CON = 0x8000;	/* Enable the QEI module */

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSE	-<4:0>: Trigger/Synchronization Source Selection bits
	11111 =	OCxRS compare event is used for synchronization
	11110 =	INT2 pin synchronizes or triggers OCx
	11101 =	INT1 pin synchronizes or triggers OCx
	11100 =	CTMU module synchronizes or triggers OCx
	11011 =	ADC1 module synchronizes or triggers OCx
	11010 =	CMP3 module synchronizes or triggers OCx
	11001 =	CMP2 module synchronizes or triggers OCx
	11000 =	CMP1 module synchronizes or triggers OCx
	10111 =	Reserved
	10110 =	Reserved
	10101 =	Reserved
	10100 =	Reserved
	10011 =	IC4 input capture event synchronizes or triggers OCx
	10010 =	IC3 input capture event synchronizes or triggers OCx
	10001 =	IC2 input capture event synchronizes or triggers OCx
	10000 =	IC1 input capture event synchronizes or triggers OCx
	01111 =	Timer5 synchronizes or triggers OCx
	01110 =	Timer4 synchronizes or triggers OCx
	01101 =	Timer3 synchronizes or triggers OCx
	01100 =	Timer2 synchronizes or triggers OCx (default)
	01011 =	Timer1 synchronizes or triggers OCx
	01010 =	PTGOx synchronizes or triggers OCx ⁽³⁾
	01001 =	Reserved
	01000 =	Reserved
	00111 =	Reserved
	00110 =	Reserved
	00101 =	Reserved
	00100 =	OC4 module synchronizes or triggers $OCx^{(1,2)}$
	00011 =	OC3 module synchronizes or triggers $OCx^{(1,2)}$
	00010 =	OC2 module synchronizes or triggers $OCx^{(1,2)}$
	00001 =	OC1 module synchronizes or triggers OCx ^(1,2)
	00000 =	No Sync or Trigger source for OCx

- **Note 1:** Do not use the OCx module as its own Synchronization or Trigger source.
 - 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.
 - Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO0 = OC1

PTGO0 = OC1 PTGO1 = OC2 PTGO2 = OC3PTGO3 = OC4

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to 6 outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and frequency resolution of Tcy/2 (7.14 ns at Fcy = 70MHz)
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 8.32 ns.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the high-speed PWMx module with an external signal. The SYNC01 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs to include FLT1 and FLT2 which are remappable using the PPS feature, FLT3 and FLT4 which are available only on the larger 44-pin and 64-pin packages, and FLT32 which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCON<1:0>), regardless of the state of FLT32.

·							
R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	PENH: PWM	(H Output Pin (Ownership bit				
	1 = PWMx mc	dule controls I	PWMxH pin WMx⊟ pin				
hit 11							
DIL 14	1 = DM/Mx mc	adula controla l					
	1 = PWWX IIIC 0 = GPIO model	dule controls P	WMxL pin				
hit 13		H Output Pin I	Polarity bit				
	1 = PWMxH r	in is active-low	/				
	0 = PWMxH p	oin is active-hig	h				
bit 12	POLL: PWMx	L Output Pin F	olarity bit				
	1 = PWMxL p	in is active-low	,				
	0 = PWMxL p	in is active-hig	h				
bit 11-10	PMOD<1:0>:	PWMx # I/O P	in Mode bits ⁽¹)			
	11 = Reserve	d; do not use					
	10 = PWMx I/	O pin pair is in	the Push-Pul	I Output mode			
	01 = PWWx I/ 00 = PWMx I/	O pin pair is in O pin pair is in	the Complem	nt Output mod entary Output	mode		
hit 9	OVRENH: Ov	erride Enable i	for PWMxH P	in bit	mouo		
bit o	1 = OVRDAT	<1> controls or	itput on PWM	xH nin			
	0 = PWMx ge	nerator control	s PWMxH pin				
bit 8	OVRENL: Ov	erride Enable f	or PWMxL Pi	n bit			
	1 = OVRDAT	<0> controls ou	Itput on PWM	xL pin			
	0 = PWMx ge	nerator control	s PWMxL pin				
bit 7-6	OVRDAT<1:0	>: Data for PW	/MxH, PWMxl	L Pins if Overr	ide is Enabled b	its	
	If OVERENH	= 1, PWMxH is	s driven to the	state specifie	d by OVRDAT<	1>.	
	If OVERENL :	= 1, PWMxL is	driven to the	state specified	l by OVRDAT<0	>.	
bit 5-4	FLTDAT<1:0>	Data for PW	MxH and PWI	MxL Pins if FL	TMOD is Enable	ed bits	
	If Fault is activ	ve, PWMxH is	driven to the s	state specified	by FLTDAT<1>		
hit 2 0		VE, FVVIVIXL IS (UY FLIDAISUS.	hita	
DIL 3-2	LUAI <1:0>	is active DIM		IXL PILIS IT ULN			
	If current-limit	is active. PWN	/IxL is driven t	to the state sp	ecified by CLDA	T<0>.	
Note 1: The	ese bits should i	not be changed	d after the PW	Mx module is	enabled (PTEN	= 1).	

REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
FRMEN	SPIFSD	FRMPOL	_	_		_					
bit 15	·						bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
_	—	—	—	_	—	FRMDLY	SPIBEN				
bit 7							bit 0				
Legend:											
R = Readabl	le bit	W = Writable b	oit	U = Unimple	mented bit, rea	d as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	FRMEN: Frai	med SPIx Supp	ort bit								
	1 = Framed S	SPIx support is e	enabled (<mark>SSx</mark> disabled	pin is used as	Frame Sync p	ulse input/outpu	t)				
bit 14	SPIFSD: Fra	me Svnc Pulse	Direction Cor	ntrol bit							
	1 = Frame Sy	ync pulse input ((slave)								
hit 12	EPMPOL · Er	amo Syno Bulse	Dolority bit								
DIL 13	1 = Frame Sv	anne Sync Fuise									
	0 = Frame S	vnc pulse is acti	ve-low								
bit 12-2	Unimplemen	nted: Read as '0)'								
bit 1	FRMDLY: Fra	ame Sync Pulse	Edge Select	bit							
	1 = Frame Sy 0 = Frame Sy	 1 = Frame Sync pulse coincides with first bit clock 0 = Frame Sync pulse precedes first bit clock 									
bit 0	SPIBEN: Enh	nanced Buffer E	nable bit								
	1 = Enhance	d buffer is enabl	led								
	0 = Enhance	d buffer is disab	led (Standard	l mode)							

REGISTER 18-3: SPIXCON2: SPIX CONTROL REGISTER 2

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	<pre>FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected</pre>
bit 1	 OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	 URXDA: UARTx Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to the **"UART"** (DS70582) section in the *"dsPIC33/PIC24 Family Reference Manual"* for information on enabling the UARTx module for transmit operation.

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edges
- · Precise Time Measurement Resolution of 1 ns
- Accurate Current Source Suitable for Capacitive Measurement
- On-Chip Temperature Measurement using a Built-in Diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

0-0	0-0	0-0	0-0	0-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits

In 12-bit mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value	ADC Channel						
value	CH1	CH2	CH3				
11	AN9	AN10	AN11				
10 (1,2)	OA3/AN6	AN7	AN8				
0x	VREFL	VREFL	VREFL				

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-bit mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value	ADC Channel								
value	CH1	CH1 CH2 CH3							
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6						
0 (1,2)	OA2/AN0	AN1	AN2						

bit 7-3 Unimplemented: Read as '0'

bit 2-1 **CH123NA<1:0>:** Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-bit mode (AD21B = 1), CH123NA is Unimplemented and is Read as '<u>0</u>':

Value	ADC Channel CH1 CH2 CH3						
value							
11	AN9	AN10	AN11				
10 (1,2)	OA3/AN6	AN7	AN8				
0x	VREFL	VREFL	VREFL				

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

bit 3-0	Step Command	OPTION<3:0>	Option Description			
	PTGCTRL(1)	0000	Reserved.			
		0001	Reserved.			
		0010	Disable Step Delay Timer (PTGSD).			
		0011	Reserved.			
		0100	Reserved.			
		0101	Reserved.			
		0110	Enable Step Delay Timer (PTGSD).			
		0111	Reserved.			
		1000	Start and wait for the PTG Timer0 to match the Timer0 Limit Register.			
		1001	Start and wait for the PTG Timer1 to match the Timer1 Limit Register.			
		1010	Reserved.			
		1011	Wait for the software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1).			
		1100	Copy contents of the Counter 0 register to the AD1CHS0 register.			
		1101	Copy contents of the Counter 1 register to the AD1CHS0 register.			
		1110	Copy contents of the Literal 0 register to the AD1CHS0 register.			
		1111	Generate triggers indicated in the Broadcast Trigger Enable register (PTGBTE).			
	PTGADD(1)	0000	Add contents of the PTGADJ register to the Counter 0 Limit register (PTGC0LIM).			
		0001	Add contents of the PTGADJ register to the Counter 1 Limit register (PTGC1LIM).			
		0010	Add contents of the PTGADJ register to the Timer0 Limit register (PTGT0LIM).			
		0011	Add contents of the PTGADJ register to the Timer1 Limit register (PTGT1LIM).			
		0100	Add contents of the PTGADJ register to the Step Delay Limit register (PTGSDLIM).			
		0101	Add contents of the PTGADJ register to the Literal 0 register (PTGL0).			
		0110	Reserved.			
		0111	Reserved.			
	PTGCOPY(1)	1000	Copy contents of the PTGHOLD register to the Counter 0 Limit register (PTGC0LIM).			
		1001	Copy contents of the PTGHOLD register to the Counter 1 Limit register (PTGC1LIM).			
		1010	Copy contents of the PTGHOLD register to the Timer0 Limit register (PTGT0LIM).			
		1011	Copy contents of the PTGHOLD register to the Timer1 Limit register (PTGT1LIM).			
		1100	Copy contents of the PTGHOLD register to the Step Delay Limit register (PTGSDLIM).			
		1101	Copy contents of the PTGHOLD register to the Literal 0 register (PTGL0).			
		1110	Reserved.			
		1111	Reserved.			

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

- bit 3-0 SELSRCA<3:0>: Mask A Input Select bits
 - 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_				—			
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	
bit 7							bit 0	
Logondi								
R = Reada	able hit	W = Writable	hit	= Inimpler	mented hit read	ae 'O'		
-n = Value	at POR	'1' = Rit is set	bit	'0' = Bit is cle	ared	x = Rit is unkr	nown	
II Value		1 Dit lo oot					lowin	
bit 15-7	Unimplemen	nted: Read as '	0'					
bit 6-4	CFSEL<2:0>	: Comparator I	-ilter Input Clo	ck Select bits				
	111 = T5CLK	(1)						
	110 = T4CLK	(2) (1)						
	101 = T3CLK	(1) (2)						
	100 = 12CLP	ved						
	010 = SYNC	01 ⁽³⁾						
	001 = Fosc ⁽⁴	4)						
	000 = FP ⁽⁴⁾							
bit 3	3 CFLTREN: Comparator Filter Enable bit							
	1 = Digital filt	er is enabled						
hit 2-0		Comparator F	ilter Clock Div	ide Select hits				
511 2-0	IL 2-0 CFDIV<2:0>: Comparator Filter Clock Divide Select bits							
	110 = Clock Divide 1.120							
	101 = Clock Divide 1:32							
	100 = Clock	100 = Clock Divide 1:16						
	011 = Clock Divide 1:8							
	001 = Clock	Divide 1:2						
	000 = Clock	Divide 1:1						
Note 1:	See the Type C Ti	mer Block Diac	ram (Figure 1	3-2).				
2:	See the Type B Ti	the Type B Timer Block Diagram (Figure 13-1).						

REGISTER 25-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

- 3: See the High-Speed PWMx Module Register Interconnection Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Parameter No.	Тур.	Max.	Units	Conditions				
Operating Cur	rent (IDD) ⁽¹⁾							
DC20d	9	15	mA	-40°C				
DC20a	9	15	mA	+25°C	3 3\/			
DC20b	9	15	mA	+85°C	5.5 V	10 MIF 3		
DC20c	9	15	mA	+125°C				
DC22d	16	25	mA	-40°C				
DC22a	16	25	mA	+25°C	3.3V			
DC22b	16	25	mA	+85°C		20 101175		
DC22c	16	25	mA	+125°C				
DC24d	27	40	mA	-40°C				
DC24a	27	40	mA	+25°C	2 2)/			
DC24b	27	40	mA	+85°C	3.3V	40 101173		
DC24c	27	40	mA	+125°C				
DC25d	36	55	mA	-40°C				
DC25a	36	55	mA	+25°C	2.21/			
DC25b	36	55	mA	+85°C	3.3V	60 MIPS		
DC25c	36	55	mA	+125°C				
DC26d	41	60	mA	-40°C				
DC26a	41	60	mA	+25°C	3.3V	70 MIPS		
DC26b	41	60	mA	+85°C	1			

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) {NOP(); } statement
- · JTAG is disabled

FIGURE 30-11: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-30: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

АС СНА	$\label{eq:characteristics} \begin{tabular}{lllllllllllllllllllllllllllllllllll$					V for Industrial C for Extended		
Param No.	Symbol	Chara	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 TCY/N) + 25			ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	_	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler	Greater of 25 + 50 or (1 Tcy/N) + 50	_	_	ns	
TQ20	TCKEXTMRL	Delay from External TQCK Clock Edge to Timer Increment		_	1	Тсү	—	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-20: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	ILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		36	
Number of Pins per Side	ND		10	
Number of Pins per Side	NE		8	
Pitch	е	0.50 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.025	-	0.075
Overall Width	E		5.00 BSC	
Exposed Pad Width	E2	3.60	3.75	3.90
Overall Length	D		5.00 BSC	-
Exposed Pad Length	D2	3.60	3.75	3.90
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2