

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc504t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description					
C1IN1-	Ι	Analog	No	Op Amp/Comparator 1 Negative Input 1.					
C1IN2-	I	Analog	No	Comparator 1 Negative Input 2.					
C1IN1+	I	Analog	No	Op Amp/Comparator 1 Positive Input 1.					
OA1OUT	0	Analog	No	Op Amp 1 output.					
C10UT	0		Yes	Comparator 1 output.					
C2IN1-	Ι	Analog	No	Op Amp/Comparator 2 Negative Input 1.					
C2IN2-	I.	Analog	No	Comparator 2 Negative Input 2.					
C2IN1+	I.	Analog	No	Op Amp/Comparator 2 Positive Input 1.					
OA2OUT	0	Analog	No	Op Amp 2 output.					
C2OUT	0	—	Yes	Comparator 2 output.					
C3IN1-	I	Analog	No	Op Amp/Comparator 3 Negative Input 1.					
C3IN2-	I	Analog	No	Comparator 3 Negative Input 2.					
C3IN1+	I	Analog	No	Op Amp/Comparator 3 Positive Input 1.					
OA3OUT	0	Analog	No	Op Amp 3 output.					
C3OUT	0		Yes	Comparator 3 output.					
C4IN1-	I	Analog	No	Comparator 4 Negative Input 1.					
C4IN1+	I	Analog	No	Comparator 4 Positive Input 1.					
C4OUT	0	—	Yes	Comparator 4 output.					
CVREF10	0	Analog	No	Op amp/comparator voltage reference output.					
CVREF20	0	Analog	No	Op amp/comparator voltage reference divided by 2 output.					
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.					
PGEC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.					
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.					
PGEC2		SI	No	Clock input pin for Programming/Debugging Communication Channel 2.					
PGED3	1/0	SI	NO	Data I/O pin for Programming/Debugging Communication Channel 3.					
PGEC3	1	51	NO	Clock input pin for Programming/Debugging Communication Channel 3.					
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.					
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.					
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.					
Vdd	Р		No	Positive supply for peripheral logic and I/O pins.					
VCAP	Р		No	CPU logic filter capacitor connection.					
Vss	Р		No	Ground reference for logic and I/O pins.					
VREF+	Ι	Analog	No	Analog voltage reference (high) input.					
VREF-	Ι	Analog	No	Analog voltage reference (low) input.					
Legend: CMOS = C	MOS co	ompatible	e input	or output Analog = Analog input P = Power					
ST = Schmi	tt Trigg	jer input v	with Cl	MOS levels O = Output I = Input					

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-------------------------	-------------

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

PPS = Peripheral Pin Select

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

TTL = TTL input buffer

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

TABLE 4-59: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00		—	—				—			—		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	0E02		—	_		_		—			—		RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04		—	—				—			—		LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06		—	—				—			—		ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08		—	—				—			—		CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A		—	—				—			—		CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C		—	—				—			—		CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	-	—	—			-	—		_	_		ANSA4	_	—	ANSA1	ANSA0	0013

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-60: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E			_	-	—	—	—	ANSB8		_	—		ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

REGISTER 7-5	INTCON3 INTERRUPT CONTROL REGISTER 3	

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15			•				bit 8
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	—	DAE	DOOVR	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as	'0'				
bit 5	DAE: DMA A	ddress Error S	oft Trap Status	s bit			
	1 = DMA add	ress error soft	trap has occur	red			
	0 = DMA add	ress error soft	trap has not o	ccurred			
bit 4	DOOVR: DO	Stack Overflow	/ Soft Trap Stat	tus bit			
	1 = DO stack	overflow soft tr	ap has occurre	ed			

	0 = DO stack overflow soft trap has not occurred
~ ~	

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15			•		•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SGHT
bit 7			•		•		bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 0

SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
		<u> </u>		RQCOL3	RQCOL2	RQCOL1	RQCOL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown
bit 15-4	Unimplemen	ted: Read as '	י)				
bit 3	RQCOL3: DM	IA Channel 3 T	ransfer Requ	est Collision Fl	lag bit		
	1 = User forc	e and interrupt	-based reques	st collision is d	etected		
	0 = No reque	est collision is d	etected				
bit 2	RQCOL2: DM	IA Channel 2 T	ransfer Requ	est Collision Fl	lag bit		
	1 = User forc	e and interrupt	-based reques	st collision is d	etected		
	0 = No reque	est collision is d	etected				
bit 1	RQCOL1: DM	1A Channel 1 T	ransfer Reque	est Collision Fl	lag bit		
	1 = User forc 0 = No reque	e and interrupt st collision is d	-based reques etected	st collision is d	etected		
bit 0	RQCOL0: DM	1A Channel 0 T	ransfer Requ	est Collision Fl	lag bit		
	1 = User forc	e and interrupt	-based reques	st collision is d	etected		

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 30-11 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the Change Notification (CN) functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source or sink source connected to the pin and eliminate the need for external resistors when push button, or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on Change Noti-
	fication pins should always be disabled
	when the port pin is configured as a digital
	output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

REGISTER 11-8: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
				QEB1R<6:0>	•							
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
				QEA1R<6:0>	•							
bit 7							bit 0					
Legend:	-1:+		L 14									
R = Readad		vv = vvritable	DIT		nented bit, rea							
-n = Value a	at POR	'1' = Bit is set		0^{\prime} = Bit is clea	ared	x = Bit is unkr	nown					
bit 15	Unimplome	ntod: Dood os '	o'									
		nteu: Reau as			- Dia kita							
DIL 14-8	(see Table 1	QEB1R<6:0>: Assign B (QEB) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)										
	1111001 =	Input tied to RPI	121									
	•											
	•											
	0000001 =	0000001 = Input tied to CMP1										
	0000000 =	Input tied to Vss	;									
bit 7	Unimpleme	ented: Read as '	0'									
bit 6-0	QEA1R<6:0	D>: Assign A (QE	A) to the Cor	responding RP	n Pin bits							
	(see Table ?	11-2 for input pin	selection nur	nbers)								
	1111001 =	Input tied to RPI	121									
	•											
	0000001 =	Input tied to CM	P1									
	0000000 =	Input tied to Vss	;									

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP118	8R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		_	_	_	_	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP120)R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

13.2 Timer Control Registers

R/M/ 0	11.0		11.0	11.0	11.0	11.0	11.0
	0-0		0-0	0-0	0-0	0-0	0-0
bit 15		TOIDE	_				
51115							bit 0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32	_	TCS	
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	When T32 = 1 1 = Starts 32-1 0 = Stops 32-1 When T32 = 0 1 = Starts 16-1 0 = Stops 16-1	On bit L: bit Timerx/y bit Timerx/y <u>):</u> bit Timerx bit Timerx					
bit 14	Unimplement	ted: Read as 'd)'				
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit				
	1 = Discontinu 0 = Continues	ues module opera	eration when o tion in Idle mo	device enters I ode	dle mode		
bit 12-7	Unimplement	ted: Read as '	י)				
bit 6	TGATE: Time When TCS = This bit is igno When TCS = 1 = Gated tim 0 = Gated tim	rx Gated Time <u>1:</u> pred. <u>0:</u> e accumulatior e accumulatior	Accumulation	Enable bit			
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Prescal	e Select bits			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3	T32: 32-Bit Timer Mode Select bit 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers						
bit 2	Unimplement	ted: Read as 'd	י)				
bit 1	TCS: Timerx (1 = External c 0 = Internal cl	Clock Source S clock is from pir ock (FP)	Select bit n, TxCK (on th	e rising edge)			
bit 0	Unimplement	ted: Read as ')'				

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	EC<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	EC<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U =			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk			x = Bit is unkr	iown			

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		

bit 15-0 QEIGEC<15:0>: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

19.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

19.1.1 KEY RESOURCES

- "Inter-Integrated Circuit (I²C)" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN
bit 15						·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit				
R = Readable	e bit	W = Writable bit	t	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	I2CEN: I2Cx	Enable bit					
	1 = Enables t	he I2Cx module a	and configures	the SDAx and	SCLx pins as	serial port pins	;
		the I2Cx module;	all I ² C [™] pins a	are controlled	by port functior	IS	
bit 14	Unimplemen	ted: Read as '0'					
bit 13	I2CSIDL: 12C	x Stop in Idle Mo	de bit				
		ues module operations module operations	ation when dev	ice enters an I	die mode		
bit 12	SCI REI : SC	I x Release Cont	rol bit (when or	perating as I^2C	slave)		
Sit 12	1 = Releases	SCLx clock			olaro)		
	0 = Holds SC	Lx clock low (clo	ck stretch)				
	If STREN = 1	<u>.</u>					
	Bit is R/W (i.e	., software can w	rite '0' to initiate	e stretch and w	vrite '1' to relea	se clock). Hard	dware is clear
	at the beginn	ing of every slav	e data byte tra vare is clear at t	Insmission. Ha the end of eve	ardware is clea ry slave data b	ir at the end o	f every slave
	If STREN = 0					yte reception.	
	Bit is R/S (i.e.	<u>.</u> , software can or	nly write '1' to re	elease clock). I	-lardware is cle	ar at the begin	ning of every
	slave data by	te transmission. I	Hardware is cle	ar at the end o	of every slave a	address byte re	eception.
bit 11	IPMIEN: Intel	ligent Peripheral	Management I	nterface (IPMI)) Enable bit ⁽¹⁾		
	1 = IPMI mod	e is enabled; all a	addresses are	Acknowledged	I		
	0 = IPMI mod	e disabled					
bit 10	A10M: 10-Bit	Slave Address b	olt 				
	1 = 12CXADD 0 = 12CXADD	is a 70-bit slave	address ddress				
bit 9	DISSLW: Dis	able Slew Rate C	Control bit				
	1 = Slew rate	control is disable	ed				
	0 = Slew rate	control is enable	d				
bit 8	SMEN: SMBL	us Input Levels bi	it				
	1 = Enables I	/O pin thresholds	compliant with	SMBus speci	fication		
	0 = Disables	SMBus input thre	sholds				
bit 7	GCEN: Gene	ral Call Enable bi	it (when operat	ing as I ² C slav	(e)		
	1 = Enables in	Iterrupt when a ge	neral call addre	ss is received ir	n I2CxRSR (mo	dule is enabled	tor reception)
			neu				

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	_	_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 15							bit 8
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0
bit 7			1	1	I	1	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	FILHIT<4:0>:	Filter Hit Num	ber bits				
	10000-1111	1 = Reserved					
	01111 = Filte	r 15					
	•						
	•						
	•						
	00001 = Filte 00000 = Filte	r 1 r 0					
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	ICODE<6:0>:	: Interrupt Flag	Code bits				
	1000101-11	11111 = Rese	rved				
	1000100 = F	IFO almost full	interrupt				
	1000011 = R 1000010 = W	ake-up interru	pt				
	1000001 = E	rror interrupt					
	1000000 = N	o interrupt					
	•						
	•						
	•						
	0010000-01	11111 = Kese B15 buffer inte	rved				
	•		nupt				
	•						
	•						
	0001001 = R	B9 buffer inter	rupt				
	0001000 = R	B8 buffer inter	rupt				
	0000111 = T	RB7 buffer inte	rrupt				
	0000110 = 1	RB5 buffer inte	errupt				
	0000100 = T	RB4 buffer inte	errupt				
	0000011 = T	RB3 buffer inte	rrupt				
	0000010 = T	RB2 buffer inte	rrupt				
	0000001 = T	RB1 buffer inte	errupt				
			πupι				

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

REGISTER 21-26:	CxTRmnCON: ECANx TX/RX BUFFER mn CONTROL REGISTER	
	(m = 0,2,4,6; n = 1,3,5,7)	

R/W-0) R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXEN	n TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0
bit 15							bit 8
R/W-0) R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENr	n TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0
bit 7							bit 0
Г.							
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
		6 H H T O					
bit 15-8	See Definition	n for bits $< 7:0>$,	Controls Buffe	ern			
Dit /		RX Buffer Sele	ction bit				
	1 = Buffer TR 0 = Buffer TR	Bn is a transm 'Bn is a receive	it duffer				
hit 6	TXABTm: Me	essage Aborteg	h bit(1)				
bit o	1 = Message	was aborted					
	0 = Message	completed trar	smission succ	cessfully			
bit 5	TXLARBm: N	Message Lost A	Arbitration bit ⁽¹)			
	1 = Message	lost arbitration	while being se	ent			
	0 = Message	did not lose ar	bitration while	being sent			
bit 4	TXERRm: Er	ror Detected D	uring Transmis	ssion bit ⁽¹⁾			
	1 = A bus erro 0 = A bus erro	or occurred wh or did not occu	ile the messag r while the me	je was being s ssage was bei	sent ing sent		
bit 3	TXREQm: M	essage Send R	equest bit				
	1 = Requests	s that a messag	ge be sent; the	bit automatic	ally clears wher	n the message i	s successfully
	sent	the bit to 'o' wh	vilo sot roquos	te a moseago	abort		
hit 2	D = Cleaning	ite Dir to 0 wi	ne set reques	is a messaye hit	abolt		
	1 = When a remote transmit is received TXPEO will be set						
	 0 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected 						
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	iority bits			
	11 = Highest	message priori	ity				
	10 = High inte	ermediate mes	sage priority				
	01 = Low interview	ermediate mess	age priority				
		nessaye prom	•y				
Note 1:	This bit is cleared	when TXREQ i	s set.				

Note: The buffers, SID, EID, DLC, Data Field, and Receive Status registers are located in DMA RAM.

REGISTER 24-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	_	—		—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	PTGQPTR<4:0>				
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the Step queue.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-13: PTGQUEX: PTG STEP QUEUE REGISTER x (x = 0-7)^(1,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x +	- 1)<7:0> (2)			
bit 15							bit 8
R/\\/_0	R/\/_0	R/\/_0	R/\/_0	R/W_0	R/\/_0	R/\/_0	R/\/_0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	STEP(2x)<7:0> ⁽²⁾						
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	STEP(2x + 1)<7:0>: PTG Step Queue Pointer Register bits ⁽²⁾
	A queue location for storage of the STEP(2x + 1) command byte
bit 7-0	STEP(2x)<7:0>: PTG Step Queue Pointer Register bits ⁽²⁾
	A queue location for storage of the STEP(2x) command byte.

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: Refer to Table 24-1 for the Step command encoding.

3: The Step registers maintain their values on any type of Reset.

24.4 Step Commands and Format

TABLE 24-1: PTG STEP COMMAND FORMAT

Step Command Byte:						
STEPx<7:0>						
CMD<3:0>	OPTION<3:0>					
bit 7 bit	4 bit 3 bit 0					

bit 7-4	CMD<3:0>	Step Command	Command Description			
	0000	PTGCTRL	Execute control command as described by OPTION<3:0>.			
	0001	PTGADD	Add contents of PTGADJ register to target register as described by OPTION<3:0>.			
		PTGCOPY	Copy contents of PTGHOLD register to target register as described by OPTION<3:0>.			
	001x	PTGSTRB	Copy the value contained in CMD<0>:OPTION<3:0> to the CH0SA<4:0> bits (AD1CHS0<4:0>).			
	0100	PTGWHI	Wait for a low-to-high edge input from the selected PTG trigger input as described by OPTION<3:0>.			
	0101	PTGWLO	Wait for a high-to-low edge input from the selected PTG trigger input as described by OPTION<3:0>.			
	0110	Reserved	Reserved.			
	0111	PTGIRQ	Generate individual interrupt request as described by OPTION3<:0>.			
	100x	PTGTRIG	Generate individual trigger output as described by < <cmd<0>:OPTION<3:0>>.</cmd<0>			
	101x	PTGJMP	Copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that Step queue.</cmd<0>			
	110x	PTGJMPC0	PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR).			
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR), and jump to that Step queue</cmd<0>			
	111x PTGJMPC1		PTGC1 = PTGC1LIM: Increment the Queue Pointer (PTGQPTR).			
			$PTGC1 \neq PTGC1LIM$: Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR), and jump to that Step queue.</cmd<0>			

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

					-			
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
CON	COE ⁽²⁾	CPOL	_		OPMODE	CEVT	COUT	
bit 15	•					•	bit 8	
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	
EVPOL1	EVPOL0		CREF ⁽¹⁾	—	_	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit		mented bit, read	as '0'		
-n = Value at I	POR	'1' = Bit is set '0' = Bit			eared	x = Bit is unkr	IOWN	
bit 1E		n/Comporator	Enabla bit					
DIL 15		ip/Comparator is e						
	0 = Op amp/o	comparator is d	lisabled					
bit 14	COE: Compa	arator Output E	nable bit ⁽²⁾					
	1 = Compara	itor output is pr	esent on the C	xOUT pin				
	0 = Compara	itor output is int	ernal only					
bit 13	CPOL: Comp	parator Output	Polarity Select	bit				
	1 = Comparator output is inverted							
h: 40 44		itor output is no	o, inverted					
		ited: Read as	0 	- Maria Oalaat				
bit 10 OPMODE: Op Amp/Comparator Operation Mode Select bit								
	1 = Circuit op 0 = Circuit op	perates as an o	p amp mparator					
bit 9	CEVT: Comp	arator Event bi	t					
	1 = Comparator event according to the EVPOL<1:0> settings occurred; disables future triggers and							
	interrupt	s until the bit is	cleared					
	0 = Compara	ator event did n	ot occur					
bit 8	COUT: Comp	parator Output l	oit					
	<u>When CPOL</u> 1 = Vin + > Vi		ed polarity):					
	$0 = VIN + \langle VIN - VIN \rangle$							
	When CPOL = 1 (inverted polarity):							
1 = VIN + < VIN-								
	0 = VIN + > VI	N-						
Note 1. Inn	uts that are sel	ected and not a	vailable will be	tied to Vss. S	See the " Pin Dia	arams" section	n for available	

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3)

- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

31.2 **AC Characteristics and Timing Parameters**

The information contained in this section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V			
AC CHARACTERISTICS	(unless otherwise stated)			
	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$			
	Operating voltage VDD range as described in Table 31-1.			

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-10: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param No. Symbol Characteristic		Min	Тур	Max	Units	Conditions	
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

These parameters are characterized by similarity, but are not tested in manufacturing. This specification is Note 1: based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz. Г

$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}} \right\rfloor = \left\lfloor \frac{5\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{5\%}{4} \right\rfloor = 1.25\%$$

٦

© 2011-2013 Microchip Technology Inc.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.