

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

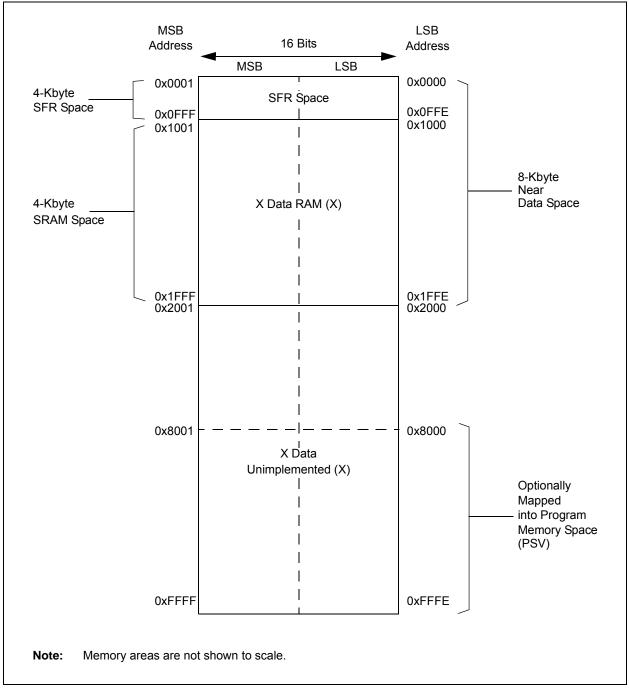
Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc504t-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description				
AN0-AN15	I	Analog	No	Analog input channels.				
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function				
CLKO	0	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.				
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS				
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.				
REFCLKO	0		Yes	Reference clock output.				
IC1-IC4	Ι	ST	Yes	Capture Inputs 1 through 4.				
OCFA OCFB OC1-OC4	 0	ST ST	Yes No Yes	Compare Fault A input (for Compare channels). Compare Fault B input (for Compare channels). Compare Outputs 1 through 4.				
INT0	I	ST	No	External Interrupt 0.				
INT1 INT2		ST ST	Yes Yes	External Interrupt 1. External Interrupt 2.				
RA0-RA4, RA7-RA12	I/O	ST	No	PORTA is a bidirectional I/O port.				
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.				
RC0-RC13, RC15	I/O	ST	No	PORTC is a bidirectional I/O port.				
RD5, RD6, RD8	I/O	ST	No	PORTD is a bidirectional I/O port.				
RE12-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.				
RF0, RF1	I/O	ST	No	PORTF is a bidirectional I/O port.				
RG6-RG9	I/O	ST	No	PORTG is a bidirectional I/O port.				
T1CK	Ι	ST	No	Timer1 external clock input.				
T2CK T3CK		ST ST	Yes	Timer2 external clock input.				
T4CK		ST	No No	Timer3 external clock input. Timer4 external clock input.				
T5CK	i	ST	No	Timer5 external clock input.				
CTPLS	0	ST	No	CTMU pulse output.				
CTED1	Ι	ST	No	CTMU External Edge Input 1.				
CTED2	Ι	ST	No	CTMU External Edge Input 2.				
U1CTS	Ι	ST	No	UART1 Clear-To-Send.				
U1RTS	0		No	5				
U1RX		ST	Yes	UART1 receive. UART1 transmit.				
U1TX BCLK1	0	ST	Yes No	UART1 Iransmit. UART1 IrDA [®] baud clock output.				
Legend: CMOS = CM ST = Schmi PPS = Perip	MOS co itt Trigg	ompatible er input v	input with CN	or output Analog = Analog input P = Power				

TABLE 1-1:PINOUT I/O DESCRIPTIONS


Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

TABLE 4-19: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	-	_	_	—	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	insmit and R	eceive Buff	er Registe	r						0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	ŝ	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE<2:0> PPRE<1:0>			0000		
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	-	_	_	—	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268	68 SPI2 Transmit and Receive Buffer Register								0000								

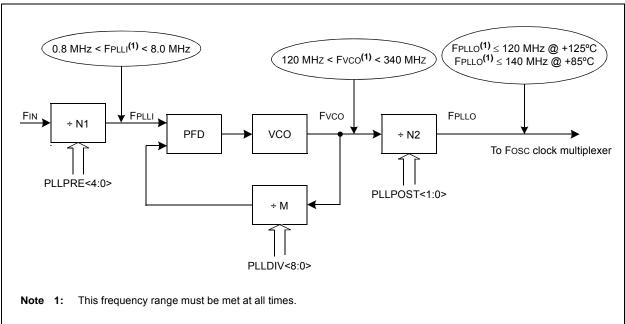
Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

9.1 CPU Clocking System

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- · FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.


EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = Fosc/2

Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FPLLO). In clock modes S1 and S3, when the PLL output is selected, FOSC = FPLLO.

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FVCO).

EQUATION 9-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$

Where:

N1 = PLLPRE + 2 $N2 = 2 \times (PLLPOST + 1)$

M = PLLDIV + 2

EQUATION 9-3: Fvco CALCULATION

$$Fvco = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$

DS70000657H-page 154

© 2011-2013 Microchip Technology Inc.

FIGURE 9-2: PLL BLOCK DIAGRAM

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your brouger.
	this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

9.2.1 KEY RESOURCES

- "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y								
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾								
bit 15							bit 8								
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0								
CLKLOC	CK IOLOCK	LOCK		CF ⁽³⁾			OSWEN								
bit 7							bit (
Legend:		y = Value set	from Configur	ation bits on F	POR										
R = Reada	able bit	W = Writable	-		mented bit, read	l as '0'									
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown								
hit 1 <i>5</i>	Unimplemen	ted. Dood oo	0'												
bit 15	-	ted: Read as													
bit 14-12		Current Oscill			/)										
		C Oscillator (F C Oscillator (F													
		ower RC Oscil													
	100 = Reserv		()												
		y Oscillator (X		h PLL											
		y Oscillator (X													
		001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)													
bit 11		Unimplemented: Read as '0'													
bit 10-8	NOSC<2:0>:	New Oscillato	r Selection bits	_S (2)											
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n											
		C Oscillator (F		le-by-16											
		ower RC Oscil	ator (LPRC)												
	100 = Reserv	/ed y Oscillator (X													
		y Oscillator (X		IFLL											
		C Oscillator (F		le-by-N and Pl	LL (FRCPLL)										
		C Oscillator (F		,	,										
bit 7		Clock Lock Ena													
				configurations	are locked; if (F	=CKSM0 = 0), t	then clock and								
		figurations may d PLL selectio		ked, configurat	ions may be mo	odified									
bit 6		Lock Enable b		-	-										
	1 = I/O lock is	s active													
	0 = I/O lock is	s not active													
bit 5	LOCK: PLL L	ock Status bit	(read-only)												
		s that PLL is in s that PLL is ou			satisfied progress or PLL	is disabled									
Note 1:	Writes to this regis						ʻdsPIC33/								
2:	Direct clock switch This applies to clo	es between ar ck switches in	y primary osci either directior	llator mode wi n. In these inst	th PLL and FRC ances, the appli	PLL mode are									
0							as a transitional clock source between the two PLL modes. t should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an								

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

NOTES:

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

'0' = Bit is cleared

x = Bit is unknown

REGISTER 16-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

'1' = Bit is set

REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVT	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					d as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unki				nown			

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

-n = Value at POR

REGISTER 17-4: POSICNTH: POSITION COUNTER 1 HIGH WORD REGISTER

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x			x = Bit is unkr	nown					
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'					
Legend:									
bit 7							bit 0		
			POSCN	IT<23:16>					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
bit 15							bit 8		
			POSCN	IT<31:24>					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		

bit 15-0 **POSCNT<31:16>:** High Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-5: POS1CNTL: POSITION COUNTER 1 LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
POSCNT<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
POSCNT<7:0>									
bit 7	bit 7 bit 0								

Legend:					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-6: POS1HLD: POSITION COUNTER 1 HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSHL	_D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x =		x = Bit is unkr	nown	

bit 15-0 **POSHLD<15:0>:** Hold Register for Reading and Writing POS1CNTH bits

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC	
ACKSTAT	TRSTAT	_	_	—	BCL	GCSTAT	ADD10	
bit 15							bit 8	
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	
bit 7							bit 0	
Legend:		C = Clearab	le bit	HS = Hardwa	re Settable bit	HSC = Hardware Settable/Clearable bit		
R = Readabl	R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

bit 15	ACKSTAT: Acknowledge Status bit (when operating as I^2C^{TM} master, applicable to master transmit operation)
bit 10	1 = NACK received from slave
	0 = ACK received from slave
	Hardware is set or clear at the end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress
	Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge.
bit 13-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation
	0 = No bus collision detected Hardware is set at detection of a bus collision.
h # 0	
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received 0 = General call address was not received
	Hardware is set when address matches general call address. Hardware is clear at Stop detection.
bit 8	ADD10: 10-Bit Address Status bit
	1 = 10-bit address was matched
	0 = 10-bit address was not matched
	Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop
	detection.
bit 7	IWCOL: I2Cx Write Collision Detect bit
	 1 = An attempt to write to the I2CxTRN register failed because the I²C module is busy 0 = No collision
	Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: I2Cx Receive Overflow Flag bit
	1 = A byte was received while the I2CxRCV register was still holding the previous byte
	0 = No overflow
	Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5	D_A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	0 = Indicates that the last byte received was a device address
	Hardware is clear at a device address match. Hardware is set by reception of a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last Hardware is set or clear when a Start, Repeated Start or Stop is detected.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_		FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 15	I	•					bit 8
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0
bit 7							bit
Logondi							
Legend: R = Readable	- hit		hit.		nonted hit rea	d aa 'O'	
-n = Value at		W = Writable		'0' = Bit is cle	mented bit, rea		
-n = value at	POR	'1' = Bit is set		0 = Bit is cie	ared	x = Bit is unkr	IOWN
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	=	Filter Hit Num					
		1 = Reserved					
	01111 = Filte	r 15					
	•						
	•						
		- 1					
	00001 = Filte 00000 = Filte						
bit 7		ted: Read as '	0'				
bit 6-0	-	Interrupt Flag					
		11111 = Rese					
		IFO almost full					
		eceiver overflo					
	1000010 = K 1000001 = E	/ake-up interru rror interrupt	μ				
	1000000 = N						
	•						
	•						
	•						
		11111 = Rese					
	•	B15 buffer inte	inupt				
	•						
	•						
	0001001 = R	B9 buffer inter	rupt				
		B8 buffer inter					
		RB7 buffer inte RB6 buffer inte					
		RB5 buffer inte					
		RB4 buffer inte					
	0000011 = T	RB3 buffer inte	errupt				
		RB2 buffer inte RB1 buffer inte					

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edges
- · Precise Time Measurement Resolution of 1 ns
- Accurate Current Source Suitable for Capacitive Measurement
- On-Chip Temperature Measurement using a Built-in Diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
—	_	—		—	_	—	ADDMAEN				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
0-0	0-0	0-0	0-0	0-0			-				
	—	—	_	—	DMABL2	DMABL1	DMABL0				
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable b	bit	U = Unimpler	mented bit, read	1 as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	nown						
bit 15-9	Unimplemen	ted: Read as '0	3								
bit 8	ADDMAEN: A	ADDMAEN: ADC1 DMA Enable bit									
				0	ster for transfer ADC1BUFF reg	0					
bit 7-3	Unimplemen	ted: Read as '0	,								
bit 2-0	DMABL<2:0>	Selects Numb	per of DMA B	uffer Locations	per Analog Inpu	ut bits					
	110 = Allocat 101 = Allocat 100 = Allocat 011 = Allocat 010 = Allocat 001 = Allocat	es 128 words of es 64 words of es 32 words of es 16 words of es 8 words of b es 4 words of b es 2 words of b es 1 word of bu	buffer to each buffer to each buffer to each uffer to each uffer to each a uffer to each a	analog input analog input analog input analog input analog input analog input analog input							

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

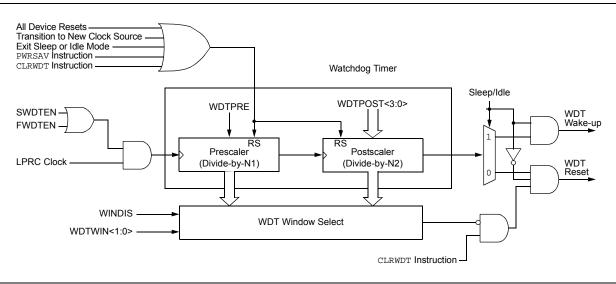
- PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 10 = Single level detect with Step delay executed on exit of command
 - 01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 00 = Continuous edge detect with Step delay executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

bit 1-0

- **2:** This bit is only used with the PTGCTRL step command software trigger option.
- **3:** Use of the PTG Single-Step mode is reserved for debugging tools only.

27.5 Watchdog Timer (WDT)

For dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.


27.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Timeout period (TWDT), as shown in Parameter SY12 in Table 30-22.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

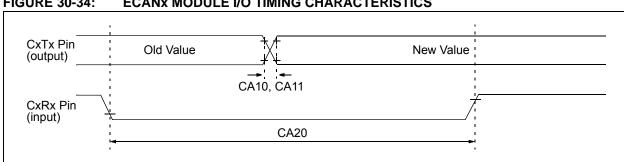
FIGURE 27-2: WDT BLOCK DIAGRAM

27.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3,2>) needs to be cleared in software after the device wakes up.

27.5.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.


The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

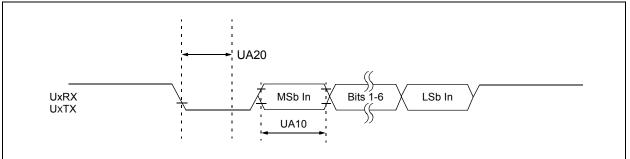
The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode, enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<6>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-34: ECAN_x MODULE I/O TIMING CHARACTERISTICS


TABLE 30-51: ECANx MODULE I/O TIMING REQUIREMENTS

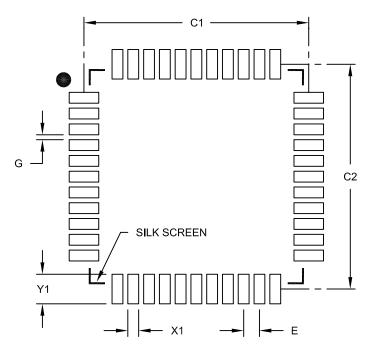
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				\leq +85°C for Industrial
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
CA10	TIOF	Port Output Fall Time	—	_		ns	See Parameter DO32
CA11	TioR	Port Output Rise Time	_	—	_	ns	See Parameter DO31
CA20	TCWF	Pulse Width to Trigger CAN Wake-up Filter	120		_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-35: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 30-52: UARTX MODULE I/O TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67		_	ns	
UA11	FBAUD	UARTx Baud Frequency	—		15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	ILLIMETER	S	
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
E	Dimension Limits			MAX
Number of Leads	N		64	
Lead Pitch	е		0.50 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	_	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

Revision F (November 2012)

Removed "Preliminary" from data sheet footer.

Revision G (March 2013)

This revision includes the following global changes:

- changes "FLTx" pin function to "FLTx" on all occurrences
- adds Section 31.0 "High-Temperature Electrical Characteristics" for high-temperature (+150°C) data

This revision also includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-5.

Section Name	Update Description
Cover Section	 Changes internal oscillator specification to 1.0% Changes I/O sink/source values to 12 mA or 6 mA Corrects 44-pin VTLA pin diagram (pin 32 now shows as 5V tolerant)
Section 4.0 "Memory Organization"	 Deletes references to Configuration Shadow registers Corrects the spelling of the JTAGIP and PTGWDTIP bits throughout Corrects the Reset value of all IOCON registers as C000h Adds footnote to Table 4-42 to indicate the absence of Comparator 3 in 28-pin devices
Section 6.0 "Resets"	 Removes references to cold and warm Resets, and clarifies the initial configuration of the device clock source on all Resets
Section 7.0 "Interrupt Controller"	Corrects the definition of GIE as "Global Interrupt Enable" (not "General")
Section 9.0 "Oscillator Configuration"	 Clarifies the behavior of the CF bit when cleared in software Removes POR behavior footnotes from all control registers Corrects the tuning range of the TUN<5:0> bits in Register 9-4 to an overall range ±1.5%
Section 13.0 "Timer2/3 and Timer4/5"	 Clarifies the presence of the ADC Trigger in 16-bit Timer3 and Timer5, as well as the 32-bit timers
Section 15.0 "Output Compare"	 Corrects the first trigger source for SYNCSEL<4:0> (OCxCON2<4:0>) as OCxRS match
Section 16.0 "High-Speed PWM Module"	 Clarifies the source of the PWM interrupts in Figure 16-1 Corrects the Reset states of IOCONx<15:14> in Register 16-13 as '11'
Section 17.0 "Quadrature Encoder Interface (QEI) Module"	 Clarifies the operation of the IMV<1:0> bits (QEICON<9:8>) with updated text and additional notes Corrects the first prescaler value for QFVDIV<2:0> (QEI10C<13:11>), now 1:128
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	 Adds note to Figure 23-1 that Op Amp 3 is not available in 28-pin devices Changes "sample clock" to "sample trigger" in AD1CON1 (Register 23-1) Clarifies footnotes on op amp usage in Registers 23-5 and 23-6
Section 25.0 "Op Amp/ Comparator Module"	 Adds Note text to indicate that Comparator 3 is unavailable in 28-pin devices Splits Figure 25-1 into two figures for clearer presentation (Figure 25-1 for Op amp/ Comparators 1 through 3, Figure 25-2 for Comparator 4). Subsequent figures are renumbered accordingly. Corrects reference description in xxxxx (now (AVDD+AVSS)/2)
Section 27.0 "Special	 Changes CMSTAT<15> in Register 25-1 to "PSIDL" Corrects the addresses of all Configuration bytes for 512 Kbyte devices

TABLE A-5: MAJOR SECTION UPDATES

Ρ

Packaging	
Details	
Marking	
Peripheral Module Disable (PMD)	
Peripheral Pin Select (PPS)	
Available Peripherals	175
Available Pins	175
Control	
Control Registers	
Input Mapping	
Output Selection for Remappable Pins	
Pin Selection for Selectable Input Sources	
Selectable Input Sources	
Peripheral Trigger Generator (PTG) Module	
PICkit 3 In-Circuit Debugger/Programmer	
Pinout I/O Descriptions (table)	
Power-Saving Features	
Clock Frequency	
Clock Switching	
Instruction-Based Modes	
Idle	
Interrupts Coincident with Power	
Save Instructions	
Sleep	
Resources	
Program Address Space	45
Construction	
Data Access from Program Memory Using	
Table Instructions	
Memory Map (dsPIC33EP128GP50X,	
dsPIC33EP128MC20X/50X,	
PIC24EP128GP/MC20X Devices)	47
Memory Map (dsPIC33EP256GP50X,	
dsPIC33EP256MC20X/50X,	
PIC24EP256GP/MC20X Devices)	
Memory Map (dsPIC33EP32GP50X,	
dsPIC33EP32MC20X/50X,	
PIC24EP32GP/MC20X Devices)	45
Memory Map (dsPIC33EP512GP50X,	
dsPIC33EP512MC20X/50X,	
PIC24EP512GP/MC20X Devices)	
Memory Map (dsPIC33EP64GP50X,	
dsPIC33EP64MC20X/50X,	
PIC24EP64GP/MC20X Devices)	
Table Read High Instructions	
TBLRDH	
Table Read Low Instructions (TBLRDL)	
Program Memory	
Organization	
Reset Vector	
Programmable CRC Generator	
Control Registers	
Overview	
Resources	
Programmer's Model	
Register Descriptions	
PTG	
Control Registers	
Introduction	
Output Descriptions	
Resources	
Step Commands and Format	

Q OFI

QLI		
	Control Registers	252
	Resources	251
Quad	Irature Encoder Interface (QEI)	249

R

Register Maps	
ADC1	84
CPU Core (dsPIC33EPXXXMC20X/50X,	
dsPIC33EPXXXGP50X Devices)	63
CPU Core (PIC24EPXXXGP/MC20X Devices)	
CRC	
CTMU	
DMAC	
ECAN1 (When WIN (C1CTRL1) = 0 or 1)	
for dsPIC33EPXXXMC/GP50X Devices	85
ECAN1 (When WIN (C1CTRL1) = 0) for	
dsPIC33EPXXXMC/GP50X Devices	85
ECAN1 (WIN (C1CTRL1) = 1) for	00
dsPIC33EPXXXMC/GP50X Devices	86
I2C1 and I2C2	
Input Capture 1 through Input Capture 4	
	70
Interrupt Controller	60
(dsPIC33EPXXXGP50X Devices)	09
Interrupt Controller	74
(dsPIC33EPXXXMC20X Devices)	/1
Interrupt Controller	
(dsPIC33EPXXXMC50X Devices)	73
Interrupt Controller	
(PIC24EPXXXGP20X Devices)	66
Interrupt Controller	
(PIC24EPXXXMC20X Devices)	
JTAG Interface	97
NVM	
Op Amp/Comparator	97
Output Compare 1 through Output Compare 4	77
Peripheral Pin Select Input	
(dsPIC33EPXXXGP50X Devices)	91
Peripheral Pin Select Input	
(dsPIC33EPXXXMC20X Devices)	92
Peripheral Pin Select Input	
(dsPIC33EPXXXMC50X Devices)	91
Peripheral Pin Select Input	
(PIC24EPXXXGP20X Devices)	90
Peripheral Pin Select Input	
(PIC24EPXXXMC20X Devices)	90
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC202/502,	
PIC24EPXXXGP/MC202 Devices)	88
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC203/503,	
PIC24EPXXXGP/MC203 Devices)	88
Peripheral Pin Select Output	00
(dsPIC33EPXXXGP/MC204/504,	
PIC24EPXXXGP/MC204 Devices)	80
Peripheral Pin Select Output	03
(dsPIC33EPXXXGP/MC206/506, PIC24EPXXGP/MC206 Devices)	00
PMD (dsPIC33EPXXXGP50X Devices)	
PMD (dsPIC33EPXXXMC20X Devices)	
PMD (dsPIC33EPXXXMC50X Devices)	
PMD (PIC24EPXXXGP20X Devices)	94