

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc506-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP128GP50X, dsPIC33EP128MC20X/50X AND PIC24EP128GP/MC20X DEVICES

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/MC20X devices.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

4.3.1 KEY RESOURCES

- "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

	- 0.													••				
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	—	_	_	_	_	—	_	_	_	_	—	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	C1TXIF	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS6	080C	_	—	—	—	_	_	—	_	—	_	—		_	_		PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	—	—	_	_	—	_	—	_	—		_	_		_	0000
IFS9	0812		—	—	—		—	—	—	—	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	—	—	—	-	—	—	—	—	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	—	—	—	-	—	—	—	—	—	—	—	—	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	_	_	CTMUIE	—	_	—	—	—	_	C1TXIE	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC8	0830	JTAGIE	ICDIE	—	—	_	—	—	—	_	—	_	_	—	—	_	_	0000
IEC9	0832	_	_	—	—	_	—	—	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>	>		(OC1IP<2:0)>	_	IC1IP<2:0>			1	NT0IP<2:0>		4444	
IPC1	0842	_		T2IP<2:0>	>		(OC2IP<2:0)>	_	IC2IP<2:0>				D	MA0IP<2:0>		4444
IPC2	0844	_	ι	J1RXIP<2:	0>	_		SPI1IP<2:()>	_	SPI1EIP<2:0>		—	- T3IP<2:0>			4444	
IPC3	0846	_			—		C	MA1IP<2:	0>	_	AD1IP<2:0> —		ι	1TXIP<2:0>		0444		
IPC4	0848	_		CNIP<2:0	>			CMIP<2:0	>	_	MI2C1IP<2:0> — SI2C1IF		I2C1IP<2:0>		4444			
IPC5	084A	_			—			—	—	_	—	_	_	_	1	NT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>	>		(OC4IP<2:0)>	_		OC3IP<2:0>			D	MA2IP<2:0>		4444
IPC7	084E	_	I	U2TXIP<2:0	0>		ι	J2RXIP<2:	0>	_		INT2IP<2:0>	•			T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0>	>		C	1RXIP<2:	0>	_		SPI2IP<2:0>	•		S	PI2EIP<2:0>		4444
IPC9	0852	_	—	—	—	_		IC4IP<2:0	>	_		IC3IP<2:0>		—	D	MA3IP<2:0>		0444
IPC11	0856	_	—	—	—	_	—	—	—	_	—	—	—	—	—	_	_	0000
IPC12	0858	_	—	—	—	_	N	112C2IP<2	:0>	_		SI2C2IP<2:0	>	—	—	_	_	0440
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0)>	_		U1EIP<2:0>		—	—	_	_	4440
IPC17	0862	_	_	—	—	_	0	1TXIP<2:	0>	_	—	—	—	—	_	_	_	0400
IPC19	0866	_	_	—	_	_	_	_	_	_		CTMUIP<2:0	>	—	—	_	_	0040
IPC35	0886	_		JTAGIP<2:()>	_		ICDIP<2:0	>	_	—	—	—	—	_	_	_	4400
IPC36	0888	_	F	PTG0IP<2:	0>	_	PT	GWDTIP<	2:0>	_	P1	GSTEPIP<2	:0>	—	_	—	_	4440
IPC37	088A	_	—	_	_	_	F	TG3IP<2:	0>	_		PTG2IP<2:0	>	_	P	TG1IP<2:0>		0444

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

				(,						
R/SO-0 ⁽¹	⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0			
WR	WREN	WRERR	NVMSIDL ⁽²⁾			—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾			
	—	—	<u> </u>	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)			
bit 7							bit 0			
						_				
Legend:		SO = Settab	le Only bit							
R = Reada	ble bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'				
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is clea	ired	x = Bit is unkn	iown			
bit 15	bit 15 WR: Write Control bit ⁽¹⁾ 1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit cleared by hardware once the operation is complete 0 = Program or erase operation is complete and inactive									
bit 14	WREN: Write 1 = Enables F 0 = Inhibits Fl	Enable bit ⁽¹⁾ ⁻ lash program ash program/	n/erase operati ⁄erase operatio	ons						
bit 13	WRERR: Writ 1 = An improp on any se 0 = The progr	e Sequence E per program of t attempt of th ram or erase	Error Flag bit ⁽¹⁾ rerase sequence e WR bit) operation comp	ce attempt or ter	mination has oc	curred (bit is se	t automatically			
bit 12	NVMSIDL: N\ 1 = Flash volt 0 = Flash volt	/M Stop in Idl age regulator age regulator	e Control bit ⁽²⁾ goes into Star is active durin	ndby mode duri g Idle mode	ng Idle mode					
bit 11-4	Unimplement	ted: Read as	'0'	-						
bit 11-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,3,4) 1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 0011 = Memory page erase operation 0010 = Reserved 0001 = Memory double-word program operation ⁽⁵⁾										
Note 1: 2: 3: 4: 5:	These bits can only If this bit is set, the (TVREG) before Fla All other combination Execution of the PV Two adjacent word	/ be reset on a re will be mini sh memory be ons of NVMO wrsav instruc s on a 4-word	a POR. mal power sav ecomes operat P<3:0> are uni tion is ignored I boundary are	rings (IIDLE) and ional. implemented. while any of the programmed d	d upon exiting lo e NVM operatio uring execution	the mode, there ns are in progra	is a delay ess. on.			

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	างพท
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3	PWCOL3: DN	VA Channel 3 F	Peripheral Wri	te Collision Fla	ag bit		
	1 = Write col	lision is detecte	ed				
	0 = No write	collision is dete	ected				
bit 2	PWCOL2: DN	MA Channel 2 I	Peripheral Wri	te Collision Fla	ag bit		
	1 = Write col	lision is detecte	ed				
	0 = No write	collision is dete	ected				
bit 1	PWCOL1: DN	MA Channel 1 F	Peripheral Wri	te Collision Fla	ag bit		
	1 = Write col	lision is detecte	ed				
h:+ 0					h-14		
DIT U			Peripheral vvri	te Collision Fla	ag dit		
	$\perp = \text{VVrite COI}$	collision is detected	eted				
			JUICU				

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

NOTES:

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70598) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx) read the latch. Writes to the Latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_				FLT2R<6:0>							
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				FLT1R<6:0>							
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			U = Unimplen	nented bit, rea	ad as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unki	nown				
bit 15	Unimpleme	ented: Read as '	0'								
bit 14-8	FLT2R<6:0: (see Table 1	Assign PWM 1-2 for input pin	Fault 2 (FLT2 selection nur) to the Corresp mbers)	onding RPn F	Pin bits					
	1111001 =	Input tied to RPI	121								
	•										
	•										
	0000001 =	Input tied to CM	P1								
	0000000 =	0000000 = Input tied to Vss									
bit 7	Unimpleme	ented: Read as '	0'								
bit 6-0	FLT1R<6:0: (see Table 1	Second States	Fault 1 (FLT1 selection nur) to the Corresp nbers)	onding RPn F	Pin bits					
	1111001 =	Input tied to RPI	121								
	•										
	-										
		Input tied to CM	P1								
	0000000 =	Input tied to Vss	;								

14.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

14.1.1 KEY RESOURCES

- "Input Capture" (DS70352) in the "dsPIC33/ PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

r									
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0		
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32		
bit 15							bit 8		
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0		
OCTRIC	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0		
bit 7							bit 0		
r									
Legend:		HS = Hardwa	ire Settable bit						
R = Reada	able bit	W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value	at POR	'1' = Bit is set	['0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	FLTMD: Fault	Mode Select I	bit						
	1 = Fault mo	de is maintain	ed until the Fa	ault source is r	removed; the c	orresponding	OCFLTx bit is		
	cleared in	n software and	a new PWM pe	eriod starts	loved and a po	N DWM poriod	etarte		
hit 14							Starts		
DIL 14	1 = PWM out	nut is driven h	iah on a Fault						
	0 = PWM out	put is driven lo	w on a Fault						
bit 13	FLTTRIEN: Fa	ault Output Sta	ate Select bit						
	1 = OCx pin i	s tri-stated on	a Fault conditio	on					
	0 = OCx pin I	/O state is def	ined by the FLT	OUT bit on a F	ault condition				
bit 12	OCINV: Outpu	ut Compare x I	nvert bit						
	1 = OCx outp	out is inverted	bo						
hit 11_9		ted: Read as '	0'						
bit 8	OC32. Casca	de Two OCx M	° Iodules Enable	hit (32-hit oper	ration)				
bit 0	1 = Cascade	module opera	tion is enabled		allony				
	0 = Cascade	module opera	tion is disabled						
bit 7	OCTRIG: Out	put Compare >	k Trigger/Sync S	Select bit					
	1 = Triggers (0 = Synchron	OCx from the s izes OCx with	source designat the source des	ted by the SYN	CSELx bits SYNCSELx bit	s			
bit 6	TRIGSTAT: Ti	mer Trigger St	atus bit	0 ,					
	1 = Timer sou	urce has been	triggered and is	s running					
	0 = Timer sou	urce has not be	een triggered a	nd is being held	d clear				
bit 5	OCTRIS: Out	put Compare x	Coutput Pin Dir	ection Select b	it				
	1 = OCx is tri	-stated							
		ompare x mod	ule drives the C	DCx pin					
Note 1:	Do not use the O	Cx module as i	its own Synchro	nization or Trig	ger source.				
2:	When the OCy module as a Trigg	odule is turned jer source, the	l OFF, it sends a OCy module m	a trigger out sig nust be unseled	gnal. If the OCx	module uses t source prior	he OCy to disabling it.		
3:	Each Output Com	ipare x module	e (OCx) has one	e PTG Trigger/S	Synchronization	n source. See S	Section 24.0		
	PTGO0 = OC1	Jei Generator			malion.				
	PTGO1 = OC2								
	PTGO2 = OC3								
	PTGO3 = OC4								

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_		
bit 15	1		1		1		bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	BCH(")	BCL	BPHH	BPHL	BPLH	BPLL		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown		
							,		
bit 15	PHR: PWMxH	Rising Edge	Trigger Enabl	e bit					
	\perp = Rising edg 0 = Leading-E	ge of PyvivixH v Edge Blanking i	anores risina	edge of PWM	anking counter kH				
bit 14	PHF: PWMxH	Falling Edge	Trigger Enabl	e bit					
	1 = Falling ed	ge of PWMxH	will trigger Le	ading-Edge Bla	anking counter				
	0 = Leading-E	Edge Blanking i	gnores falling	g edge of PWM	хH				
bit 13	PLR: PWMxL	. Rising Edge T	rigger Enable	e bit oding Edgo Blo	nking countor				
	0 = Leading-E	Edge Blanking i	gnores rising	edge of PWM	kL				
bit 12	PLF: PWMxL	Falling Edge T	rigger Enable	e bit					
	1 = Falling ed	ge of PWMxL	will trigger Le	ading-Edge Bla	anking counter				
	0 = Leading-E	Edge Blanking i	gnores falling	g edge of PWM	xL				
bit 11	1 = Leading-F	-ault Input Lea Edge Blanking i	ding-Edge Bla	anking Enable	bit				
	0 = Leading-E	Edge Blanking i	s not applied	to selected Fa	ult input				
bit 10	CLLEBEN: C	urrent-Limit Le	ading-Edge E	Blanking Enable	e bit				
	1 = Leading-E	Edge Blanking i	s applied to s	selected curren	t-limit input				
hit 0.6	0 = Leading-E	tode Blanking I	s not applied	to selected cul	rrent-limit input				
bit 5	BCH Blankin	a in Selected F	J Blanking Sign	al High Enable	hit(1)				
bit 5	1 = State blan	kina (of curren	t-limit and/or	Fault input sigr	nals) when seled	ted blanking s	ianal is hiah		
	0 = No blankii	ng when select	ed blanking s	signal is high	,	5	0 0		
bit 4	BCL: Blanking	g in Selected B	lanking Signa	al Low Enable I	bit ⁽¹⁾				
	1 = State blan	iking (of curren	t-limit and/or	Fault input sigr	nals) when seled	cted blanking s	ignal is low		
bit 3	BPHH: Blanki	ing in PWMxH	High Enable	hit					
bit o	1 = State blan	iking (of curren	t-limit and/or	Fault input sigr	nals) when PWN	/IxH output is h	igh		
	0 = No blanki	ng when PWM	xH output is h	nigh			-		
bit 2	BPHL: Blanki	ng in PWMxH	Low Enable b	pit					
	1 = State blan 0 = No blankii	nking (of curren ng when PWM	t-limit and/or xH output is le	Fault input sigr ow	nals) when PWN	IxH output is lo	W		
bit 1	BPLH: Blanki	ng in PWMxL I	High Enable b	oit					
	1 = State blan 0 = No blankii	nking (of curren ng when PWM	t-limit and/or xL output is h	Fault input sigr igh	nals) when PWN	/IxL output is hi	igh		
bit 0	BPLL: Blanki	ng in PWMxL L	ow Enable b	it					
	1 = State blan	king (of curren	t-limit and/or	Fault input sigr	nals) when PWN	IxL output is lo	W		
	v = i N o diankii		x∟ output is io	JVV					

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

18.3 SPIx Control Registers

R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 SPIEN SPISIDL SPIBEC<2:0> _____ bit 15 R/W-0 R/W-0 R/W-0 R/C-0, HS R/W-0 R/W-0 R-0, HS, HC R-0, HS, HC SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF bit 7 bit 0 Legend: C = Clearable bit HS = Hardware Settable bit HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables the module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables the module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues the module operation when device enters Idle mode 0 = Continues the module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPIx transfers that are pending. Slave mode: Number of SPIx transfers that are unread. SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) bit 7 1 = SPIx Shift register is empty and Ready-To-Send or receive the data 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

0 = No overflow has occurred SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) bit 5 1 = RX FIFO is empty 0 = RX FIFO is not empty bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR and as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete 100 = Interrupt when one data is shifted into the SPIxSR and as a result, the TX FIFO has one open memory location

- 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit is set)
- 010 = Interrupt when the SPIx receive buffer is 3/4 or more full
- 001 = Interrupt when data is available in the receive buffer (SRMPT bit is set)
- 000 = Interrupt when the last data in the receive buffer is read and as a result, the buffer is empty (SRXMPT bit is set)

bit 8

21.0 ENHANCED CAN (ECAN™) MODULE (dsPIC33EPXXXGP/ MC50X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGP/MC50X devices contain one ECAN module.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The ECAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (Standard/Extended Identifier)
 acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to Input Capture (IC2) module for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F7BP	<3:0>		F6BP<3:0>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F5BP	<3:0>		F4BP<3:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at I	-n = Value at POR '1' = Bit is set			'0' = Bit is cleare	Bit is cleared x = Bit is unknown				
bit 15-12	F7BP<3:0>: 1111 = Filter	RX Buffer Masl	k for Filter 7 b	its ffer					

1110 = Filter hits received in RX Buffer 14							
•							
•							
0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0							
F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits<15:12>)							
F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits<15:12>)							
F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits<15:12>)							

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F11BF	P<3:0>		F10BP<3:0>					
bit 15							bit 8		
R/W_0	R/M-0	R/M/-0	R/M-0	R/\\/_0	R/W/-0	R/M/-0	R/\/_0		
10,00-0	F9BP	>	1000-0	10,00-0	F8BP<3:0>				
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown		
bit 15-12	F11BP<3:0> 1111 = Filter 1110 = Filter • • • 0001 = Filter 0000 = Filter	RX Buffer Mar hits received ir hits received ir hits received ir hits received ir	sk for Filter 1 n RX FIFO bu n RX Buffer 1 n RX Buffer 1 n RX Buffer 0	1 bits iffer 4					
bit 11-8 bit 7-4	F10BP<3:0> F9BP<3:0>:	RX Buffer Ma	sk for Filter 1 k for Filter 9 k	0 bits (same val bits (same value	lues as bits<15 s as bits<15:1	5:12>) 2>)			
bit 3-0	F8BP<3:0>:	RX Buffer Mas	k for Filter 8 k	oits (same value	s as bits<15:1	2>)			

© 2011-2013 Microchip Technology Inc.

21.5 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	_	_	SID10	SID9	SID8	SID7	SID6	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-13	Unimplemented: Read as '0'							
bit 12-2	SID<10:0>: Standard Identifier bits							
bit 1	SRR: Substitute Remote Request bit							
	When IDE = 0:							
	1 = Message will request remote transmission							
	0 = Normal message							
	When IDE = 1:							
	The SRR bit r	nust be set to '	1'.					
bit 0	IDE: Extended Identifier bit							
	1 = Message will transmit Extended Identifier							
	0 = Message	will transmit St	andard Identi	fier				

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—		EID17	EID16	EID15	EID14
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6
bit 7						bit 0	
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 10 = Single level detect with Step delay executed on exit of command
 - 01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 00 = Continuous edge detect with Step delay executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

bit 1-0

- **2:** This bit is only used with the PTGCTRL step command software trigger option.
- **3:** Use of the PTG Single-Step mode is reserved for debugging tools only.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_				—			
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	
bit 7							bit 0	
Logondi								
R = Reada	able hit	W = Writable	hit	= Inimpler	mented hit read	as 'O'		
-n = Value	at POR	(1) = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
II Value		1 Bit lo oot				X Dit lo uniti		
bit 15-7	Unimplemen	nted: Read as '	0'					
bit 6-4	CFSEL<2:0>	Comparator I	-ilter Input Clo	ck Select bits				
	111 = T5CLK	(1) (1)						
	110 = T4CLK	< ⁽²⁾						
	101 = T3CLK	<(1) <(2)						
	100 = 12CLP	ved						
	010 = SYNC	01 ⁽³⁾						
	001 = Fosc ⁽⁴	4)						
	000 = FP ⁽⁴⁾							
bit 3	CFLTREN: C	CFLTREN: Comparator Filter Enable bit						
	1 = Digital filt	1 = Digital filter is enabled						
hit 2-0		U = Digital filter is disabled						
511 2-0	111 = Clock	ערשוע<2.02. Comparator Filler Clock Divide Select Dits						
	110 = Clock	111 = Clock Divide 1.128 $110 = Clock Divide 1:64$						
	101 = Clock	101 = Clock Divide 1:32						
	100 = Clock	100 = Clock Divide 1:16						
	011 = Clock	011 = Clock Divide 1:8						
	0.01 = Clock Divide 1.4							
	000 = Clock	Divide 1:1						
Note 1:	See the Type C Ti	mer Block Diac	ram (Figure 1	3-2).				
2:	See the Type B Tir	e the Type B Timer Block Diagram (Figure 13-1).						

REGISTER 25-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

- 3: See the High-Speed PWMx Module Register Interconnection Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

26.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

$$\begin{array}{c} x16+x12+x5+1\\ \text{and}\\ x32+x26+x23+x22+x16+x12+x11+x10+x8+x7\\ +x5+x4+x2+x+1 \end{array}$$

To program these polynomials into the CRC generator, set the register bits as shown in Table 26-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 26-1:CRC SETUP EXAMPLES FOR16 AND 32-BIT POLYNOMIAL

CBC Control	Bit Values					
Bits	16-bit Polynomial	32-bit Polynomial				
PLEN<4:0>	01111	11111				
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001				
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x				

26.2 Programmable CRC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

26.2.1 KEY RESOURCES

- "Programmable Cyclic Redundancy Check (CRC)" (DS70346) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions:3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol Characteristic		Min.	Тур.	Max.	Units	Conditions
CTMU Curr	rent Source	9					
CTMUI1	IOUT1	Base Range ⁽¹⁾	0.29	_	0.77	μA	CTMUICON<9:8> = 01
CTMUI2	IOUT2	10x Range ⁽¹⁾	3.85	—	7.7	μA	CTMUICON<9:8> = 10
CTMUI3	IOUT3	100x Range ⁽¹⁾	38.5	—	77	μA	CTMUICON<9:8> = 11
CTMUI4	IOUT4	1000x Range ⁽¹⁾	385	—	770	μA	CTMUICON<9:8> = 00
CTMUFV1 VF		Temperature Diode Forward Voltage ^(1,2)		0.598		V	TA = +25°C, CTMUICON<9:8> = 01
			-	0.658		V	TA = +25°C, CTMUICON<9:8> = 10
			-	0.721		V	TA = +25°C, CTMUICON<9:8> = 11
CTMUFV2	VFVR	Temperature Diode Rate of Change ^(1,2,3)	_	-1.92	_	mV/ºC	CTMUICON<9:8> = 01
			_	-1.74	_	mV/ºC	CTMUICON<9:8> = 10
			_	-1.56	_	mV/ºC	CTMUICON<9:8> = 11

TABLE 30-56: CTMU CURRENT SOURCE SPECIFICATIONS

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing.

3: Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- Executing a while(1) statement
- · Device operating from the FRC with no PLL

33.1 Package Marking Information (Continued)

48-Lead UQFN (6x6x0.5 mm)

Example 33EP64GP 504-I/MV (3) 1310017

64-Lead QFN (9x9x0.9 mm)

Example dsPIC33EP 64GP506 -I/MR® 1310017

64-Lead TQFP (10x10x1 mm)

Example

© 2011-2013 Microchip Technology Inc.