

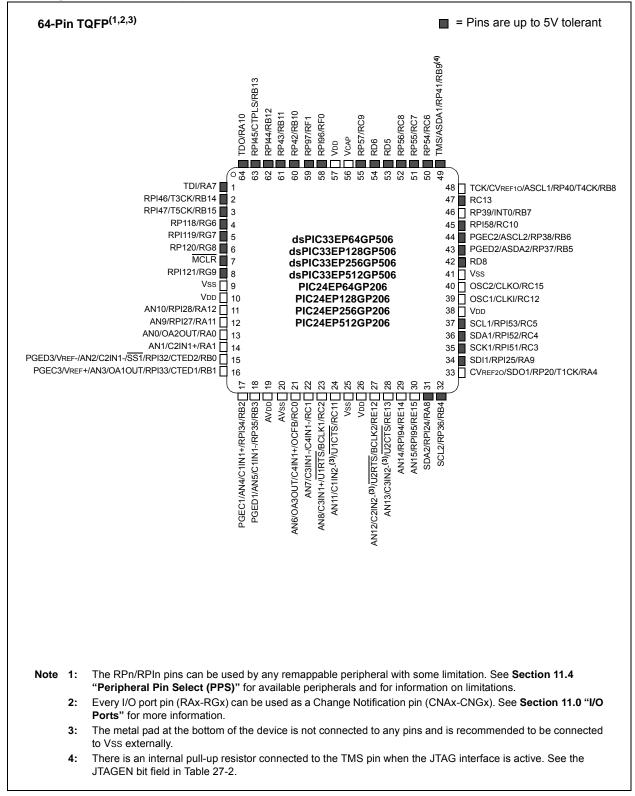
Welcome to E-XFL.COM

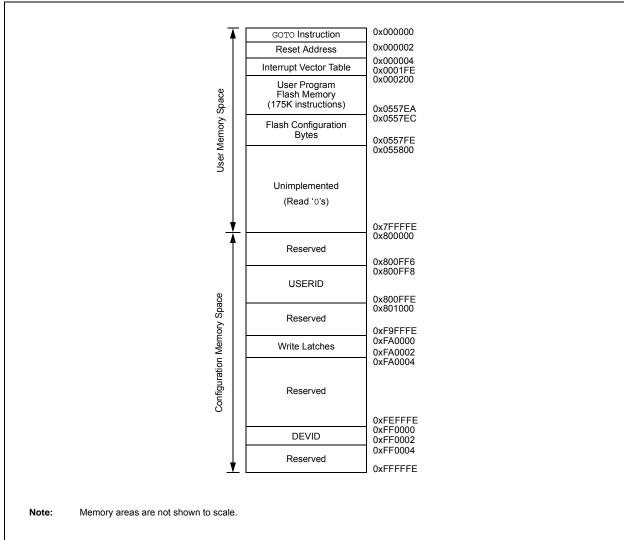
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

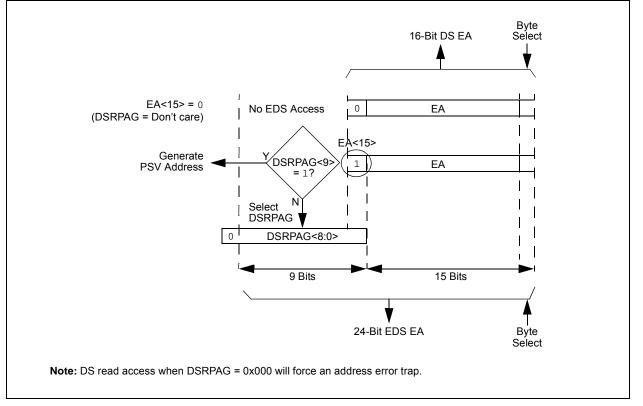

E·XFl


Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc506t-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)


FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

4.4.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Example 4-1. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when base address bit, EA<15> = 1, DSWPAG<8:0> are concatenated onto EA<14:0> to form the 24-bit EDS write address.

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA channels
- Register Indirect with Post-Increment Addressing mode
- Register Indirect without Post-Increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete
- Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer is complete)
- DMA request for each channel can be selected from any supported interrupt source
- Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)	
INT0 – External Interrupt 0	00000000	_	_	
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—	
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—	
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—	
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—	
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)	
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)	
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)	
OC4 – Output Compare 4	00011010	—	0x0924 (OC4R) 0x0922 (OC4RS)	
TMR2 – Timer2	00000111	_	_	
TMR3 – Timer3	00001000	—	_	
TMR4 – Timer4	00011011	—	_	
TMR5 – Timer5	00011100	—	—	
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)	
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)	
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—	
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)	
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)		
UART2TX – UART2 Transmitter	00011111	—	0x0234 (U2TXREG)	
ECAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	_	
ECAN1 – TX Data Request	01000110	—	0x0442 (C1TXD)	
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	—	

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

NOTES:

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOC	CK IOLOCK	LOCK		CF ⁽³⁾			OSWEN
bit 7							bit (
Legend:		y = Value set	from Configur	ation bits on F	POR		
R = Reada	able bit	W = Writable	-		mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
hit 1 <i>5</i>	Unimplemen	ted. Dood oo	0'				
bit 15	-	ted: Read as					
bit 14-12		Current Oscill			()		
		C Oscillator (F C Oscillator (F					
		ower RC Oscil					
	100 = Reserv		()				
		y Oscillator (X		h PLL			
		y Oscillator (X					
		C Oscillator (F C Oscillator (F		le-by-N and Pl	LL (FRCPLL)		
bit 11		ted: Read as	,				
bit 10-8	NOSC<2:0>:	New Oscillato	r Selection bits	_S (2)			
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n			
		C Oscillator (F		le-by-16			
		ower RC Oscil	ator (LPRC)				
	100 = Reserv	/ed y Oscillator (X					
		y Oscillator (X		IFLL			
		C Oscillator (F		le-by-N and Pl	LL (FRCPLL)		
		C Oscillator (F		,	,		
bit 7		Clock Lock Ena					
				configurations	are locked; if (F	=CKSM0 = 0), t	then clock and
		figurations may d PLL selectio		ked, configurat	ions may be mo	odified	
bit 6		Lock Enable b		-	-		
	1 = I/O lock is	s active					
	0 = I/O lock is	s not active					
bit 5	LOCK: PLL L	ock Status bit	(read-only)				
		s that PLL is in s that PLL is ou			satisfied progress or PLL	is disabled	
Note 1:	Writes to this regis						ʻdsPIC33/
2:	Direct clock switch This applies to cloo mode as a transitio	es between ar ck switches in	y primary osci either directior	llator mode wi n. In these inst	th PLL and FRC ances, the appli	PLL mode are	
0	This bit should only						

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—		—	—	—	PLLDIV8
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15-9	Unimplemen	ted: Read as '	0'				
bit 8-0	PLLDIV<8:0>	: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mul	tiplier)	
	111111111 =	= 513					
	•						
	•						
	•						
	000110000 = 50 (default)						
	•						
	000000010 = 000000001 = 000000000 =	= 3					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the powersaving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

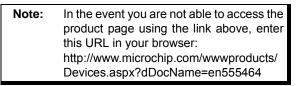
Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN[™] module has been configured for 500 kbps, based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable


The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note:	If a PMD bit is set, the corresponding
	module is disabled after a delay of one
	instruction cycle. Similarly, if a PMD bit is
	cleared, the corresponding module is
	enabled after a delay of one instruction
	cycle (assuming the module control regis-
	ters are already configured to enable
	module operation).

10.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

10.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 11-16: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38 (dsPIC33EPXXXMC20X AND PIC24EPXXXMC20X DEVICES ONLY)

	-					-	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP1R<6:	0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_		_	—	—
bit 7							bit C
Legend:							
R = Readal	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-8		6:0>: Assign PV 1-2 for input pin		•	on Input 1 to the	e Corresponding	g RPn Pin bits
	1111001 =	Input tied to RP	1121				
	•						
	•						
		Input tied to CM	P1				
		Input tied to Vss					
bit 7-0		nted: Read as '					
			-				

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP43R<5:0>					
bit 15	bit 15 bit 8							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP42R<5:0>						

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

	bit	7
1		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP55R<5:0>						
bit 15							bit 8		

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP54R<5:0>					
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP55R<5:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See **Section 30.0** "**Electrical Characteristics**" for more information.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F15B	P<3:0>		F14BP<3:0>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
1010 0		P<3:0>	1011 0			P<3:0>	1010 0		
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	t POR	'1' = Bit is set	:	'0' = Bit is cleared x = Bit is unkn			nown		
bit 15-12	1111 = Filte 1110 = Filte	RX Buffer Ma r hits received in r hits received in r hits received in r hits received in r hits received in	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	differ 4					
bit 11-8	F14BP<3:0:	RX Buffer Ma	sk for Filter 1	4 bits (same val	ues as bits<15	:12>)			
bit 7-4	F13BP<3:0;	RX Buffer Ma	sk for Filter 1	3 bits (same val	ues as bits<15	:12>)			
bit 3-0	F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits<15:12>)								

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

21.5 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
	—		SID10	SID9	SID8	SID7	SID6			
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE			
bit 7		•					bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15-13	Unimplemen	ted: Read as '	כי							
bit 12-2	SID<10:0>: S	tandard Identifi	ier bits							
bit 1	SRR: Substitu	ute Remote Re	quest bit							
	When IDE =):								
	1 = Message	will request rer	note transmis	ssion						
	0 = Normal m	lessage								
	When IDE = 1	L:								
	The SRR bit r	must be set to '	1'.							
bit 0	IDE: Extende	d Identifier bit								
	1 = Message	will transmit Ex	tended Ident	ifier						
	0 = Message will transmit Standard Identifier									

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	—		EID17	EID16	EID15	EID14	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
L								

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15				·	•	·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7	-				•		bit (
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit			mented bit, rea	d as '0'			
-n = Value at POR '1' = Bit is set '0		'0' = Bit is cleared x = Bit is unknow			nown		

REGISTER 23-8: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2)

bit 15-0 CSS<15:0>: ADC1 Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

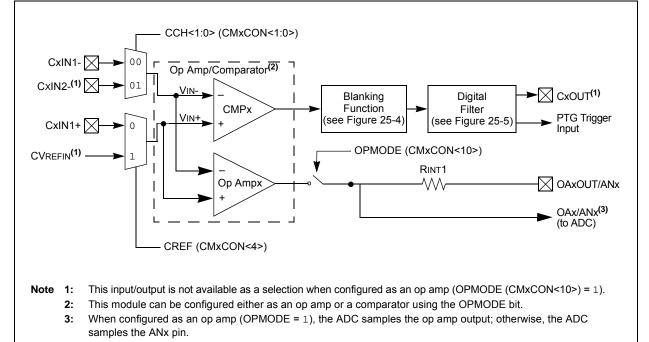
Note 1: On devices with less than 16 analog inputs, all AD1CSSL bits can be selected by the user. However, inputs selected for scan, without a corresponding input on the device, convert VREFL.

2: CSSx = ANx, where x = 0-15.

25.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain up to four comparators, which can be configured in various ways. Comparators, CMP1, CMP2 and CMP3, also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.


Note: Op Amp/Comparator 3 is not available on the dsPIC33EPXXXGP502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

These options allow users to:

- · Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2 and CMP3 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM (MODULES 1, 2 AND 3)

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER (CONTINUED)

- C2OUT: Comparator 2 Output Status bit⁽²⁾ bit 1 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -C10UT: Comparator 1 Output Status bit⁽²⁾ bit 0 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -
- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON<9>.
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON<8>.

Bit Field	Description
GCP	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source
PWMLOCK ⁽¹⁾	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence
FNOSC<2:0>	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Fast RC Oscillator with Divide-by-16 (FRCDIV16) 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use 011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled 0 = PLL lock is disabled nly available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

TABLE 27-2: CONFIGURATION BITS DESCRIPTION

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

DC CHARACT	ERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Тур.	Max.	Units		Conditions		
Operating Cur	rent (IDD) ⁽¹⁾						
DC20d	9	15	mA	-40°C			
DC20a	9	15	mA	+25°C	3.3V	10 MIPS	
DC20b	9	15	mA	+85°C	3.3V	10 1011-5	
DC20c	9	15	mA	+125°C			
DC22d	16	25	mA	-40°C			
DC22a	16	25	mA	+25°C	3.3∨	20 MIPS	
DC22b	16	25	mA	+85°C	3.3V	20 MIF 3	
DC22c	16	25	mA	+125°C			
DC24d	27	40	mA	-40°C			
DC24a	27	40	mA	+25°C	3.3V	40 MIPS	
DC24b	27	40	mA	+85°C	3.3V	40 1011-5	
DC24c	27	40	mA	+125°C			
DC25d	36	55	mA	-40°C			
DC25a	36	55	mA	+25°C	3.3V	60 MIPS	
DC25b	36	55	mA	+85°C	3.3V	OU IVIIPS	
DC25c	36	55	mA	+125°C	7		
DC26d	41	60	mA	-40°C			
DC26a	41	60	mA	+25°C	3.3V	70 MIPS	
DC26b	41	60	mA	+85°C			

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) {NOP(); } statement
- · JTAG is disabled

TABLE 30-54: OP AMP/COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 3.0V to 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
VR310	TSET	Settling Time	— 1 10 μs (Note 1)					

Note 1: Settling time is measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-55: OP AMP/COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristics	Min. Typ. Max. Units Conditions							
VRD310	CVRES	Resolution	CVRSRC/24	_	CVRSRC/32	LSb				
VRD311	CVRAA	Absolute Accuracy ⁽²⁾	—	±25	_	mV	CVRSRC = 3.3V			
VRD313	CVRSRC	Input Reference Voltage	0	_	AVDD + 0.3	V				
VRD314	CVRout	Buffer Output Resistance ⁽²⁾	_	1.5k	_	Ω				

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: Parameter is characterized but not tested in manufacturing.

TABLE 31-11: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stateOperating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					herwise stated)	
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	LPRC @ 32.768 kHz ^(1,2)							
HF21	LPRC	-30	_	+30	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C$	VDD = 3.0-3.6V	

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TwDT). See Section 27.5 "Watchdog Timer (WDT)" for more information.