

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9×9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc506t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4	-16:	QEI1	REGR		P FOR d	SPIC33E	PXXXMO	20X/50)	(AND PI	C24EP)		20X DE	VICES O	NLY	1			r
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN	—	QEISIDL		PIMOD<2:0>		IMV	<1:0>	-		INTDIV<2:0	>	CNTPOL	GATEN	CCM	<1:0>	0000
QEI1IOC	01C2	QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	NC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI1STAT	01C4	_	_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6								POSCNT<15	:0>								0000
POS1CNTH	01C8		POSCNT<31:16> 0000															
POS1HLD	01CA								POSHLD<15	0>								0000
VEL1CNT	01CC								VELCNT<15	0>								0000
INT1TMRL	01CE								INTTMR<15:	0>								0000
INT1TMRH	01D0								INTTMR<31:	6>								0000
INT1HLDL	01D2		INT HMR<31:16> 0000 INT HLD<15:0> 0000															
INT1HLDH	01D4								INTHLD<31:1	6>								0000
INDX1CNTL	01D6								INDXCNT<15	:0>								0000
INDX1CNTH	01D8								NDXCNT<31:	16>								0000
INDX1HLD	01DA								INDXHLD<15	:0>								0000
QEI1GECL	01DC								QEIGEC<15	0>								0000
QEI1ICL	01DC								QEIIC<15:0	>								0000
QEI1GECH	01DE								QEIGEC<31:	16>								0000
QEI1ICH	01DE								QEIIC<31:16	š>								0000
QEI1LECL	01E0								QEILEC<15:)>								0000
QEI1LECH	01E2								QEILEC<31:1	6>								0000

TABLE 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
Input Capture 4	IC4	RPINR8	IC4R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1 ⁽³⁾	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2 ⁽³⁾	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A ⁽³⁾	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B ⁽³⁾	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index ⁽³⁾	INDX1	RPINR15	INDX1R<6:0>
QEI1 Home ⁽³⁾	HOME1	RPINR15	HOM1R<6:0>
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
PWM Sync Input 1 ⁽³⁾	SYNCI1	RPINR37	SYNCI1R<6:0>
PWM Dead-Time Compensation 1 ⁽³⁾	DTCMP1	RPINR38	DTCMP1R<6:0>
PWM Dead-Time Compensation 2 ⁽³⁾	DTCMP2	RPINR39	DTCMP2R<6:0>
PWM Dead-Time Compensation 3 ⁽³⁾	DTCMP3	RPINR39	DTCMP3R<6:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input source is available on dsPIC33EPXXXGP/MC50X devices only.

3: This input source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	•						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				OCFAR<6:0>	>		
bit 7	•						bit 0
Leaend:							

REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-0 OCFAR<6:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121

> . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_				HOME1R<6:0	>				
bit 15							bit 8		
		D # 4 4 0	54446	5444.0	5444.0	-	5444.6		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				INDX1R<6:0>	>				
bit 7							bit C		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	is unknown		
		nput tied to RPI							
		nput tied to CM nput tied to Vss							
bit 7		nted: Read as '							
bit 6-0	(see Table 1	: Assign QEI1 1-2 for input pin nput tied to RPI	selection nun	,	responding RI	Pn Pin bits			
		nput tied to CM							

NOTES:

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 17-7: VEL1CNT: VELOCITY COUNTER 1 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown			

bit 15-0 VELCNT<15:0>: Velocity Counter bits

REGISTER 17-8: INDX1CNTH: INDEX COUNTER 1 HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXCN [®]	T<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXCN	T<23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 INDXCNT<31:16>: High Word Used to Form 32-Bit Index Counter Register (INDX1CNT) bits

REGISTER 17-9: INDX1CNTL: INDEX COUNTER 1 LOW WORD REGISTER

'1' = Bit is set

Legend: R = Readable b	it	W = Writable bit		U = Unimplen	nented bit, reac	l as '0'	
bit 7							bit 0
			INDXC	NT<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			INDXCN	NT<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

'0' = Bit is cleared

bit 15-0 INDXCNT<15:0>: Low Word Used to Form 32-Bit Index Counter Register (INDX1CNT) bits

-n = Value at POR

x = Bit is unknown

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPIxTXB is full
 - 0 = Transmit started, SPIxTXB is empty

Standard Buffer mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾ bit 4-2 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1 000 = Secondary prescale 8:1 bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)⁽³⁾ 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - 3: Do not set both primary and secondary prescalers to the value of 1:1.

21.4 ECAN Control Registers

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0		
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0		
bit 15							bit 8		
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0		
OPMODE2	OPMODE1	OPMODE0	_	CANCAP			WIN		
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-14	-	ted: Read as '							
bit 13	1 = Discontinu	Ix Stop in Idle I ues module ope module opera	eration when	device enters I	dle mode				
bit 12		All Pending Tra							
Sit 12	1 = Signals al	I transmit buffe	rs to abort tra		aborted				
bit 11	CANCKS: ECANx Module Clock (FCAN) Source Select bit								
	1 = FCAN is ea 0 = FCAN is ea	qual to 2 * FP							
bit 10-8	111 = Set Lis 110 = Reserv 101 = Reserv 100 = Set Co 011 = Set Lis 010 = Set Loc 001 = Set Dis	ed nfiguration moo ten Only mode opback mode	es mode de	bits					
bit 7-5	OPMODE<2:(111 = Module 110 = Reserv 101 = Reserv 100 = Module 011 = Module 010 = Module 001 = Module	0> : Operation N is in Listen All ed	Aode bits Messages n ation mode ly mode c mode node						
bit 4	Unimplemen	ted: Read as ')'						
bit 3				Capture Event message recei					
	0 = Disables (•							
bit 2-1	-	ted: Read as '0							
bit 0	WIN: SFR Ma	p Window Sele	ect bit						

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER (CONTINUED)

- bit 1 **RBIF:** RX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 **TBIF:** TX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

RW-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 bit 15 bit 8 bit 8 bit 8 bit 8 bit 8 R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 - EXIDE - EID17 EID16 bit 7 bit 0 - EXIDE - EID17 EID16 bit 7 bit 0 - - EXIDE - bit 0 Legend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' - <										
bit 15 bit 2 bit 3 bit 8 bit 8 bit 8 bit 7 bit 7 bit 9 bit 7 bit 0 bit 0 bit 7 bit 0 bit 0 bit 7 bit 0 bit 0 bit 0 bit 1 bit 9 bit 1 bit 9 bit 1 bit 1 bit 9 bit 1	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 - EXIDE - EID17 EID16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses Ignores EXIDE bit. Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID EID bit 1-0 EID Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
SID2 SID1 SID0 — EXIDE — EID17 EID16 bit 7 bit 0	bit 15							bit 8		
SID2 SID1 SID0 — EXIDE — EID17 EID16 bit 7 bit 0										
bit 7 bit 0 Legend: W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter x = Bit is unknown bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter 1 = Message address bit, EIDx, must be '1' to match filter	R/W-x	W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x								
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	SID2	SID1	SID0	_	EXIDE		EID17	EID16		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1f MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID 1 = Message address bit, EIDx, must be '1' to match filter	bit 7							bit 0		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1f MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID 1 = Message address bit, EIDx, must be '1' to match filter										
-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknownbit 15-5SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filterbit 4Unimplemented: Read as '0'bit 3EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit.bit 2Unimplemented: Read as '0'bit 4Unimplemented: Read as '0'bit 5I = Matches only messages with Standard Identifier addresses 1 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit.bit 2Unimplemented: Read as '0'bit 3EIDbit 4Unimplemented: Read as '0'bit 5Unimplemented: Read as '0'bit 6II = Matches only messages with Standard Identifier addresses I = Message address bit, EIDx, must be '1' to match filter	Legend:									
bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1 f MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID I= Message address bit, EIDx, must be '1' to match filter	-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	= Bit is unknown		
If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter		0 = Message Unimplemen	address bit, SI Ited: Read as '	Dx, must be ' o'						
bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	bit 3	<u>If MIDE = 1:</u> 1 = Matches 0 = Matches <u>If MIDE = 0:</u>	only messages only messages	with Extende						
1 = Message address bit, EIDx, must be '1' to match filter	bit 2	Unimplemen	ted: Read as '	כ'						
	bit 1-0	EID<17:16>:	Extended Ident	tifier bits						
		•								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT			
bit 15		1		11			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
EDG2MOD	DG2MOD EDG2POL EDG2SEL3 EDG2SEL2 EDG2SEL1 EDG2SEL0 —									
bit 7				1 1			bit C			
Legend:										
R = Readab	le bit	W = Writable	oit	U = Unimplem	ented bit, read	l as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown			
bit 15	EDG1MOD: E	Edge 1 Edge Sa	ampling Mode	Selection bit						
	1 = Edge 1 is	s edge-sensitive	9							
	•	s level-sensitive								
bit 14		dge 1 Polarity								
		s programmed f								
	•	0 = Edge 1 is programmed for a negative edge response								
bit 13-10	EDG1SEL<3:0>: Edge 1 Source Select bits									
	1xxx = Reserved 01xx = Reserved									
		011x = Reserved 0011 = CTED1 pin								
	0010 = CTED2 pin									
	0001 = OC1 module									
hit 0		0000 = Timer1 module EDG2STAT: Edge 2 Status bit								
bit 9		-		vritten to control	the edge cou	ree				
	1 = Edge 2 h				i the edge sou	ice.				
		as not occurred	1							
bit 8	EDG1STAT: Edge 1 Status bit									
	Indicates the status of Edge 1 and can be written to control the edge source.									
	1 = Edge 1 has occurred 0 = Edge 1 has not occurred									
	-									
bit 7		Edge 2 Edge Sa		Selection bit						
		s edge-sensitive s level-sensitive								
bit 6	•	EDG2POL: Edge 2 Polarity Select bit								
Sit 0		s programmed f		dae response						
		s programmed f								
bit 5-2	EDG2SEL<3	: 0>: Edge 2 So	urce Select bits	S						
	1111 = Reserved									
	01xx = Rese									
	0100 = CMP ² 0011 = CTEE									
	0011 = CTEL	•								
	0001 = OC1	module								
	0001 = OC1 0000 = IC1 m	module								

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

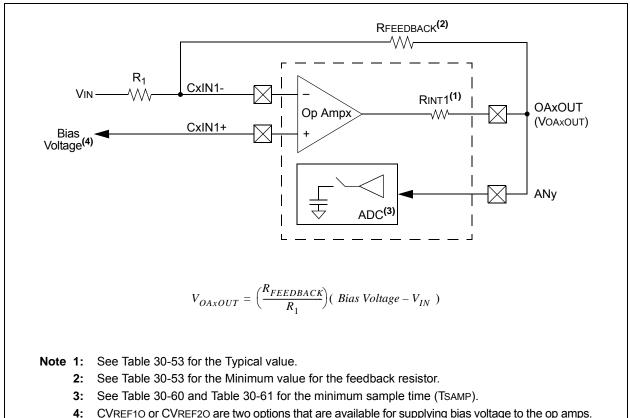
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
ADON	—	ADSIDL	ADDMABM	_	AD12B	FORM1	FORM0				
bit 15	•						bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0. HC. HS				
SSRC2	SSRC1 SSRC0 SSRCG SIMSAM ASAM SAMP DONE ⁽³⁾										
bit 7							bit (
Legend:		HC - Hardwar	e Clearable bit	HS - Hardwa	re Settable bit	C = Clearable bi	+				
R = Readable	a hit	W = Writable b			nented bit, read		L				
-n = Value at		'1' = Bit is set	nt	0 = Onimplen		x = Bit is unknov	vp.				
	FUR	I - DILIS SEL				x – Bit is unknov					
bit 15	ADON: ADO	C1 Operating M	ode bit								
	1 = ADC mo 0 = ADC is 0	odule is operatir off	ng								
bit 14	Unimpleme	nted: Read as	ʻ0'								
bit 13	ADSIDL: A	DC1 Stop in Idle	Mode bit								
	1 = Discontinues module operation when device enters Idle mode										
	0 = Continues module operation in Idle mode										
bit 12		: DMA Buffer B									
						rovides an addre	ess to the DM				
						nd-alone buffer des a Scatter/Ga	ther address t				
						size of the DMA b					
bit 11		nted: Read as		-	-						
bit 10	AD12B: AD	C1 10-Bit or 12	-Bit Operation I	Mode bit							
		-channel ADC	-								
	0 = 10-bit, 4	-channel ADC	operation								
bit 9-8	FORM<1:0>	Data Output I	Format bits								
	For 10-Bit C										
		l fractional (Dou nal (Dou⊤ = dd			0, where s = .1	NOT.d<9>)					
		l integer (DOUT			where $s = .NC$	(<9>)					
						,					
	00 = Integei	(DOOI - 0000	uuuu uuuu	aaaaj							
	00 = Integer For 12-Bit C		udda dada	aaaay							
	For 12-Bit C	<u>peration:</u> I fractional (Doเ	JT = sddd ddd	ld dddd 000	0, where s = . f	NOT.d<11>)					
	For 12-Bit C 11 = Signed 10 = Fractio	peration:	JT = sddd ddd dd dddd ddd	ld dddd 000 d 0000)							

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.


25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

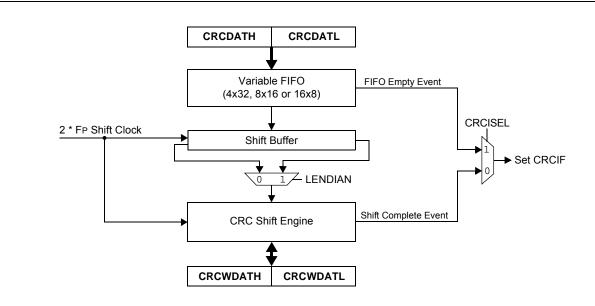
25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

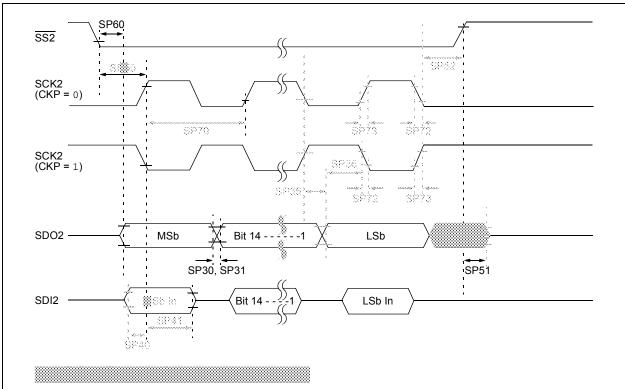
FIGURE 25-7: OP AMP CONFIGURATION B

26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Cyclic Redundancy Check (CRC)" (DS70346) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The programmable CRC generator offers the following features:

- User-programmable (up to 32nd order) polynomial CRC equation
- Interrupt output
- Data FIFO


The programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 26-1. A simple version of the CRC shift engine is shown in Figure 26-2.

FIGURE 26-1: CRC BLOCK DIAGRAM

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

AC CHA	ARACTER	RISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾						
			$\begin{array}{ll} \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
		Cloci	k Parame	eters					
AD50	TAD	ADC Clock Period	76	_	_	ns			
AD51	51 tRC ADC Internal RC Oscillator Period ⁽²⁾			250	_	ns			
	•	Conv	version F	Rate		•			
AD55	tCONV	Conversion Time		12 Tad	_				
AD56	FCNV	Throughput Rate	_	—	1.1	Msps	Using simultaneous sampling		
AD57a	TSAMP	Sample Time when Sampling any ANx Input	2 Tad	—	_	_			
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	4 Tad	_	—	—			
		Timin	g Param	eters					
AD60	tPCS	Conversion Start from Sample Trigger ^(2,3)	2 Tad	—	3 Tad	_	Auto-convert trigger is not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ^(2,3))	2 Tad	—	3 Tad	—			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)	_	0.5 Tad		—			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)		—	20	μs	(Note 6)		

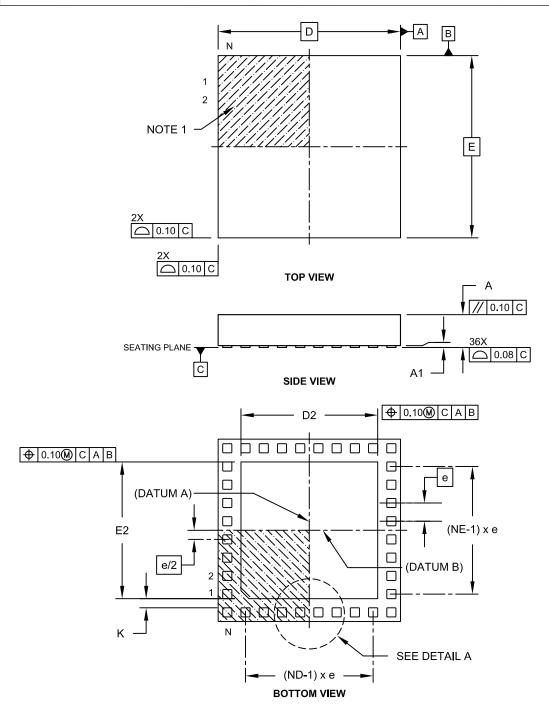
TABLE 30-61: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADC result is indeterminate.

TABLE 30-62: DMA MODULE TIMING REQUIREMENTS

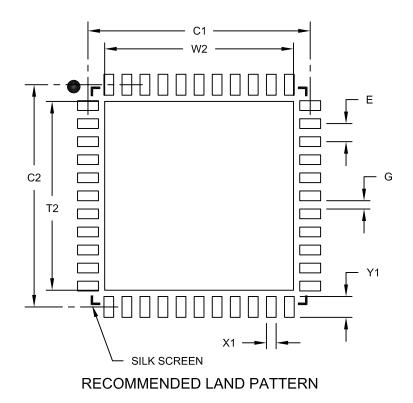
		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)	_	_	ns		


Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

^{© 2011-2013} Microchip Technology Inc.

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2			6.60	
Optional Center Pad Length	T2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B