

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gp502-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-10: DATA MEMORY MAP FOR dsPIC33EP256MC20X/50X AND dsPIC33EP256GP50X DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
	0.400								Cas dafini	tion								Resets
	0400- 041E								See defini	tion when wi	IN = x							
C1BUFPNT1	0420		F3B	P<3:0>			F2BI	><3:0>			F1BP	o<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7B	P<3:0>			F6BI	><3:0>			F5BP	2 <3:0>		F4BP<3:0>				0000
C1BUFPNT3	0424		F11B	3P<3:0>			F10B	P<3:0>		F9BP<3:0>			F8BP<3:0>				0000	
C1BUFPNT4	0426		F15E	3P<3:0>			F14B	P<3:0>		F13BP<3:0> F12BP<3:0					><3:0>		0000	
C1RXM0SID	0430				SID	:10:3>				SID<2:0> —				MIDE	_	EID<	17:16>	xxxx
C1RXM0EID	0432				EID≪	:15:8>				EID<				:7:0>				xxxx
C1RXM1SID	0434				SID	:10:3>				SID<2:0> — MII					—	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>				EID<			:7:0>				xxxx	
C1RXM2SID	0438				SID<	:10:3>				SID<2:0> — MIDE					—	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<15:8>				EID<				7:0>		-		xxxx	
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF0EID	0442		EID<15:8>				EID<7				7:0>				xxxx			
C1RXF1SID	0444		SID<10:3>							SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx	
C1RXF1EID	0446				EID<	:15:8>							EID<	:7:0>		-		xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>							EID<	:7:0>	_	_		xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>			EXIDE	_	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>				EID<7:0>					_	_		xxxx
C1RXF4SID	0450				SID<	:10:3>				SID<2:0> —				EXIDE — EID<17:16>			17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>				EID<7:0>					0>			
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>			EXIDE	_	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	:7:0>	_	_		xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>			EXIDE	_	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	:7:0>		-		xxxx
C1RXF7SID	045C				SID<	:10:3>				_	SID<2:0>			EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	:7:0>	_	_		xxxx
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>			EXIDE	_	EID<	17:16>	xxxx
C1RXF8EID	0462		EID<15:8>					EID			EID<	:7:0>	_	_		xxxx		
C1RXF9SID	0464		SID<10:3>						SID<2:0> — EXIDE — E				EID<	17:16>	xxxx			
C1RXF9EID	0466		EID<15:8>								EID<	:7:0>		-		xxxx		
C1RXF10SID	0468		SID<10:3>						SID<2:0> — EXIDE — EID<17:16>					xxxx				
C1RXF10EID	046A				EID	:15:8>				EID<7:0>						xxxx		
C1RXF11SID	046C		SID<10:3>							SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx	

TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-46: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	—	—	—	TRISA12	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	—	—	TRISA4	-	—	TRISA1	TRISA0	1F93
PORTA	0E02	_	_	_	RA12	RA11	RA10	RA9	RA8	RA7	_	_	RA4	_	_	RA1	RA0	0000
LATA	0E04	_	_	_	LATA12	LATA11	LATA10	LATA9	LATA8	LATA7	_	_	LATA4	_	_	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	ODCA12	ODCA11	ODCA10	ODCA9	ODCA8	ODCA7	_	_	ODCA4	_	_	ODCA1	ODCA0	0000
CNENA	0E08	_	_	_	CNIEA12	CNIEA11	CNIEA10	CNIEA9	CNIEA8	CNIEA7	_	_	CNIEA4	_	_	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	CNPUA12	CNPUA11	CNPUA10	CNPUA9	CNPUA8	CNPUA7	_	_	CNPUA4	_	_	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	CNPDA12	CNPDA11	CNPDA10	CNPDA9	CNPDA8	CNPDA7	_	_	CNPDA4	_	_	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	—	ANSA12	ANSA11	—	_	_	—		—	ANSA4	-	_	ANSA1	ANSA0	1813

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_	-	_	_	ANSB8		—	-		ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	_	TRISC13	TRISC12	TRISC11	TRISC10	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	BFFF
PORTC	0E22	RC15	-	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	LATC15	-	LATC13	LATC12	LATC11	LATC10	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	ODCC15	_	ODCC13	ODCC12	ODCC11	ODCC10	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	CNIEC15	_	CNIEC13	CNIEC12	CNIEC11	CNIEC10	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	CNPUC15	_	CNPUC13	CNPUC12	CNPUC11	CNPUC10	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	CNPDC15	_	CNPDC13	CNPDC12	CNPDC11	CNPDC10	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E		-	-	—	ANSC11	_		_	—	—	_		_	ANSC2	ANSC1	ANSC0	0807

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-								
	tions assume word-sized data (LSb of								
	every EA is always clear).								

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-20: MODULO ADDRESSING OPERATION EXAMPLE

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in **Section 30.0 "Electrical Characteristics"**.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (DS70609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper 8 bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (DS70580) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used with a doze ratio of 1:2 or lower.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾					
bit 15				•		•	bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
		<u> </u>				<u> </u>						
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	ROON: Refer	ence Oscillato	Output Fnah	ole bit								
	1 = Reference 0 = Reference	e oscillator outr e oscillator outr	but is enabled	on the REFCL	.K pin ⁽²⁾							
bit 14	4 Unimplemented: Read as '0'											
bit 13	ROSSLP: Re	ference Oscilla	tor Run in Sle	ep bit								
	1 = Reference	e oscillator outp	out continues	to run in Sleep								
	0 = Reference	e oscillator outp	out is disabled	l in Sleep								
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit								
	1 = Oscillator	crystal is used	as the refere	nce clock								
hit 11_8		Peference Os	cillator Divide	r hite(1)								
Dit 11-0	1111 = Refer	ence clock divi	ded by 32 76	R								
	1110 = Refer	ence clock divi	ded by 16,384	4								
	1101 = Refer	ence clock divi	ded by 8,192									
	1100 = Refer	ence clock divi	ded by 4,096									
	1011 = Refer	ence clock divi	ded by 2,048									
	1010 = Relef	ence clock divi	ded by 1,024 ded by 512									
	1000 = Refer	ence clock divi	ded by 256									
	0111 = Refer	ence clock divi	ded by 128									
	0110 = Refer	ence clock divi	ded by 64									
	0101 = Refer	ence clock divi	ded by 32									
	0100 = Refer	ence clock divi	ded by 16									
	0011 = Refer	ence clock divi	ded by 6 ded by 4									
	0001 = Refer	ence clock divi	ded by 2									
	0000 = Refer	ence clock	-									
bit 7-0	Unimplemen	ted: Read as '	כי									

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

Mode	TCS	TGATE	TSYNC
Timer	0	0	x
Gated Timer	0	1	х
Synchronous Counter	1	x	1
Asynchronous Counter	1	x	0

TABLE 12-1: TIMER MODE SETTINGS

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾
	<pre>111 = 1:128 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value</pre>
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit
	 0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected
Note 1:	When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

21.2 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3 ECAN Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

21.3.1 KEY RESOURCES

- "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
DMABS2	DMABS1	DMABS0	—	_	_		—	
bit 15	•	•					bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	FSA4	FSA3	FSA2	FSA1	FSA0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimplei	mented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								
bit 15-13 bit 12-5 bit 4-0	DMABS<2:0> 111 = Reserv 110 = 32 buff 101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe Unimplemen FSA<4:0>: FI 11111 = Rea 11110 = Rea	>: DMA Buffer S red fers in RAM fers in RAM fers in RAM rs in RAM rs in RAM rs in RAM ted: Read as for IFO Area Starts d Buffer RB31 d Buffer RB30	Size bits)' s with Buffer b	its				

REGISTER 21-4: CxFCTRL: ECANx FIFO CONTROL REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
_	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0	
bit 15							bit 8	
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
_	_	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown	
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13-8	FBP<5:0>: F	FBP<5:0>: FIFO Buffer Pointer bits						
	011111 = RE	331 buffer						
	•	50 bullet						
	•							
	•							
	000001 = TR	B1 buffer						
	000000 = TR	RB0 buffer						
bit 7-6	Unimplemen	ted: Read as '	0'					
bit 5-0	FNRB<5:0>:	FIFO Next Rea	ad Buffer Poin	ter bits				
	011111 = RE	331 buffer						
	011110 = RE	330 buffer						
	•							
	•							
	•							
	000001 = TR	(B1 buffer						
	$000000 = \mathbf{IR}$							

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7M	SK<1:0>	F6MSI	K<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3M	SK<1:0>	F2MSI	K<1:0>	F1MS	K<1:0>	F0MS	K<1:0>	
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at	t POR	'1' = Bit is set	:	'0' = Bit is cleared		x = Bit is unkr	x = Bit is unknown	
bit 15-14	F7MSK<1:0: 11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta	>: Mask Source ed ance Mask 2 re ance Mask 1 re ance Mask 0 re	for Filter 7 bi gisters contair gisters contair gisters contair	ts n mask n mask n mask				
bit 13-12	F6MSK<1:0	>: Mask Source	for Filter 6 bi	ts (same values	as bits<15:14	! >)		
bit 11-10	F5MSK<1:0	>: Mask Source	for Filter 5 bi	ts (same values	as bits<15:14	! >)		
bit 9-8	F4MSK<1:0	>: Mask Source	for Filter 4 bi	ts (same values	as bits<15:14	! >)		
bit 7-6	F3MSK<1:0:	F3MSK<1:0>: Mask Source for Filter 3 bits (same values as bits<15:14>)						
bit 5-4	F2MSK<1:0	>: Mask Source	for Filter 2 bi	ts (same values	s as bits<15:14	! >)		
bit 3-2	F1MSK<1:0	>: Mask Source	for Filter 1 bi	ts (same values	s as bits<15:14	ł>)		
bit 1-0	F0MSK<1:0:	Hask Source	for Filter 0 bi	0 bits (same values as bits<15:14>)				

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NB		_	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾		
bit 15		·	•	•			bit 8		
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NA			CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾		
bit 7		•		•	•	•	bit 0		
Legend:									
R = Read	able bit	W = Writable b	oit	U = Unimpler	nented bit, read	as '0'			
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown		
bit 15	CH0NB: Cha	nnel 0 Negative	Input Select fo	r Sample MUX	B bit				
	1 = Channel (0 negative input	is AN1 ⁽¹⁾						
	0 = Channel (0 = Channel 0 negative input is VREFL							
bit 14-13	Unimplemen	Jnimplemented: Read as '0'							
bit 12-8	CH0SB<4:0>	CH0SB<4:0>: Channel 0 Positive Input Select for Sample MUXB bits ⁽¹⁾							
	11111 = Ope	11111 = Open; use this selection with CTMU capacitive and time measurement							
	11110 = Cha	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)							
	11101 = Res	erved							
	11011 = Res	erved							
	11010 = Cha	innel 0 positive ir	nput is the outp	out of OA3/AN6	₆ (2,3)				
	11001 = Cha	innel 0 positive ir	nput is the outp	out of OA2/AN)(2) (2)				
	11000 = Cha	innel 0 positive ir	nput is the outp	out of OA1/AN3	3(2)				
	•	erveu							
	•								
	•								
	10000 = Res	erved	anutia ANIZ (3)						
	01111 = Cha	innel 0 positive ir innel 0 positive ir	$\frac{1901 \text{ is AN 15}}{1001 \text{ is AN 14}}$						
	01101 = Cha	innel 0 positive ir	nput is AN13 ⁽³⁾						
	•								
	•								
	• $00010 = Cha$	innel () nositive ir	Dout is ANI2(3)						
	00001 = Cha	innel 0 positive ir	nput is AN1 ⁽³⁾						
	00000 = Channel 0 positive input is $ANO^{(3)}$								
bit 7	CH0NA: Channel 0 Negative Input Select for Sample MUXA bit								
	1 = Channel 0 negative input is AN1 ⁽¹⁾								
	0 = Channel 0 negative input is VREFL								
bit 6-5	Unimplemented: Read as '0'								
Note 1:	AN0 through AN to determine ho	17 are repurpose w enabling a par	ed when compa ticular op amp	rator and op a or comparator	mp functionality affects selection	v is enabled. Se on choices for C	e Figure 23-1 hannels 1, 2		
2:	The OAx input is	nd 3. The OAx input is used if the corresponding op amp is selected (OPMODE (CMyCON<10>) = 1):							

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

3: See the "**Pin Diagrams**" section for the available analog channels for each device.

otherwise, the ANx input is used.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADCTS	4 ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS		
bit 15							bit 8		
							=		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
0C4C	S OC3CS	OC2CS	OC1CS	OC41SS	OC31SS	OC21SS	OCTISS		
DIT 7							Dit U		
l egend:									
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit. read	l as '0'			
-n = Value	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown		
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	DC bit					
	1 = Generate	s Trigger wher	the broadcas	t command is	executed				
	0 = Does not	generate Trigg	er when the b	roadcast comr	mand is execute	ed			
bit 14	ADCIS3: Sa	mple Trigger P	IGO14 for AL	DC bit	ovecuted				
	0 = Does not	generate Trigo	er when the b	roadcast com	nand is execute	ed			
bit 13	ADCTS2: Sa	ADCTS2: Sample Trigger PTGO13 for ADC bit							
	1 = Generate	1 = Generates Trigger when the broadcast command is executed							
	0 = Does not generate Trigger when the broadcast command is executed								
bit 12	ADCIS1: Sa	mple Trigger P	IGO12 for AL	DC bit	overuted				
	0 = Does not	generate Trigo	er when the b	roadcast com	mand is execute	ed			
bit 11	IC4TSS: Trig	ger/Synchroniz	ation Source	for IC4 bit					
	1 = Generate	s Trigger/Sync	hronization wh	nen the broadc	ast command is	s executed			
1.11.4.0	0 = Does not	generate Trigg	jer/Synchroniz	ation when the	e broadcast con	nmand is execu	ted		
bit 10		ger/Synchroniz	ation Source	for IC3 bit	act command is	overuted			
	0 = Does not	generate Trigo	jer/Synchroniz	ation when the	e broadcast con	mand is executed	ted		
bit 9	IC2TSS: Trig	ger/Synchroniz	ation Source	for IC2 bit					
	1 = Generate	s Trigger/Sync	hronization wh	nen the broadc	ast command is	sexecuted			
	0 = Does not	generate Trigg	jer/Synchroniz	ation when the	e broadcast con	nmand is execu	ted		
bit 8	IC1TSS: Trig	ger/Synchroniz	ation Source	for IC1 bit					
	0 = Does not	generate Trigo	er/Synchroniz	ation when the	e broadcast con	mand is executed	ted		
bit 7	OC4CS: Cloc	ck Source for C	C4 bit						
	1 = Generate	s clock pulse v	when the broad	dcast comman	d is executed				
	0 = Does not	generate clock	c pulse when t	he broadcast o	command is exe	cuted			
bit 6	OC3CS: Cloc	OC3CS: Clock Source for OC3 bit							
	⊥ = Generate 0 = Does not	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed 							
bit 5	OC2CS: Cloc	OC2CS: Clock Source for OC2 bit							
	1 = Generates clock pulse when the broadcast command is executed								
	0 = Does not	generate clock	c pulse when t	he broadcast o	command is exe	cuted			
Note 1:	This register is rea PTGSTRT = 1).	ad-only when th	ne PTG modul	e is executing	Step commands	s (PTGEN = 1 a	and		
2:	This register is onl	v used with the	PTGCTRL O	PTION = 1111	Step command	L			

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

REGISTER 24-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0	LIM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGTC	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimpl			U = Unimplen	Jnimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown				

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits General Purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1LI	IM<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGT1LIM<7:0>							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits

General Purpose Timer1 Limit register (effective only with a PTGT1 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

АС СНА			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$: 3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max.		Units	Conditions
		ADC /	Accuracy	/ (12-Bit	Mode)		
AD20a	Nr	Resolution	12	2 Data Bi	its	bits	
AD21a	INL	Integral Nonlinearity	-2.5		2.5	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C$ (Note 2)
			-5.5	_	5.5	LSb	+85°C < TA \leq +125°C (Note 2)
AD22a	DNL	Differential Nonlinearity	-1		1	LSb	$-40^{\circ}C \leq TA \leq +85^{\circ}C \text{ (Note 2)}$
			-1		1	LSb	+85°C < TA \leq +125°C (Note 2)
AD23a	Gerr	Gain Error ⁽³⁾	-10		10	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-10		10	LSb	+85°C < TA \leq +125°C (Note 2)
AD24a	EOFF	Offset Error	-5		5	LSb	$-40^{\circ}C \leq TA \leq +85^{\circ}C$ (Note 2)
			-5		5	LSb	$+85^{\circ}C < TA \le +125^{\circ}C$ (Note 2)
AD25a	—	Monotonicity	_			—	Guaranteed
		Dynamic	Performa	ance (12	Bit Mod	e)	
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75		dB	
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	_	68	_	dB	
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾		80	_	dB	
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	_	250	—	kHz	
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3	_	bits	

TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

FIGURE 30-36: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

31.2 **AC Characteristics and Timing Parameters**

The information contained in this section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V
	(unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$
	Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-10: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period	

These parameters are characterized by similarity, but are not tested in manufacturing. This specification is Note 1: based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz. Г

$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}} \right\rfloor = \left\lfloor \frac{5\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{5\%}{4} \right\rfloor = 1.25\%$$

٦

© 2011-2013 Microchip Technology Inc.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E		0.40 BSC			
Optional Center Pad Width	W2			4.45		
Optional Center Pad Length	T2			4.45		
Contact Pad Spacing	C1		6.00			
Contact Pad Spacing	C2		6.00			
Contact Pad Width (X28)	X1			0.20		
Contact Pad Length (X28)	Y1			0.80		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A