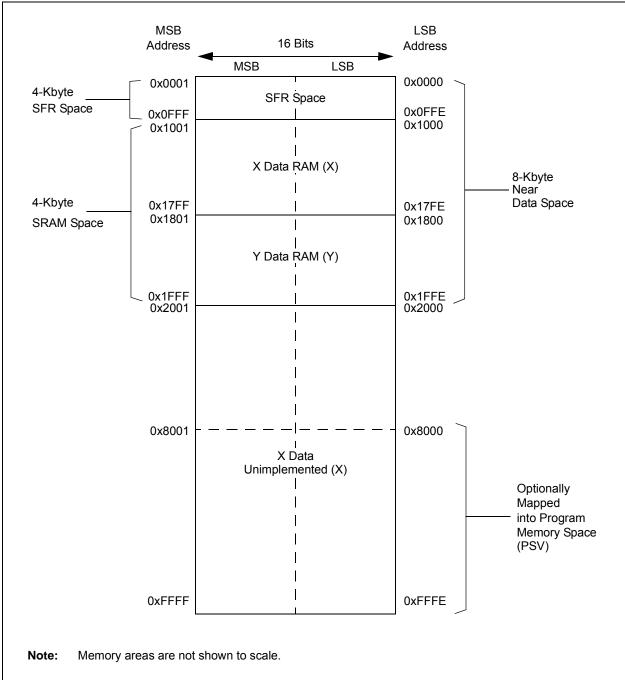


Welcome to E-XFL.COM

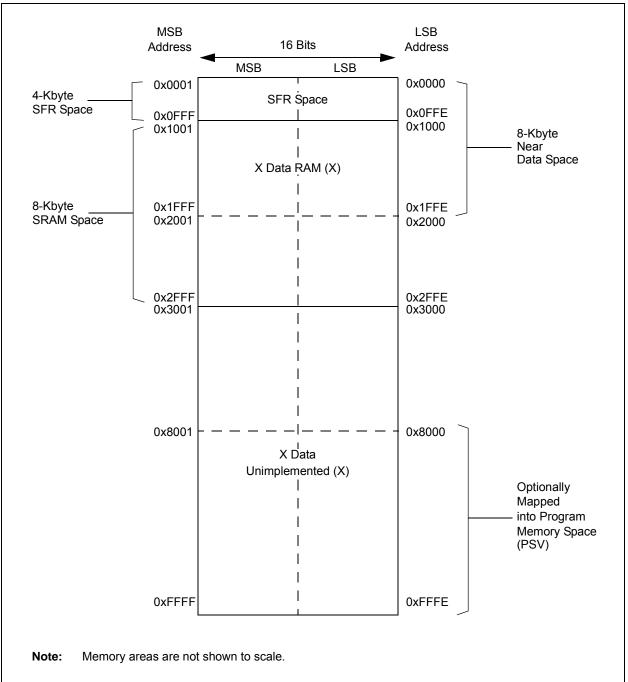
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gp502-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33EP32MC20X/50X AND dsPIC33EP32GP50X DEVICES

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/MC20X devices.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

4.3.1 KEY RESOURCES

- "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	—		_	—	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_		_	—	_	_	_	—	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	_	_	CTMUIF	_	_		_	—	_	C1TXIF	_	—	CRCIF	U2EIF	U1EIF	—	0000
IFS6	080C	_	_	_	_	_		_	—	_	_	_	—	_	—	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	—	_	_		_	—	_	_	_	—	_	—	_	—	0000
IFS9	0812			_	_	_	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824			_	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	—	—		_		_	_	_			—	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	_	_	CTMUIE	—				_	—	C1TXIE			CRCIE	U2EIE	U1EIE		0000
IEC8	0830	JTAGIE	ICDIE	—	—		_		_	_	_			—	_	_	_	0000
IEC9	0832	_	_	—	—		_		_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840			T1IP<2:0>	>	_	(OC1IP<2:0	>	_		IC1IP<2:0>		_		NT0IP<2:0>		4444
IPC1	0842			T2IP<2:0>	>	_	(C2IP<2:0	>	_		IC2IP<2:0>		_	D	MA0IP<2:0>		4444
IPC2	0844		ι	J1RXIP<2:0	0>	_	Ş	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846			_	_	_	C	MA1IP<2:	0>	_		AD1IP<2:0>		_	U	J1TXIP<2:0>		0444
IPC4	0848			CNIP<2:0	>	_		CMIP<2:0	>	_	I	WI2C1IP<2:0	>	_	S	I2C1IP<2:0>		4444
IPC5	084A			_	_	_	_	_	_	_	_	_	_	_		NT1IP<2:0>		0004
IPC6	084C			T4IP<2:0>	>	_	(C4IP<2:0	>	_		OC3IP<2:0>		_	D	MA2IP<2:0>		4444
IPC7	084E		ι	U2TXIP<2:()>	_	L	I2RXIP<2:	0>	_		INT2IP<2:0>	•	_		T5IP<2:0>		4444
IPC8	0850			C1IP<2:0>	>	_	C	1RXIP<2:	0>	_		SPI2IP<2:0>	•	_	S	PI2EIP<2:0>		4444
IPC9	0852	_	_	_	_	_		IC4IP<2:0	>	_		IC3IP<2:0>		_	D	MA3IP<2:0>		0444
IPC11	0856	_	_	_	_	_		_	—	_	_	_	—	_	_	_	_	0000
IPC12	0858	_	_	_	_	_	N	II2C2IP<2:	0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC17	0862	_	_	_	_	_	C	1TXIP<2:)>	_	_	_	—	_	_	_	_	0400
IPC19	0866	_	_	—	_	_		_	—	_		CTMUIP<2:0	>	_	—			0040
IPC35	0886	_		JTAGIP<2:0)>	_		ICDIP<2:0	>	_	_	—	_	_	—	_	_	4400
IPC36	0888	_	F	PTG0IP<2:	0>	—	PT	GWDTIP<	2:0>	_	PT	GSTEPIP<2	:0>	_	_	_	_	4440
IPC37	088A	_	_	_	_	_	F	TG3IP<2:)>	_		PTG2IP<2:0	>	_	Р	TG1IP<2:0>		0444

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	_		—	
bit 15	I	1	1				bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^{(3,4}
bit 7							bit (
lagandi		SO - Sottab	la Only hit				
L egend: R = Reada	ble hit	SO = Settab W = Writable	-	II – I Inimplem	nented bit, read	ae 'O'	
-n = Value		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkr	
		1 - Dit 13 30					lowin
bit 15	WR: Write Co	ontrol bit(1)					
			ory program or	erase operation	on; the operatio	n is self-timed	and the bit is
	cleared b	y hardware o	nce the operati	on is complete			
	-		ration is comple	ete and inactive	9		
bit 14	WREN: Write		n/erase operati	000			
			/erase operatio				
oit 13			Error Flag bit ⁽¹⁾				
	1 = An impro	per program o	r erase sequend		rmination has oc	curred (bit is se	t automatically
		et attempt of th	e WR bit) operation com	olotod pormally			
bit 12			le Control bit ⁽²⁾	Sieteu normaliy			
			r goes into Star	ndbv mode duri	ina Idle mode		
			r is active durin				
bit 11-4	Unimplemen	ted: Read as	'0'				
bit 3-0	NVMOP<3:0>	NVM Operation	ation Select bits	₃ (1,3,4)			
	1111 = Rese						
	1110 = Rese 1101 = Rese						
	1100 = Rese						
	1011 = Rese						
	1010 = Rese 0011 = Memo		e operation				
	0010 = Rese	rved	-				
			ord program ope	eration ⁽⁵⁾			
	0000 = Rese	rvea					
	These bits can onl	-					
	If this bit is set, the (TVREG) before Fla				d upon exiting lo	dle mode, there	is a delay
	All other combinati		•				
. .				in ploinenteu.			
4:	Execution of the P	wrsav instruc	tion is ianored	while any of th	e NVM operatio	ns are in progr	ess.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

	Vector	IRQ		Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	—	—	_
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_
	Lowe	est Natura	I Order Priority			

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
Logondi							

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **TUN<5:0>:** FRC Oscillator Tuning bits 011111 = Maximum frequency deviation of 1.453% (7.477 MHz) 011110 = Center frequency + 1.406% (7.474 MHz) •••• 000001 = Center frequency + 0.047% (7.373 MHz) 000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency - 0.047% (7.367 MHz) ••• 100001 = Center frequency - 1.453% (7.263 MHz) 100000 = Minimum frequency deviation of -1.5% (7.259 MHz)

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the powersaving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

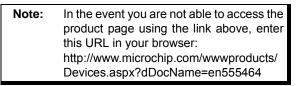
Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN[™] module has been configured for 500 kbps, based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable


The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note:	If a PMD bit is set, the corresponding
	module is disabled after a delay of one
	instruction cycle. Similarly, if a PMD bit is
	cleared, the corresponding module is
	enabled after a delay of one instruction
	cycle (assuming the module control regis-
	ters are already configured to enable
	module operation).

10.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

10.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1 PTGO5 = OC2
 - PTGO6 = OC3 PTGO7 = OC4

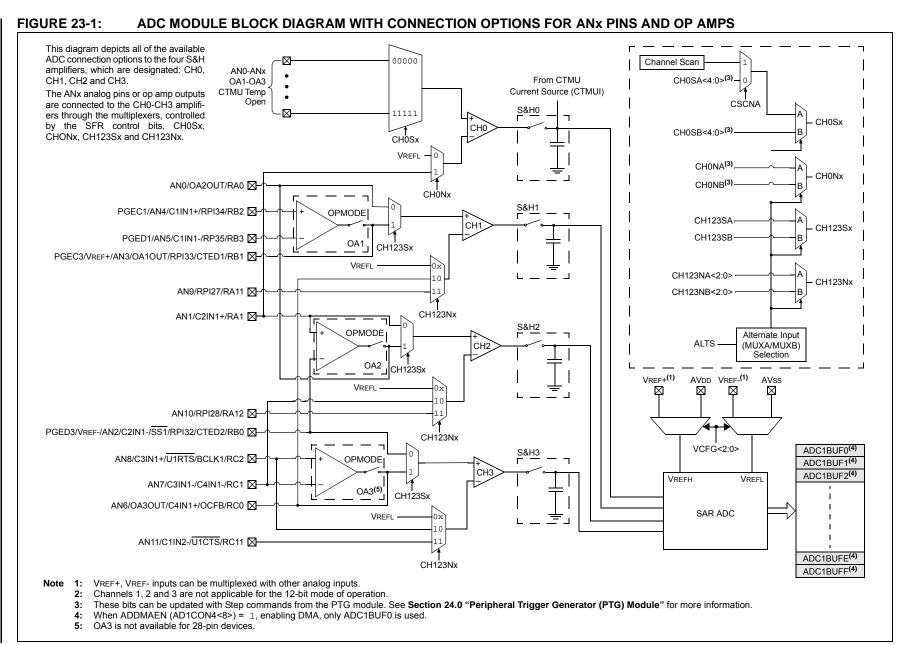
REGISTER 16-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			PDC	<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PDCx<7:0>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 15-0 **PDCx<15:0>:** PWMx Generator # Duty Cycle Value bits

REGISTER 16-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown


bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL

REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

RW-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 bit 15 bit 8 bit 8 bit 8 bit 8 bit 8 R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 - EXIDE - EID17 EID16 bit 7 5ID2 SID1 SID0 - EXIDE - EID17 EID16 bit 7 - - EID17 EID16 bit 0 bit 0 Legend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' - <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>										
bit 15 bit 2 bit 3 bit 8 bit 8 bit 8 bit 7 bit 7 bit 9 bit 7 bit 0 bit 0 bit 7 bit 0 bit 0 bit 7 bit 0 bit 0 bit 0 bit 1 bit 9 bit 1 bit 9 bit 1 bit 1 bit 9 bit 1	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 - EXIDE - EID17 EID16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses Ignores EXIDE bit. Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' Ignores Extinct bits 1 = Message address bit, EIDx, must be '1' to match filter	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
SID2 SID1 SID0 — EXIDE — EID17 EID16 bit 7 bit 0	bit 15	÷						bit 8		
SID2 SID1 SID0 — EXIDE — EID17 EID16 bit 7 bit 0										
bit 7 bit 0 Legend: W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter x = Bit is unknown bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1 f MIDE = 0: Ignores EXIDE bit. Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	SID2	SID1	SID0	_	EXIDE		EID17	EID16		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1f MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID a Matches bit, EIDx, must be '1' to match filter	bit 7							bit 0		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Message Sit, SIDE 5 bit 2 Unimplemented: Read as '0' bit 2 Unimplemented: Read as '0' bit 4 Unimplemented: Read as '0' bit 1-0 EID if MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID a Message address bit, EIDx, must be '1' to match filter										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter o = Message address bit, SIDx, must be '1' to match filter 0' = Bit is cleared x = Bit is unknown bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter 1 = Message address bit, EIDx, must be '1' to match filter	Legend:									
bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1 f MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID I= Message address bit, EIDx, must be '1' to match filter	-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	= Bit is unknown		
If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	bit 4	0 = Message	address bit, SI	Dx, must be '						
bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	bit 3	<u>If MIDE = 1:</u> 1 = Matches 0 = Matches <u>If MIDE = 0:</u>	only messages only messages	with Extende						
1 = Message address bit, EIDx, must be '1' to match filter	bit 2	Unimplemen	ted: Read as '	כ'						
	bit 1-0	EID<17:16>:	Extended Iden	tifier bits						
		•								

REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

bit 1	BUFM: Buffer Fill Mode Select bit				
	 1 = Starts the buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on next interrupt 0 = Always starts filling the buffer from the start address. 				
bit 0	ALTS: Alternate Input Sample Mode Select bit				

1 = Uses channel input selects for Sample MUXA on first sample and Sample MUXB on next sample 0 = Always uses channel input selects for Sample MUXA

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
—	—	—	—	—	—	—	ADDMAEN				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_		—			DMABL2	DMABL1	DMABL0				
bit 7							bit 0				
Levend											
Legend:	le hit	W = Writable b	.:.		mented bit mee						
			DIT	•	mented bit, read						
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown					
bit 15-9	Unimplemen	tod: Poad as 'n	,								
bit 8	Unimplemented: Read as '0' ADDMAEN: ADC1 DMA Enable bit										
	1 = Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA										
	0 = Conversion results are stored in ADC1BUF0 through ADC1BUFF registers; DMA will not be used										
bit 7-3	Unimplemen	Unimplemented: Read as '0'									
bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits						ut bits					
	111 = Allocates 128 words of buffer to each analog input										
	110 = Allocates 64 words of buffer to each analog input										
	101 = Allocates 32 words of buffer to each analog input										
	100 = Allocates 16 words of buffer to each analog input										
	011 = Allocates 8 words of buffer to each analog input 010 = Allocates 4 words of buffer to each analog input										
	0.01 = Allocates 4 words of buffer to each analog input										
	000 = Allocates 1 word of buffer to each analog input										

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

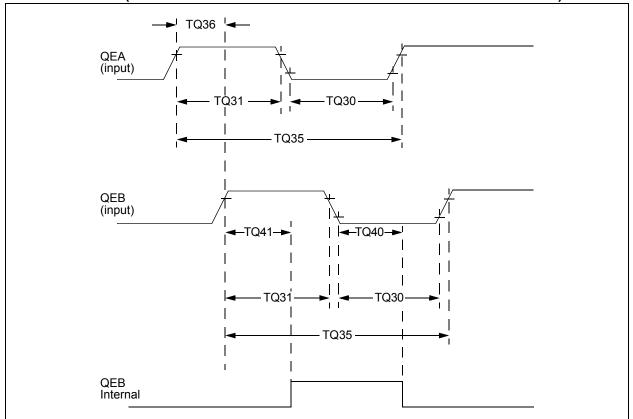

oit 3-0	Step Command	OPTION<3:0>	Option Description
	PTGCTRL(1)	0000	Reserved.
		0001	Reserved.
		0010	Disable Step Delay Timer (PTGSD).
		0011	Reserved.
		0100	Reserved.
		0101	Reserved.
		0110	Enable Step Delay Timer (PTGSD).
		0111	Reserved.
		1000	Start and wait for the PTG Timer0 to match the Timer0 Limit Register.
		1001	Start and wait for the PTG Timer1 to match the Timer1 Limit Register.
		1010	Reserved.
		1011	Wait for the software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1).
		1100	Copy contents of the Counter 0 register to the AD1CHS0 register.
		1101	Copy contents of the Counter 1 register to the AD1CHS0 register.
		1110	Copy contents of the Literal 0 register to the AD1CHS0 register.
		1111	Generate triggers indicated in the Broadcast Trigger Enable register (PTGBTE).
	PTGADD ⁽¹⁾	0000	Add contents of the PTGADJ register to the Counter 0 Limit register (PTGC0LIM).
		0001	Add contents of the PTGADJ register to the Counter 1 Limit register (PTGC1LIM).
		0010	Add contents of the PTGADJ register to the Timer0 Limit register (PTGT0LIM).
		0011	Add contents of the PTGADJ register to the Timer1 Limit register (PTGT1LIM).
		0100	Add contents of the PTGADJ register to the Step Delay Limit register (PTGSDLIM)
		0101	Add contents of the PTGADJ register to the Literal 0 register (PTGL0).
		0110	Reserved.
		0111	Reserved.
	PTGCOPY (1)	1000	Copy contents of the PTGHOLD register to the Counter 0 Limit register (PTGC0LIM).
		1001	Copy contents of the PTGHOLD register to the Counter 1 Limit register (PTGC1LIM).
		1010	Copy contents of the PTGHOLD register to the Timer0 Limit register (PTGT0LIM).
		1011	Copy contents of the PTGHOLD register to the Timer1 Limit register (PTGT1LIM).
		1100	Copy contents of the PTGHOLD register to the Step Delay Limit register (PTGSDLIM).
		1101	Copy contents of the PTGHOLD register to the Literal 0 register (PTGL0).
		1110	Reserved.
		1111	Reserved.

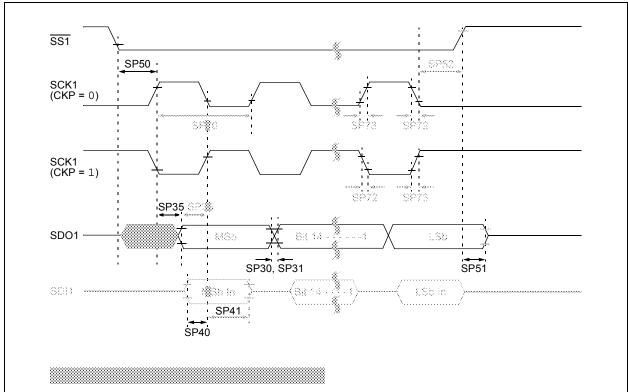
TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)


TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			Standard Ope (unless other Operating tem	wise state	nditions: 3.0V to 3.6V d) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic ⁽¹⁾	Typ. ⁽²⁾ Max.		Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns		
TQ31	TQUH	Quadrature Input High Time	6 Tcy	—	ns		
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns		
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns		
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

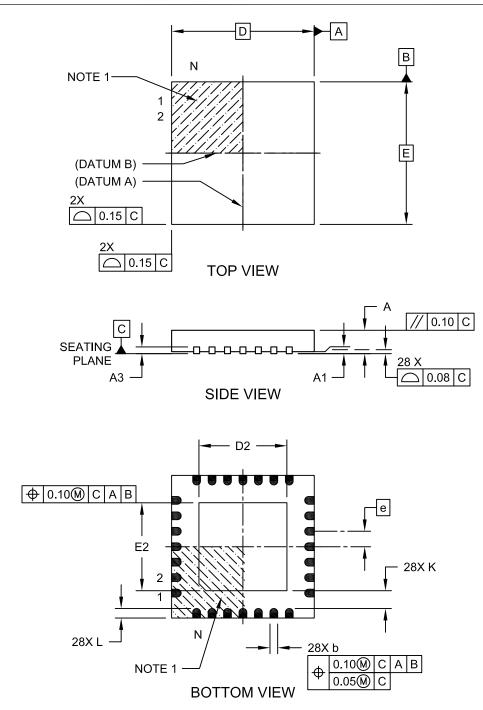
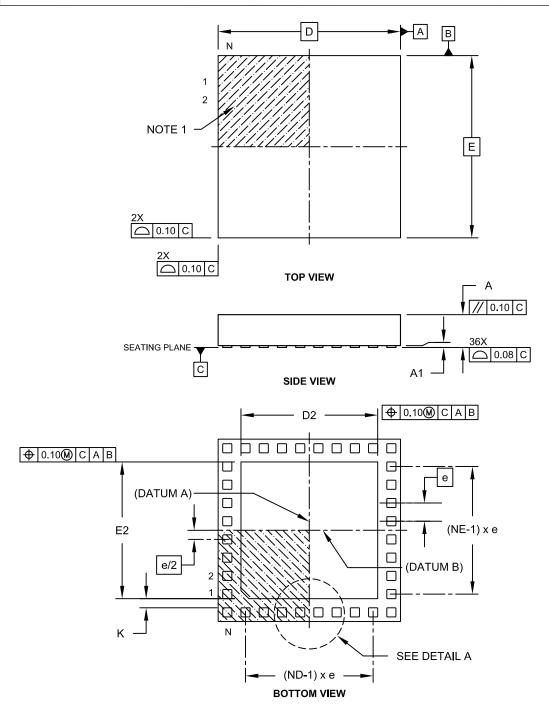

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

FIGURE 30-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2