

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gp502t-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC23	086E		F	PWM2IP<2:0)>		Р	WM1IP<2:	0>			_		—	_	-		4400
IPC24	0870		_	_	_	-	_	_	_	_	_	_	_	_	F	WM3IP<2:0>		0004
IPC35	0886			JTAGIP<2:0	>	-		ICDIP<2:0	>	_	_	_	_	_	_	_	_	4400
IPC36	0888		I	PTG0IP<2:0)>	-	PT	GWDTIP<	2:0>	_	P	GSTEPIP<2:	:0>	_	_	_	_	4440
IPC37	088A	_	_		—	_	F	PTG3IP<2:0)>	_		PTG2IP<2:0>	•	—	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	_	_	_				_		_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—		—	_	_	_				DAE	DOOVR	_	—	_		0000
INTCON4	08C6	_	_		—	_	_	_	_	_		_	_	—	—	_	SGHT	0000
INTTREG	08C8	_	—	-	—		ILR<	3:0>					VECNU	JM<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	4-31:	PER	IPHERA	L PIN S	ELECT	INPUT F	REGISTI	ER MAP	FOR de	sPIC33E	EPXXXG	P50X D	EVICES	SONLY	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>				_	_	—	—	—	—	—	_	0000
RPINR1	06A2		_	_	_	_	_	_	_	_				INT2R<6:0>	•			0000
RPINR3	06A6		_	_	_	_	_	_	_	_			٦	[2CKR<6:0	>			0000
RPINR7	06AE					IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0					IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6		_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000
RPINR18	06C4		_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6		_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC				S	CK2INR<6:0)>			_			:	SDI2R<6:0>	•			0000
RPINR23	06CE	_	_	_	—	—	_	_	—	—				SS2R<6:0>				0000
RPINR26	06D4	—	_	_	-	_	_	—		—			(C1RXR<6:0	>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
RPINR0	06A0	_				INT1R<6:0>				—	—	—	—	—	—	—	_	0000		
RPINR1	06A2		_							_	INT2R<6:0>							0000		
RPINR3	06A6		_	_	_	_	_	_	_	_			-	F2CKR<6:0	>			0000		
RPINR7	06AE					IC2R<6:0>				_	IC1R<6:0>					0000				
RPINR8	06B0					IC4R<6:0>				_	IC3R<6:0>					IC3R<6:0> 00				0000
RPINR11	06B6		_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000		
RPINR12	06B8					FLT2R<6:0>	•			_	FLT1R<6:0>					000				
RPINR14	06BC				(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000		
RPINR15	06BE				Н	OME1R<6:0)>			_			I	NDX1R<6:0	>			0000		
RPINR18	06C4		_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000		
RPINR19	06C6		_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000		
RPINR22	06CC	_			S	CK2INR<6:()>			—				SDI2R<6:0>	•			0000		
RPINR23	06CE	_	—	—		—	—		—	—				SS2R<6:0>				0000		
RPINR26	06D4	_	_	_		—	—		—	—	C1RXR<6:0>				0000					
RPINR37	06EA	_			S	YNCI1R<6:0)>			—						0000				
RPINR38	06EC	_	DTCMP1R<6:0>						—						0000					
RPINR39	06EE	_		DTCMP3R<6:0>						_			D	CMP2R<6:	0>			0000		

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in **Section 30.0 "Electrical Characteristics"**.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (DS70609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper 8 bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
GIE	DISI	SWTRAP				_						
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
	—				INT2EP	INT1EP	INT0EP					
bit 7							bit C					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown					
bit 15	GIE: Global	Interrupt Enable	e bit									
	1 = Interrupt	s and associate	d IE bits are	enabled								
		s are disabled, I	•	still enabled								
bit 14	DISI: DISI	nstruction Statu	s bit									
		struction is active struction is not a	-									
bit 13	SWTRAP: S	Software Trap St	atus bit									
		e trap is enabled e trap is disabled										
bit 12-3	Unimpleme	nted: Read as '	0'									
bit 2	INT2EP: Ext	ternal Interrupt 2	2 Edge Detec	t Polarity Selec	t bit							
		on negative edg										
bit 1	INT1EP: Ext	ternal Interrupt 1	Edge Detec	t Polarity Selec	t bit							
		INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge										
bit 0	INTOEP: Ext	ternal Interrupt C	Edge Detec	t Polarity Selec	t bit							
		on negative edg										

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_				_	—		—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	_	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

Legend:				
R = Readat	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-4	Unimplo	mented: Read as '0'		
bit 3	•	DMA Channel 3 Ping-Pong I	Modo Status Elag bit	
bit 5	1 = DMA	ASTB3 register is selected ASTA3 register is selected	vioue Status Flag bit	
bit 2	1 = DMA	DMA Channel 2 Ping-Pong I ASTB2 register is selected ASTA2 register is selected	Mode Status Flag bit	
bit 1	PPST1:	DMA Channel 1 Ping-Pong I	Mode Status Flag bit	
		CTD1 register is calested		

- 1 = DMASTB1 register is selected0 = DMASTA1 register is selected
- bit 0 PPST0: DMA Channel 0 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB0 register is selected
 - 0 = DMASTA0 register is selected

12.1 Timer1 Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

12.1.1 KEY RESOURCES

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 16-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **PDCx<15:0>:** PWMx Generator # Duty Cycle Value bits

REGISTER 16-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			DTR)	<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTR	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 16-10: DTRx: PWMx DEAD-TIME REGISTER

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			ALTDTR	x<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTDT	Rx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL
bit 15	•	•	•	•		•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7						onornen	bit
Legend:						(0)	
R = Readab		W = Writable		-	ented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	D'				
bit 11-8	-			urce Select bits			
	The selected	state blank sig	nal will block t	he current-limit	and/or Fault inp	out signals (if e	nabled via th
	BCH and BCI	L bits in the LEI			·	5 (
	1001 = Rese	rved					
	•						
	•						
	• • 0100 = Rese	rved					
	• • 0100 = Rese 0011 = PWM	rved 3H selected as	state blank so	ource			
	0011 = PWM 0010 = PWM	3H selected as 2H selected as	state blank so	ource			
	0011 = PWM 0010 = PWM 0001 = PWM	3H selected as 2H selected as 1H selected as	state blank so	ource			
hit 7-6	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st	3H selected as 2H selected as 1H selected as ate blanking	state blank so state blank so	ource			
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '	state blank so state blank so o'	burce burce			
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved	state blank so state blank so o' op Clock Sour ole and disable	ource ource rce Select bits e (CHOP) the se	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '0 :0>: PWMx Ch signal will enab rved rved 3H selected as	state blank so state blank so op Clock Sour ole and disable	ource ource rce Select bits e (CHOP) the se source	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as	state blank so state blank so op Clock Sour ole and disable CHOP clock	source source	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • • • • • • • • • • • • • • • •	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as	state blank so state blank so op Clock Sour ole and disable CHOP clock s CHOP clock s CHOP clock s	source source		outputs.	
bit 7-6 bit 5-2 bit 1	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • 0100 = Rese 0011 = PWM 0010 = PWM 0001 = PWM	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as	state blank so state blank so op Clock Sour- ole and disable cHOP clock so cHOP clock so cHOP clock so cHOP clock so	ource ource rce Select bits e (CHOP) the se source source source CHOP clock so		outputs.	
bit 5-2	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '0 :0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato	 state blank so state blank so op Clock Sour chOP clock so chopping Enso on is enabled 	ource ource rce Select bits e (CHOP) the se source source source CHOP clock so		outputs.	
bit 5-2	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • • • • • • • • • • • • • • • •	3H selected as 2H selected as 1H selected as ate blanking ted: Read as 'f :0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato PWMxH Output chopping function	CHOP clock so or clock Sour- ole and disable cHOP clock so cHOP clock so cHOP clock so cHOP clock so chOP clock so chopping En- on is enabled on is disabled	source source source source source source CHOP clock so able bit		putputs.	
bit 5-2 bit 1	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato PWMxH Output chopping function	CHOP clock so CHOP clock so Chopping Ena	source source source source source source CHOP clock so able bit		putputs.	

REGISTER 16-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_		FBP5	FBP4	FBP3	FBP2	FBP1	FBP0
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
FNRB5 FNRB4 FNRB3 FNRB2 FNRB1							FNRB0
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 15-14	Unimpleme	ented: Read as '	0'				
bit 13-8	FBP<5:0>:	FIFO Buffer Poir	nter bits				
		RB31 buffer					
	011110 = F	RB30 buffer					
	•						
	•						
	•	TRB1 buffer					
		TRB0 buffer					
bit 7-6	Unimpleme	ented: Read as '	0'				
bit 5-0	FNRB<5:0	>: FIFO Next Rea	ad Buffer Poir	iter bits			
	011111 = F	RB31 buffer					
	011110 = F	RB30 buffer					
	•						
	•						
	•						
		FRB1 buffer FRB0 buffer					

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
_	—	—		—	—	—	_							
bit 15							bit							
R/W-0	R/W-0 R/W-0 U-0 R/W-0 R/W-0 R					R/W-0	R/W-0							
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE							
bit 7							bit							
Legend: R = Readab	la hit	W = Writable b	.it		montod bit rook	l oo 'O'								
n = Value a		'1' = Bit is set	אנ	0 = Onimpler	mented bit, read	x = Bit is unkr								
	IL POR	I = DILIS SEL			areu		IOWI							
bit 15-8	Unimplemen	ted: Read as '0	,											
bit 7	-	Message Inter		bit										
		request is enabl	•	~										
		request is not er												
bit 6	WAKIE: Bus Wake-up Activity Interrupt Enable bit													
		1 = Interrupt request is enabled												
		request is not er												
bit 5		Interrupt Enabl												
		request is enabl request is not er												
bit 4		ted: Read as '0												
bit 3	-	Almost Full Int		o hit										
DIL J		request is enabl	•	ebit										
		request is not er												
bit 2	RBOVIE: RX	RBOVIE: RX Buffer Overflow Interrupt Enable bit												
	1 = Interrupt	1 = Interrupt request is enabled												
	0 = Interrupt i	request is not er	nabled											
bit 1		ffer Interrupt En												
		equest is enabl												
		request is not er	nabled											
	•	•			TBIE: TX Buffer Interrupt Enable bit									
bit 0	TBIE: TX Buf	•	able bit											

REGISTER 21-7: CXINTE: ECANX INTERRUPT ENABLE REGISTER

FIGURE 22-1: CTMU BLOCK DIAGRAM

5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1<9>) = 1, and opened when IDISSEN = 0.

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

22.1.1 KEY RESOURCES

- "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample MUXA bits ⁽¹⁾
	11111 = Open; use this selection with CTMU capacitive and time measurement
	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)
	11101 = Reserved
	11100 = Reserved
	11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)
	11010 = Channel 0 positive input is the output of OA3/AN0 ⁽²⁾
	11000 = Channel 0 positive input is the output of OA1/AN3 ⁽²⁾
	10110 = Reserved
	•
	•
	•
	10000 = Reserved
	01111 = Channel 0 positive input is AN15 ^(1,3)
	01110 = Channel 0 positive input is AN14 ^(1,3)
	01101 = Channel 0 positive input is AN13 ^(1,3)
	•
	•
	•
	00010 = Channel 0 positive input is $AN2^{(1,3)}$
	00001 = Channel 0 positive input is $AN1^{(1,3)}$
	00000 = Channel 0 positive input is AN0 ^(1,3)

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed, or an SFR register is read. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157). For more information on instructions that take more than one instruction cycle to execute, refer to **"CPU"** (DS70359) in the *"dsPIC33/PIC24 Family Reference Manual"*, particularly the **"Instruction Flow Types"** section.

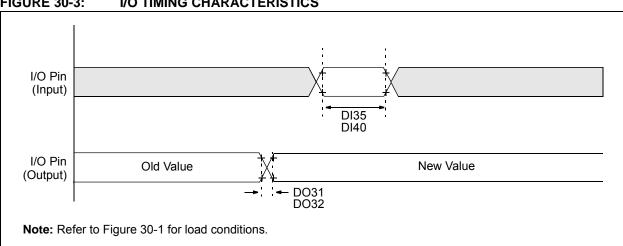
Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a \in \{b, c, d\}$	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.


2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
53	NEG	NEG	_{Acc} (1)	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
54	NOP	NOP	· · · · · · · · · · · · · · · · · · ·	No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset	1	1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
07		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
<u></u>	~~~~	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo ⁽¹⁾ Acc,#Slit4,Wdo ⁽¹⁾	Store Accumulator	1	1	None
60	CE	SAC.R		Store Rounded Accumulator	1	1	None
69 70	SE	SE	Ws,Wnd	Wnd = sign-extended Ws f = 0xFFFF	1	1	C,N,Z None
10	SETM	SETM	f		-	1	
		SETM	WREG	WREG = 0xFFFF Ws = 0xFFFF	1	1	None
71	SFTAC	SETM	Ws Acc, Wn ⁽¹⁾	Arithmetic Shift Accumulator by (Wn)	1	1	None OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6 ⁽¹⁾	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

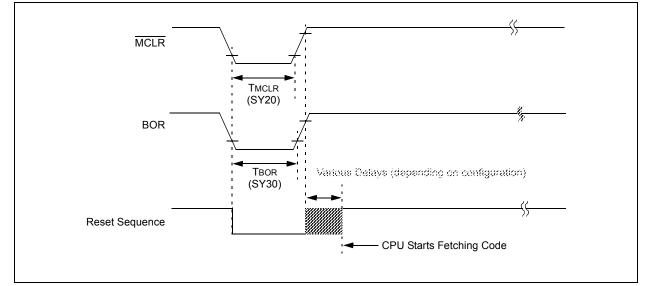

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

			(unless	otherwis	e stated) °C ≤ TA ≤ °	3.0V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions			Conditions	
DO31	TioR	Port Output Rise Time		5	10	ns	
DO32	TIOF	Port Output Fall Time	_	5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	_	_	ns	
DI40	Trbp	CNx High or Low Time (input)	2	_	_	Тсү	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

TABLE 30-39:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			perating erwise sta mperatur	ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—	—	15	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—		ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

AC CHA	RACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol TLO:SCL	Characteristic ⁽⁴⁾		Min. ⁽¹⁾	-40 Max.	^{D°} C ≤ IA ≤ Units	Conditions	
IM10		Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			400 kHz mode	TCY/2 (BRG + 2)		, μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μs		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)		μS		
			400 kHz mode	Tcy/2 (BRG + 2)		μ S		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS		
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode		300	ns	CB is specified to be from 10 to 400 pF	
			400 kHz mode	20 + 0.1 Св	300	ns		
			1 MHz mode ⁽²⁾		100	ns	-	
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be from 10 to 400 pF	
			400 kHz mode	20 + 0.1 Св	300	ns		
			1 MHz mode ⁽²⁾		300	ns		
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns		
			400 kHz mode	100		ns		
			1 MHz mode ⁽²⁾	40		ns	-	
IM26	THD:DAT	Data Input	100 kHz mode	0		μS		
		Hold Time	400 kHz mode	0	0.9	μ S		
			1 MHz mode ⁽²⁾	0.2		μs	-	
IM30	Tsu:sta	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 2)		μ S	Only relevant for Repeated Start condition	
			400 kHz mode	Tcy/2 (BRG + 2)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs		
IM31	Thd:sta	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 2)		μ s	After this period, the first clock pulse is generated	
			400 kHz mode	Tcy/2 (BRG +2)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μS		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μS		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	_	μS		
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			400 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	_	μS		
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode	—	3500	ns		
			400 kHz mode	—	1000	ns		
			1 MHz mode ⁽²⁾	—	400	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be free before a new transmission can star	
			400 kHz mode	1.3	_	μ s		
			1 MHz mode ⁽²⁾	0.5		μ s		
IM50	Св	Bus Capacitive L		_	400	pF		
IM51	TPGD	Pulse Gobbler De	-	65	390	ns	(Note 3)	

TABLE 30-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (l²C[™])" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** Typical value for this parameter is 130 ns.
- 4: These parameters are characterized, but not tested in manufacturing.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
Compa	rator AC Ch	naracteristics						
CM10	TRESP	Response Time ⁽³⁾	—	19	—	ns	V+ input step of 100 mV V- input held at VDD/2	
CM11	Тмс2о∨	Comparator Mode Change to Output Valid	—	-	10	μs		
Compa	rator DC Ch	naracteristics						
CM30	VOFFSET	Comparator Offset Voltage	—	±10	40	mV		
CM31	VHYST	Input Hysteresis Voltage ⁽³⁾	_	30	—	mV		
CM32	Trise/ Tfall	Comparator Output Rise/ Fall Time ⁽³⁾	—	20	—	ns	1 pF load capacitance on input	
CM33	Vgain	Open-Loop Voltage Gain ⁽³⁾	—	90	—	db		
CM34	VICM	Input Common-Mode Voltage	AVss	-	AVDD	V		
Op Am	p AC Chara	cteristics						
CM20	SR	Slew Rate ⁽³⁾		9	_	V/µs	10 pF load	
CM21a	Рм	Phase Margin (Configuration A) ^(3,4)	_	55	—	Degree	G = 100V/V; 10 pF load	
CM21b	Рм	Phase Margin (Configuration B) ^(3,5)	_	40	_	Degree	G = 100V/V; 10 pF load	
CM22	Gм	Gain Margin ⁽³⁾	—	20	_	db	G = 100V/V; 10 pF load	
CM23a	Gвw	Gain Bandwidth (Configuration A) ^(3,4)	_	10	—	MHz	10 pF load	
CM23b	GBW	Gain Bandwidth (Configuration B) ^(3,5)	—	6	—	MHz	10 pF load	

TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.