

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gp502t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC23	086E	—	F	PWM2IP<2:	0>	_	F	WM1IP<2:	:0>	_	_	—	_	_		_		4400
IPC24	0870	—	_	_	—	_	—	—	—	_	—	—		_	F	PWM3IP<2:0>		0004
IPC35	0886	—		JTAGIP<2:0)>	_		ICDIP<2:0	>	_	—	—		_	-	—		4400
IPC36	0888	—		PTG0IP<2:0)>	_	PT	GWDTIP<	2:0>	—	P	TGSTEPIP<2	:0>	_		_		4440
IPC37	088A	—	—		_	_	F	PTG3IP<2:	0>	—		PTG2IP<2:0>	•	_	-	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	—	—	—	_	—	—		_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	—	—		_	_	—	—	—	_	—	DAE	DOOVR	_		_		0000
INTCON4	08C6	_	_		_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	_	_		_		ILR<	3:0>					VECNU	JM<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100	0 Timer1 Register													xxxx			
PR1	0102	Period Register 1											FFFF					
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Time	er3 Holding	Register (fo	r 32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	—	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116						Т	imer5 Holdii	ng Register	(for 32-bit o	perations on	ly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	_	—	—	_	_	_	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON		TSIDL	—	—	—	_	_	_	TGATE	TCKP	S<1:0>	—	_	TCS	—	0000

TABLE 4-8: TIMER1 THROUGH TIMER5 REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities below

FIGURE 4-18: ARBITER ARCHITECTURE

that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-62.

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-62:	DATA MEMORY BUS
	ARBITER PRIORITY

Briority	MSTRPR<15:0> Bit Setting ⁽¹⁾					
Phoney	0x0000	0x0020				
M0 (highest)	CPU	DMA				
M1	Reserved	CPU				
M2	Reserved	Reserved				
M3	DMA	Reserved				
M4 (lowest)	ICD	ICD				

Note 1: All other values of MSTRPR<15:0> are reserved.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **"Oscillator"** (DS70580) in the *"dsPIC33/ PIC24 Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER 11-17: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP3R<6:0)>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP2R<6:0)>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-8	DTCMP3R< (see Table 1 1111001 =	6:0>: Assign PW 1-2 for input pin nput tied to RPI	/M Dead-Tim selection nun 121	e Compensatio nbers)	n Input 3 to th	ne Corresponding	g RPn Pin bits
	0000001 = 0000000 =	nput tied to CMI nput tied to Vss	P1				
bit 7	0000001 = 0000000 = Unimpleme	nput tied to CMI nput tied to Vss nted: Read as '0	21)'				

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 17-13: QEI1LECH: QEI1 LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			QEILE	C<31:24>								
bit 15 bit 8												
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			QEILE	C<23:16>								
bit 7							bit 0					
Legend:												
R = Readable I	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at P	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											

bit 15-0 **QEILEC<31:16>:** High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 17-14: QEI1LECL: QEI1 LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			QEILE	C<15:8>								
bit 15 bit 8												
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			QEILI	EC<7:0>								
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
~												

bit 15-0 QEILEC<15:0>: Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend				
R = Rea	dable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Valu	ie at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BF	°<3:0>			F2B	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F1BF	?<3:0>			F0B	P<3:0>	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	pits			
	1111 = Filte	r hits received ir	n RX FIFO bu	uffer			
	1110 = Filte	r hits received ir	n RX Buffer 1	4			
	•						
	•						
	0001 = Filte	r hits received ir	n RX Buffer 1				
	0000 = Filte	r hits received ir	n RX Buffer 0				
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 k	oits (same value	s as bits<15:1	2>)	
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 k	oits (same value	s as bits<15:1	2>)	
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 k	oits (same value	s as bits<15:1	2>)	
						,	

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0

REGISTER 21-24: CxRXOVF1: ECANx RECEIVE BUFFER OVERFLOW REGISTER 1

RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0
bit 7							bit 0
Legend:		C = Writable b	oit, but only '0'	can be writter	ו to clear the bit		

Legend:	C = Writable bit, but only '0'	= Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 RXOVF<15:0>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-25: CxRXOVF2: ECANx RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0 R/C-0		R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF31	RXOVF31 RXOVF30 RXOVF29 RXOV		RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
bit 15							bit 8

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ITRIM	5 ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	_	_	—	
bit 7							bit 0	
Legend:								
R = Read	able bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown	
bit 15-10	ITRIM<5:0>:	Current Source	Trim bits					
	011111 = Ma	aximum positive	change from	nominal curren	t + 62%			
	011110 = Ma	aximum positive	change from	nominal curren	t + 60%			
	•							
	•							
	•							
	000010 = Mii	nimum positive (change from r	nominal current	+ 4% + 2%			
	000000 = No	minal current ou	utput specified	bv IRNG<1:0>	>			
	111111 = Mir	nimum negative	change from	nominal curren	nt – 2%			
	111110 = Mi i	nimum negative	change from	nominal curren	nt – 4%			
	•							
	•							
	•							
	100010 = Ma 100001 = Ma	aximum negative aximum negative	e change from e change from	nominal curre	nt – 60% nt – 62%			
bit 9-8	IRNG<1:0>: Current Source Range Select bits							
	11 = 100 × Ba	ase Current ⁽²⁾						
	$10 = 10 \times Bas$	se Current ⁽²⁾						
	$01 = Base CL00 = 1000 \times F$	Base Current(1,2)					
bit 7-0	Unimplemen	ted: Read as '0	3					
Note 1:	This current range	e is not available	a to be used w	with the internal	temperature n	neasurement di	ode	
	I his current range is not available to be used with the internal temperature measurement diode.							

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

2: Refer to the CTMU Current Source Specifications (Table 30-56) in Section 30.0 "Electrical Characteristics" for the current range selection values.

NOTES:

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Trigger Source Select bits
	If SSRCG = 1: 111 = Reserved 110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion ⁽²⁾ 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion ⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion ⁽²⁾
	If SSRCG = 0: 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU ends sampling and starts conversion 101 = Reserved
	 101 - Reserved 100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion 010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on the INT0 pin ends sampling and starts conversion 000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC<2:0> for details.
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x) In 12-bit mode (AD21B = 1), SIMSAM is Unimplemented and is Read as '0': 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC1 Sample Auto-Start bit
	 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set
bit 1	SAMP: ADC1 Sample Enable bit
	 1 = ADC Sample-and-Hold amplifiers are sampling 0 = ADC Sample-and-Hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC1 Conversion Status bit ⁽³⁾
	 1 = ADC conversion cycle has completed 0 = ADC conversion has not started or is in progress Automatically set by hardware when the ADC conversion is complete. Software can write '0' to clear the DONE status bit (software is not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Note 1:	See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- **3:** Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

bit 3-0	Step Command	OPTION<3:0>	Option Description					
	PTGWHI(1)	0000	PWM Special Event Trigger. ⁽³⁾					
	or	0001	PWM master time base synchronization output. ⁽³⁾					
	P.I.GWLO(''	0010	PWM1 interrupt. ⁽³⁾					
		0011	PWM2 interrupt. ⁽³⁾					
		0100	PWM3 interrupt. ⁽³⁾					
		0101	Reserved.					
		0110	Reserved.					
		0111	OC1 Trigger event.					
		1000	OC2 Trigger event.					
		1001	IC1 Trigger event.					
		1010	CMP1 Trigger event.					
		1011	CMP2 Trigger event.					
		1100	CMP3 Trigger event.					
		1101	CMP4 Trigger event.					
		1110	ADC conversion done interrupt.					
		1111	INT2 external interrupt.					
	PTGIRQ(1)	0000	Generate PTG Interrupt 0.					
		0001	Generate PTG Interrupt 1.					
		0010	Generate PTG Interrupt 2.					
		0011	Generate PTG Interrupt 3.					
		0100	Reserved.					
		•	•					
		•	•					
		•	•					
	(2)	1111	Reserved.					
	PTGTRIG ⁽²⁾	00000	PTGO0.					
		00001	PTGO1.					
		•	•					
		•	•					
		•						
		11110	PTGO30.					
	[11111	PTGO31.					

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws , Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB(1)	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
53	NEG	NEG	Acc(1)	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR	OPR No Operation		1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D Wnd F		Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset		1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo()	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo\''	Store Rounded Accumulator	1	1	None
69	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
10	SEIM	SEIM	I		1	1	None
		SEIM	WREG		1	1	None
71	SFTAC	SETM	ws Acc,Wn ⁽¹⁾	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB,
		SFTAC	Acc,#Slit6 ⁽¹⁾	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB,

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$			
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	ΤουΗ	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	ΤουΙΝ	Quadrature Input Period	12 Tcy	—	ns	
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

TABLE 30-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	—	—	15	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	—	-	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	_	—	—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time			_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	-	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120		—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TABLE 31-11: INTERNAL RC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param No.	Characteristic	Min	Тур	Max	Units	Conditions
	LPRC @ 32.768 kHz ^(1,2)					
HF21	LPRC	-30	_	+30	%	$-40^{\circ}C \le TA \le +150^{\circ}C VDD = 3.0-3.6V$

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TwDT). See Section 27.5 "Watchdog Timer (WDT)" for more information.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.