

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gp502t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR		US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾
bit 15							bit 8
							
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA(1)	SATB	SATDW ⁽¹⁾	ACCSAT(1)	IPL3(3)	SFA	RND ⁽¹⁾	IF ⁽¹⁾
bit 7							bit 0
Legend:		C - Clearable	hit				
R = Reada	hle hit	W = Writable	hit	U = Unimple	mented hit read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
			1				
bit 15	VAR: Variable	e Exception Pro	ocessing Later	ncy Control bit			
	1 = Variable e	exception proce	essing latency	is enabled			
	0 = Fixed exc	eption process	ing latency is	enabled			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed (Control bits ⁽¹⁾			
	11 = Reserve	ed nine multiplies	are mixed sign	,			
	01 = DSP eng	gine multiplies	are unsigned	1			
	00 = DSP eng	gine multiplies	are signed				
bit 11	EDT: Early DO	D Loop Termina	ation Control bi	it(1,2)			
	1 = Terminate 0 = No effect	es executing DO	loop at end o	f current loop	iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting I	Level Status bi	ts ⁽¹⁾			
	111 = 7 do lo	ops are active					
	•						
	•						
	001 = 1 DO IO	on is active					
	000 = 0 DO lo	ops are active					
bit 7	SATA: ACCA	Saturation En	able bit ⁽¹⁾				
	1 = Accumula 0 = Accumula	ator A saturatio ator A saturatio	n is enabled n is disabled				
bit 6	SATB: ACCB	Saturation En	able bit ⁽¹⁾				
	1 = Accumula	ator B saturatio	n is enabled				
	0 = Accumula	ator B saturatio	n is disabled				
bit 5	SATDW: Data	a Space Write f	from DSP Eng	ine Saturation	Enable bit ⁽¹⁾		
	1 = Data Space	ce write satura ce write satura	tion is enabled tion is disabled	1			
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	elect bit ⁽¹⁾			
	1 = 9.31 satu	ration (super sa	aturation)				
	0 = 1.31 satu	ration (normal	saturation)				
bit 3	IPL3: CPU In	terrupt Priority	Level Status b	oit 3 (3)			
	1 = CPU Inter	rrupt Priority Le	evel is greater	than 7			
	0 = CPU inter	riupt Priority Le	evel is / or less	5			
Note 1: 2:	This bit is available This bit is always r	e on dsPIC33E read as '0'.	PXXXMC20X/	50X and dsPI	C33EPXXXGP	50X devices on	ly.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

TABLE 4	4-9:	INPU		URE 1 T	HROUG	SH INPU	IT CAPI	URE 4	REGIST	ER MA	Р													
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets						
IC1CON1	0140	_	_	ICSIDL		CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000						
IC1CON2	0142	_	—	_	—	—	—	—	IC32	ICTRIG	TRIGSTAT	_		S	/NCSEL<4	:0>		000D						
IC1BUF	0144							Inp	ut Capture	1 Buffer Re	gister							xxxx						
IC1TMR	0146								Input Cap	ture 1 Time	r							0000						
IC2CON1	0148	_	—	ICSIDL		CTSEL<2:0	>	_	—	_	ICI<'	1:0>	ICOV	ICBNE		ICM<2:0>		0000						
IC2CON2	014A	_													000D									
IC2BUF	014C		Input Capture 2 Buffer Register x													xxxx								
IC2TMR	014E		Input Capture 2 Timer												0000									
IC3CON1	0150	_	—	ICSIDL		CTSEL<2:0	>	_	—	_	ICI<'	1:0>	ICOV	ICBNE		ICM<2:0>		0000						
IC3CON2	0152	_	—	_	—	—	—	—	IC32	ICTRIG	TRIGSTAT	_		S	/NCSEL<4	:0>		000D						
IC3BUF	0154							Inp	ut Capture	3 Buffer Re	gister							xxxx						
IC3TMR	0156								Input Cap	ture 3 Time	r							0000						
IC4CON1	0158	ICSIDL ICTSEL<2:0> ICI<1:0> ICOV ICBNE ICM<2:0> 0000												0000										
IC4CON2	015A	IC32 ICTRIG TRIGSTAT - SYNCSEL<4:0> 000I																						
IC4BUF	015C		•	•	•	•	•	Inp	ut Capture	4 Buffer Re	gister	•	•					xxxx						
IC4TMR	015E								Input Cap	ture 4 Time	r			Input Capture 4 Timer 0000										

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	-12:	PWM RI	EGISTE	R MAP	FOR de	sPIC33E	PXXXN	AC20X/50	DX AND F	PIC24EP	PXXXM	C20X [DEVICE	S ONI	_Y			
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SY	NCSRC<	2:0>		SEV	/TPS<3:0>		0000
PTCON2	0C02	_	—	PCLKDIV<2:0> 000										0000				
PTPER	0C04	PTPER<15:0> 00:												00F8				
SEVTCMP	0C06	6 SEVTCMP<15:0> 0000													0000			
MDC	0C0A								MDC<15:)>								0000
CHOP	0C1A	1A CHPCLKEN CHOPCLK<9:0> 0000																
PWMKEY	0C1E								PWMKEY<1	5:0>								0000
Legend: — = unimplemented read as '0'. Reset values are shown in hexadecimal																		

TABLE 4-13: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 R				All Resets		
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD	PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP OSYNC							C000				
FCLCON1	0C24	_		(CLSRC<4:	0>	CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTMOD<1:0> 000									0000		
PDC1	0C26						PDC1<15:0> FFF8								FFF8			
PHASE1	0C28								PHASE1<15	5:0>								0000
DTR1	0C2A	_	_				DTR1<13:0> 0000									0000		
ALTDTR1	0C2C	_	_						A	LTDTR1<1	13:0>							0000
TRIG1	0C32								TRGCMP<1	5:0>								0000
TRGCON1	0C34		TRGDI	V<3:0>		TRGSTRT<5:0> 0000								0000				
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN CLLEBEN — — — BCH BCL BPHH BPHL BPLH BPLL 0000								0000				
LEBDLY1	0C3C	_	_	_	—						LEB<11	:0>						0000
AUXCON1	0C3E	_	_	_	—	BLANKSEL<3:0> — — CHOPSEL<3:0> CHOPHEN CHOPLEN 0000								0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	4-31:	PER	IPHERA	L PIN S	ELECT	INPUT F	REGISTI	ER MAP	FOR ds	sPIC33E	PXXXG	P50X D	EVICES	3 ONLY	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets			
RPINR0	06A0	—				INT1R<6:0>					—	—	—	—	_			0000			
RPINR1	06A2		_			_	_		—					INT2R<6:0>				0000			
RPINR3	06A6		_			_	_		—		T2CKR<6:0> 0						0000				
RPINR7	06AE			IC2R<6:0>							IC1R<6:0> 0					IC1R<6:0> 00					0000
RPINR8	06B0	_				IC4R<6:0>				_	- IC3R<6:0> C						0000				
RPINR11	06B6	_	_	_	_	_	-	_	_	_	OCFAR<6:0>					0000					
RPINR18	06C4	_	_	_	_	_	-	_	_	_			l	J1RXR<6:0	>			0000			
RPINR19	06C6	_	_	_	_	_	-	_	_	_			l	J2RXR<6:0	>			0000			
RPINR22	06CC	_			S	CK2INR<6:0)>			_	SDI2R<6:0> 01					0000					
RPINR23	06CE	_	_	_	_	_	-	_	_	_	- SS2R<6:0> 000					0000					
RPINR26	06D4	_	_	_		_	—		_		- C1RXR<6:0> 000					0000					

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>	>			_	—	—	—			_	_	0000
RPINR1	06A2	_	_	_	_	_	_	_	_	_				INT2R<6:0>				0000
RPINR3	06A6	_	_	_	_	_	_	_	_	_			-	T2CKR<6:0>	>			0000
RPINR7	06AE	_				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000
RPINR12	06B8	_				FLT2R<6:0>	>			_				FLT1R<6:0>	•			0000
RPINR14	06BC	_			(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:()>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	_	_	_	_	U1RXR<6:0>							0000
RPINR19	06C6	_	_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC	_			S	CK2INR<6:	0>			_				SDI2R<6:0>				0000
RPINR23	06CE	_	_	_	_	_	-	_	_	_				SS2R<6:0>				0000
RPINR26	06D4	_	_	_	_	_	_	_	_	_	- C1RXR<6:0>						0000	
RPINR37	06EA	_	SYNCI1R<6:0>							_							0000	
RPINR38	06EC	—	DTCMP1R<6:0>							—							0000	
RPINR39	06EE	_		DTCMP3R<6:0>						_	DTCMP2R<6:0>						0000	

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

4.6 Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-								
	tions assume word-sized data (LSb of								
	every EA is always clear).								

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-20: MODULO ADDRESSING OPERATION EXAMPLE

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

		11.0	11.0		11.0		
		0-0	0-0	VREGSE	0-0		VREGS
hit 15		—		VNEGSF	—	Civi	bit 8
bit 10							Dit 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7						.1	bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TRAPR: Trap	Reset Flag bit					
	$1 = A \operatorname{Trap} Co$	onflict Reset ha	s occurred	d			
hit 11			s not occurre		ot Elog bit		
DIL 14	1 = An illega	l oncode deter	viinniiaiizeu	v Access Res	et Flay Dit ode or Uninitial	lized W registe	er used as an
	Address	Pointer caused	a Reset			ized w regiote	
	0 = An illegal	l opcode or Uni	nitialized W r	egister Reset h	as not occurred	t	
bit 13-12	Unimplemen	ted: Read as 'o)'				
bit 11	VREGSF: Fla	ish Voltage Reg	ulator Stand	by During Slee	p bit		
	1 = Flash vol	tage regulator i	s active durin	ng Sleep			
bit 10		tage regulator (naby mode dui	ing Sleep		
bit Q	CM: Configur	ation Mismatch	, Elac bit				
bit 5	1 = A Configur	ration Mismatch	h Reset has	occurred			
	0 = A Configu	ration Mismatc	h Reset has	not occurred			
bit 8	VREGS: Volta	age Regulator S	Standby Durii	ng Sleep bit			
	1 = Voltage r	egulator is activ	e during Sle	ер			
	0 = Voltage r	egulator goes in	nto Standby i	mode during SI	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
	\perp = A Master 0 = A Master	Clear (pin) Res Clear (pin) Res	et has occur et has not or	rea ccurred			
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit			
	1 = A reset	instruction has	been execut	ed			
	0 = A RESET	instruction has	not been exe	ecuted			
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is er	nabled					
bit 4		ISADIEU hdog Timor Tim	o out Elog b	:+			
DIL 4	1 = WDT time		e-oul Flay D	IL			
	0 = WDT time	e-out has not oc	curred				
Note 1.	All of the Peset sta	itus hits can bo	set or cleare	d in software S	Setting one of th	ese hits in soft	vara does not
	cause a device Re	set.					
2:	If the FWDTEN Co SWDTEN bit settin	onfiguration bit i	s '1' (unprog	rammed), the V	VDT is always e	enabled, regard	less of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

FIGURE 7-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X INTERRUPT VECTOR TABLE

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0	
OA	OB	SA	SB	OAB	SAB	DA	DC	
bit 15							bit 8	
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С	
bit 7						-	bit 0	
								1

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit		-
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

- g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

11.6.1 KEY RESOURCES

- "I/O Ports" (DS70598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	-	—	—	_	—	—
bit 7	•		•	•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7-0 Unimplemented: Read as '0'

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC4R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC3R<6:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U				U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	IC4R<6:0>: (see Table 2	Assign Input Ca	pture 4 (IC4) selection nu) to the Correspo mbers)	onding RPn P	in bits	
	1111001 =	Input tied to RPI	121				
	•						
	•						
	0000001 =	Input tied to CM	P1				
bit 7		nput tied to vss	, 0,				
bit 6-0		Assign Input Ca	o unture 3 (IC3)) to the Correspo	ondina RPn P	in hits	
bit 0 0	(see Table 1	11-2 for input pin	selection nu	mbers)		in bits	
	1111001 =	Input tied to RPI	121	,			
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	5				

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See **Section 30.0** "**Electrical Characteristics**" for more information.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

21.2 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3 ECAN Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

21.3.1 KEY RESOURCES

- "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

21.5 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	_	_	SID10	SID9	SID8	SID7	SID6	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE	
bit 7							bit 0	
[
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared x = Bit is unknown			
bit 15-13	Unimplemen	ted: Read as '	0'					
bit 12-2	SID<10:0>: S	tandard Identif	ier bits					
bit 1	SRR: Substitu	ute Remote Re	quest bit					
	When IDE = 0):						
	1 = Message	will request re	mote transmis	ssion				
	0 = Normal m	essage						
	When IDE = 1	<u>L:</u>						
	The SRR bit r	nust be set to '	1'.					
bit 0	IDE: Extended Identifier bit							
	1 = Message	will transmit Ex	ktended Ident	ifier				
	0 = Message	will transmit St	andard Identi	fier				

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—		EID17	EID16	EID15	EID14
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set	' = Bit is set		ared	x = Bit is unknown	

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

BUFFER 21-7: ECAN™ MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
Byte 7									
bit 15 bit 8									
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
	Byte 6								
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at PO	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			

bit 15-8 Byte 7<15:8>: ECAN Message Byte 7 bits

bit 7-0 Byte 6<7:0>: ECAN Message Byte 6 bits

BUFFER 21-8: ECAN[™] MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	_	FILHIT4 ⁽¹⁾	FILHIT3 ⁽¹⁾	FILHIT2 ⁽¹⁾	FILHIT1 ⁽¹⁾	FILHITO ⁽¹⁾
bit 15	- -						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—		_	_		—	—
bit 7							bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.
bit 7-0	Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

25.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain up to four comparators, which can be configured in various ways. Comparators, CMP1, CMP2 and CMP3, also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

Note: Op Amp/Comparator 3 is not available on the dsPIC33EPXXXGP502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

These options allow users to:

- · Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2 and CMP3 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM (MODULES 1, 2 AND 3)

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	
_	CVR2OE ⁽¹⁾	—	—	—	VREFSEL	—	—	
bit 15							bit 8	
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVRE	N CVR1OE ⁽¹⁾	CVRR	CVRSS ⁽²⁾	CVR3	CVR2	CVR1	CVR0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	<i>I</i> = Writable bit U = Unimplemented bit, re		mented bit, read	ad as '0'		
-n = Value	e at POR	'1' = Bit is set	t	'0' = Bit is cleared x = Bit is unknown				
bit 15	Unimplemen	ted: Read as '	0'		(1)			
bit 14	CVR2OE: Co	mparator Volta	ige Reference	2 Output Ena	ble bit ⁽¹⁾			
	1 = (AVDD - A 0 = (AVDD - A	AVSS)/2 is conr AVSS)/2 is disce	nected to the C	VREF20 pin the CVREF20	pin			
bit 13-11	Unimplemen	ted: Read as '	0'					
bit 10	VREFSEL: C	omparator Voli	tage Reference	e Select bit				
	1 = CVREFIN :	= VREF+	-					
	0 = CVREFIN i	s generated by	y the resistor n	etwork				
bit 9-8	Unimplemen	Unimplemented: Read as '0'						
bit 7	CVREN: Con	nparator Voltag	je Reference E	nable bit				
	1 = Compara	1 = Comparator voltage reference circuit is powered on						
bit 6	CVR1OF: Co	CVP10E: Comparator Voltage Reference 1 Output Enable bit ⁽¹⁾						
bit o	1 = Voltage level is output on the CVREE10 pin							
	0 = Voltage le	evel is disconne	ected from the	n CVREF10 pi	'n			
bit 5	CVRR: Comparator Voltage Reference Range Selection bit							
	1 = CVRSRC/2	24 step-size						
	0 = CVRSRC/3	32 step-size						
bit 4	bit 4 CVRSS: Comparator Voltage Reference Source Selection bit ⁽²⁾							
	1 = Compara 0 = Compara	tor voltage refe tor voltage refe	erence source,	CVRSRC = (V CVRSRC = A)	(REF+) – (AVSS) /DD – AVSS			
bit 3-0	CVR<3:0> Co	CVR<3:0> Comparator Voltage Reference Value Selection $0 < CVR<3:0> < 15$ bits						
	When CVRR	= 1:						
	CVREFIN = (C	VR<3:0>/24) •	(CVRSRC)					
	When CVRR = 0:							
	CVREFIN = (C	VRSRC/4) + (C	VR<3:0>/32) •	(CVRSRC)				
Note 1:	CVRxOE overrides	s the TRISx an	d the ANSELx	bit settinas.				

REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

- 2: In order to operate with CVRSS = 1, at least one of the comparator modules must be enabled.

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	eceive CKE CKP blex)		SMP
15 MHz	Table 30-42			0,1	0,1	0,1
10 MHz	—	Table 30-43	—	1	0,1	1
10 MHz	—	Table 30-44	—	0	0,1	1
15 MHz	—	—	Table 30-45	1	0	0
11 MHz	—	—	Table 30-46	1	1	0
15 MHz	_	_	Table 30-47	0	1	0
11 MHz	_	_	Table 30-48	0	0	0

TABLE 30-41: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-22: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

