

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gp503-h-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

								•										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102		Period Register 1								FFFF							
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	—	TSYNC	TCS		0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Time	er3 Holding	Register (fo	r 32-bit time	r operations	only)						xxxx
TMR3	010A		Timer3 Register								xxxx							
PR2	010C		Period Register 2								FFFF							
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	—	—	—	_	—	—	TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T3CON	0112	TON	-	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS		0000
TMR4	0114			•	•	•	•	•	Timer4	Register				•		•		xxxx
TMR5HLD	0116						Т	imer5 Holdir	ng Register	(for 32-bit o	perations on	ly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	—	TSIDL	—	—	—	—	_	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000

TABLE 4-8: TIMER1 THROUGH TIMER5 REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

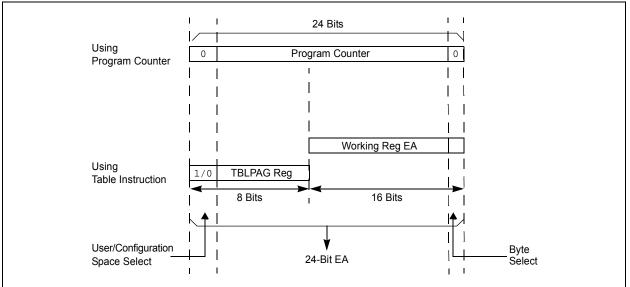
The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.

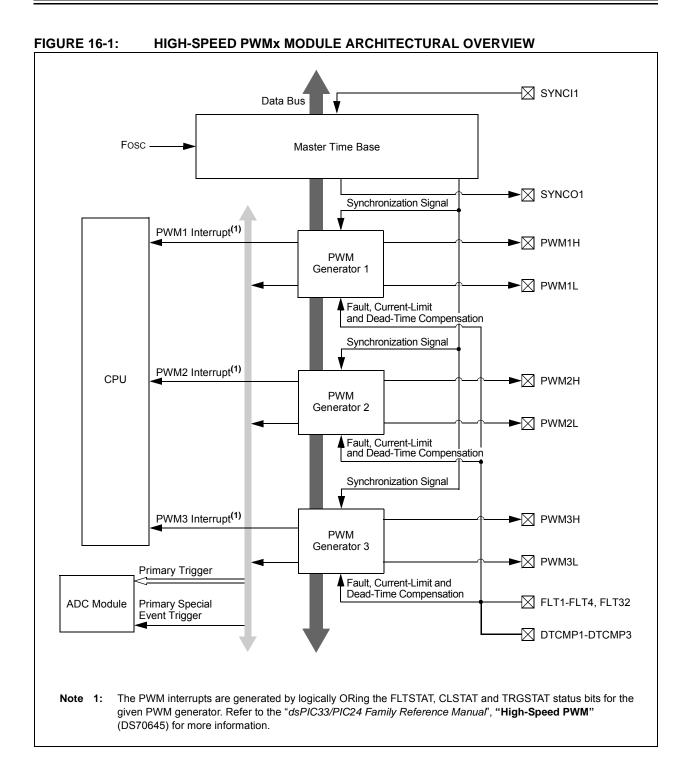

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS



NOTES:

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1 PTGO5 = OC2
 - PTGO6 = OC3 PTGO7 = OC4

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		DTRx<13:8>							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			DTR	x<7:0>						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown			

REGISTER 16-10: DTRx: PWMx DEAD-TIME REGISTER

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_		ALTDTRx<13:8>							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			ALTDT	Rx<7:0>						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable t	oit	U = Unimplem	ented bit, read	d as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is				x = Bit is unkr	nown					

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾ bit 4-2 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1 000 = Secondary prescale 8:1 bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)⁽³⁾ 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - 3: Do not set both primary and secondary prescalers to the value of 1:1.

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC		
ACKSTAT	TRSTAT	_	_	— BCL		GCSTAT	ADD10		
bit 15							bit 8		
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
IWCOL	I2COV	D_A	Р	S R_W		RBF	TBF		
bit 7							bit 0		
Legend:		C = Clearab	le bit	HS = Hardwa	re Settable bit	HSC = Hardware Settable/Clearable bit			
R = Readable bit W = Writable bit U = Unimp				U = Unimplem	Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

bit 15	ACKSTAT: Acknowledge Status bit (when operating as I^2C^{TM} master, applicable to master transmit operation)
bit 10	1 = NACK received from slave
	0 = ACK received from slave
	Hardware is set or clear at the end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress
	Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge.
bit 13-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation
	0 = No bus collision detected Hardware is set at detection of a bus collision.
h # 0	
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received 0 = General call address was not received
	Hardware is set when address matches general call address. Hardware is clear at Stop detection.
bit 8	ADD10: 10-Bit Address Status bit
	1 = 10-bit address was matched
	0 = 10-bit address was not matched
	Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop
	detection.
bit 7	IWCOL: I2Cx Write Collision Detect bit
	 1 = An attempt to write to the I2CxTRN register failed because the I²C module is busy 0 = No collision
	Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: I2Cx Receive Overflow Flag bit
	1 = A byte was received while the I2CxRCV register was still holding the previous byte
	0 = No overflow
	Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5	D_A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	0 = Indicates that the last byte received was a device address
	Hardware is clear at a device address match. Hardware is set by reception of a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last Hardware is set or clear when a Start, Repeated Start or Stop is detected.

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER (CONTINUED)

- bit 1 **RBIF:** RX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 **TBIF:** TX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

22.2 **CTMU Control Registers**

REGISTER	22-1: CTM	UCON1: CTM	J CONTROI	- REGISTER	1					
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUEN	_	CTMUSIDL	CTMUSIDL TGEN		EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_		_	<u> </u>	<u> </u>		_			
bit 7 bit 0										
Legend:										
R = Readable	e bit	W = Writable b	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15		TMU Enable bit is enabled is disabled								
bit 14	Unimpleme	nted: Read as '0	,							
bit 13 CTMUSIDL: CTMU Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode										
bit 12	12 TGEN: Time Generation Enable bit									

DECISTED

bit 9	IDISSEN: Analog Current Source Control bit ⁽¹⁾
	1 = Analog current source output is grounded0 = Analog current source output is not grounded
bit 8	CTTRIG: ADC Trigger Control bit
	1 = CTMU triggers ADC start of conversion0 = CTMU does not trigger ADC start of conversion

EDGSEQEN: Edge Sequence Enable bit

0 = No edge sequence is needed

1 = Enables edge delay generation 0 = Disables edge delay generation

EDGEN: Edge Enable bit

bit 7-0 Unimplemented: Read as '0'

bit 11

bit 10

Note 1: The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.) 0 = Software is used to trigger edges (manual set of EDGxSTAT)

1 = Edge 1 event must occur before Edge 2 event can occur

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
OC4CS		OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS				
bit 7							bit (
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	OC bit							
	1 = Generates Trigger when the broadcast command is executed										
	0 = Does not	generate Trigg	er when the b	roadcast com	mand is execute	ed					
bit 14		mple Trigger P									
		 1 = Generates Trigger when the broadcast command is executed 0 = Does not generate Trigger when the broadcast command is executed 									
bit 13					mand is execute	a					
DIE 13		ADCTS2: Sample Trigger PTGO13 for ADC bit 1 = Generates Trigger when the broadcast command is executed									
					mand is execute	ed					
bit 12		mple Trigger P									
	1 = Generate	es Trigger wher	the broadcas	t command is	executed						
					mand is execute	ed					
bit 11	-	ger/Synchroniz									
					ast command is broadcast con		ited				
bit 10	IC3TSS: Trig	ger/Synchroniz	ation Source f	for IC3 bit							
					ast command is broadcast con		ited				
bit 9	IC2TSS: Trig	ger/Synchroniz	ation Source f	for IC2 bit							
					ast command is broadcast con		ited				
bit 8		ger/Synchroniz									
					ast command is broadcast con		ited				
bit 7		ck Source for C	-								
		es clock pulse v generate clock			d is executed command is exe	cuted					
bit 6		ck Source for C	-								
		es clock pulse v aenerate clock			d is executed command is exe	cuted					
bit 5		ck Source for C	-								
	1 = Generate	es clock pulse v	when the broad		d is executed command is exe	cuted					
	This register is rea PTGSTRT = 1).	-					and				
	This register is on	lv used with the	PTGCTRI. OI	PTION = 1111	Step command	L					
		.,			c.op commune	•					

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

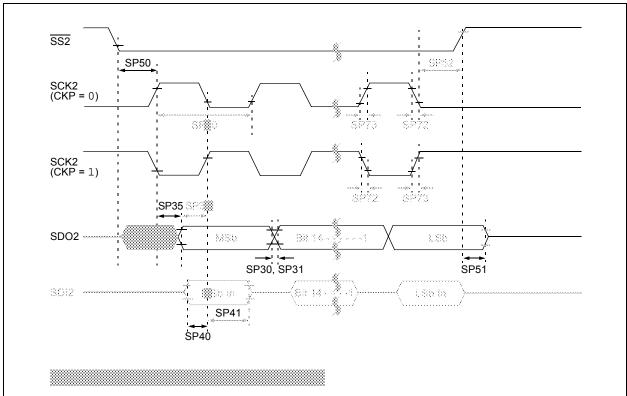

DC CHARACTE	RISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур.	Max.	Units	Conditions				
Power-Down Cu	urrent (IPD) ⁽¹⁾ -	dsPIC33EP32GI	P50X, dsPIC33EF	P32MC20X/50X and PIC2	4EP32GP/MC20X			
DC60d	30	100	μA	-40°C				
DC60a	35	100	μA	+25°C	3.3V			
DC60b	150	200	μA	+85°C	3.3V			
DC60c	250	500	μA	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP64GI	P50X, dsPIC33EF	P64MC20X/50X and PIC2	4EP64GP/MC20X			
DC60d	25	100	μA	-40°C				
DC60a	30	100	μA	+25°C	3.3V			
DC60b	150	350	μΑ	+85°C	3.3V			
DC60c	350	800	μΑ	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP128G	P50X, dsPIC33E	P128MC20X/50X and PIC	24EP128GP/MC20X			
DC60d	30	100	μΑ	-40°C				
DC60a	35	100	μΑ	+25°C	3.3V			
DC60b	150	350	μΑ	+85°C	5.50			
DC60c	550	1000	μΑ	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP256G	P50X, dsPIC33E	P256MC20X/50X and PIC	24EP256GP/MC20X			
DC60d	35	100	μΑ	-40°C				
DC60a	40	100	μΑ	+25°C	3.3V			
DC60b	250	450	μΑ	+85°C	5.57			
DC60c	1000	1200	μΑ	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP512G	P50X, dsPIC33E	P512MC20X/50X and PIC	24EP512GP/MC20X			
DC60d	40	100	μΑ	-40°C				
DC60a	45	100	μΑ	+25°C	3.3V			
DC60b	350	800	μΑ	+85°C	0.0 v			
DC60c	1100	1500	μA	+125°C				

TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

FIGURE 30-20: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CH/	DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated) ⁽¹⁾ Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic Min. Typ. ⁽²⁾ Max.		Max.	Units	Conditions					
Op Amp DC Characteristics											
CM40	VCMR	Common-Mode Input Voltage Range	AVss	_	AVDD	V					
CM41	CMRR	Common-Mode Rejection Ratio ⁽³⁾	—	40	—	db	VCM = AVDD/2				
CM42	VOFFSET	Op Amp Offset Voltage ⁽³⁾	—	±5	—	mV					
CM43	Vgain	Open-Loop Voltage Gain ⁽³⁾	_	90	_	db					
CM44	los	Input Offset Current	_	-	_	_	See pad leakage currents in Table 30-11				
CM45	lв	Input Bias Current	_	_	_	_	See pad leakage currents in Table 30-11				
CM46	Ιουτ	Output Current	_		420	μA	With minimum value of RFEEDBACK (CM48)				
CM48	RFEEDBACK	Feedback Resistance Value	8	-	_	kΩ					
CM49a	VOADC	Output Voltage	AVss + 0.077		AVDD - 0.077	V	Ιουτ = 420 μΑ				
		Measured at OAx Using ADC ^(3,4)	AVss + 0.037 AVss + 0.018		AVDD – 0.037 AVDD – 0.018	V V	Ιουτ = 200 μΑ Ιουτ = 100 μΑ				
CM49b	Vout	Output Voltage	AVss + 0.210	_	AVDD - 0.210	V	Ιουτ = 420 μΑ				
		Measured at OAxOUT Pin ^(3,4,5)	AVss + 0.100 AVss + 0.050	_	AVDD – 0.100 AVDD – 0.050	V V	Ιουτ = 200 μΑ Ιουτ = 100 μΑ				
CM51	RINT1 ⁽⁶⁾	Internal Resistance 1 (Configuration A and B) ^(3,4,5)	198	264	317	Ω	Min = -40°C Typ = +25°C Max = +125°C				

TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS (CONTINUED)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.

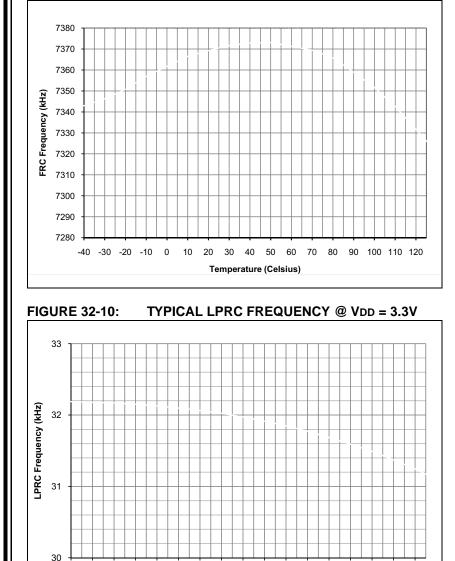

AC CHA	RACTERIS	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. Max.			Units	Conditions	
		ADC A	Accuracy	(12-Bit	Mode)			
AD20a	Nr	Resolution	12	2 Data Bi	its	bits		
AD21a	INL	Integral Nonlinearity	-2.5		2.5	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C$ (Note 2)	
			-5.5	—	5.5	LSb	+85°C $<$ TA \leq +125°C (Note 2)	
AD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-1	—	1	LSb	+85°C < TA \leq +125°C (Note 2)	
AD23a	Gerr	Gain Error ⁽³⁾	-10	_	10	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-10	_	10	LSb	+85°C < TA \leq +125°C (Note 2)	
AD24a	EOFF	Offset Error	-5	—	5	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C$ (Note 2)	
			-5	—	5	LSb	+85°C < TA \leq +125°C (Note 2)	
AD25a	—	Monotonicity	—				Guaranteed	
		Dynamic	Performa	ance (12-	-Bit Mod	e)		
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75		dB		
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	—	68		dB		
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	80	—	dB		
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	—	250	—	kHz		
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3		bits		

TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

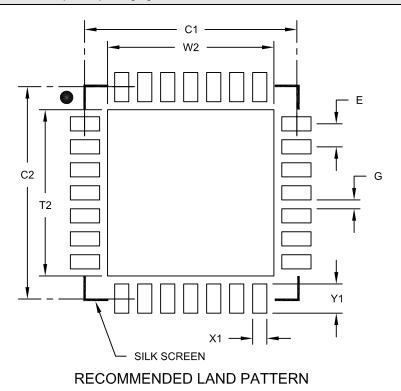
2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

Temperature (Celsius)

70 80 90 100 110 120

TYPICAL FRC FREQUENCY @ VDD = 3.3V


-40 -30 -20 -10

0 10 20 30 40 50 60

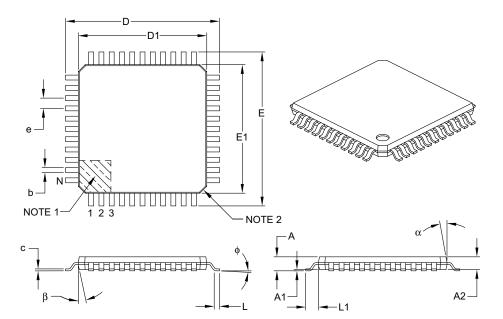
FIGURE 32-9:

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimens	sion Limits	MIN	NOM	MAX
Number of Leads	Ν	44		
Lead Pitch	е	0.80 BSC		
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	_	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

Revision H (August 2013)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-6.

Section Name	Update Description		
Cover Section	Adds Peripheral Pin Select (PPS) to allow Digital Function Remapping and Change Notification Interrupts to Input/Output section		
	Adds heading information to 64-Pin TQFP		
Section 4.0 "Memory	Corrects Reset values for ANSELE, TRISF, TRISC, ANSELC and TRISA		
Organization"	 Corrects address range from 0x2FFF to 0x7FFF 		
	Corrects DSRPAG and DSWPAG (now 3 hex digits)		
	Changes Call Stack Frame from <15:1> to PC<15:0>		
	Word length in Figure 4-20 is changed to 50 words for clarity		
Section 5.0 "Flash Program	Corrects descriptions of NVM registers		
Memory"			
Section 9.0 "Oscillator	Removes resistor from Figure 9-1		
Configuration"	Adds Fast RC Oscillator with Divide-by-16 (FRCDIV16) row to Table 9-1		
	Removes incorrect information from ROI bit in Register 9-2		
Section 14.0 "Input Capture"	Changes 31 user-selectable Trigger/Sync interrupts to 19 user-selectable Trigger/ Sync interrupts		
	Corrects ICTSEL<12:10> bits (now ICTSEL<2:0>)		
Section 17.0 "Quadrature Encoder Interface (QEI)	Corrects QCAPEN bit description		
Module			
(dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X			
Devices Only)"			
Section 19.0 "Inter- Integrated Circuit™ (I ² C™)"	 Adds note to clarify that 100kbit/sec operation of I²C is not possible at high processor speeds 		
Section 22.0 "Charge Time	Clarifies Figure 22-1 to accurately reflect peripheral behavior		
Measurement Unit (CTMU)"			
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Correct Figure 23-1 (changes CH123x to CH123Sx)		
Section 24.0 "Peripheral Trigger Generator (PTG) Module"	 Adds footnote to Register 24-1 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled. 		
Section 25.0 "Op Amp/ Comparator Module"	Adds note to Figure 25-3 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled)		
	 Adds footnote to Register 25-2 (COE is not available when OPMODE (CMxCON<10>) = 1) 		
Section 27.0 "Special Features"	Corrects the bit description for FNOSC<2:0>		
Section 30.0 "Electrical	Corrects 512K part power-down currents based on test data		
Characteristics"	Corrects WDT timing limits based on LPRC oscillator tolerance		
Section 31.0 "High- Temperature Electrical Characteristics"	Adds Table 31-5 (DC Characteristics: Idle Current (IIDLE)		
	L		

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.