

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32mc202-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-24: CRC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	—	CSIDL		VWORD<4:0> CRCFUL CRCMPT CRCISEL CRCGO LENDIAN								—	0000			
CRCCON2	0642	_	_	_	DWIDTH<4:0> — — — PLEN<4:0> (0000				
CRCXORL	0644		X<15:1> — 000											0000				
CRCXORH	0646		X<31:16> 0000										0000					
CRCDATL	0648								CRC Data	Input Low V	Vord							0000
CRCDATH	064A								CRC Data	Input High \	Nord							0000
CRCWDATL	064C		CRC Result Low Word 0000										0000					
CRCWDATH	064E		CRC Result High Word 000											0000				

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC202/502 AND PIC24EPXXXGP/MC202 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	—			RP35F	R<5:0>			—	—			RP20F	R<5:0>			0000
RPOR1	0682	_	_			RP37F	२<5:0>			—	_			RP36F	२<5:0>			0000
RPOR2	0684	_	_			RP39F	२<5:0>			—	_			RP38F	२<5:0>			0000
RPOR3	0686	_	_	RP41R<5:0>					—	_			RP40F	२<5:0>			0000	
RPOR4	0688	_	—			RP43F	R<5:0>			_	_	– RP42R<5:0>				0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC203/503 AND PIC24EPXXXGP/MC203 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	_			RP35	R<5:0>			_	_			RP20	R<5:0>			0000
RPOR1	0682	_	_			RP37	२<5:0>			_	_			RP36	२<5:0>			0000
RPOR2	0684	_	_			RP39	२<5:0>			_	_			RP38	२<5:0>			0000
RPOR3	0686	_	_			RP41	२<5:0>			_	_			RP40	२<5:0>			0000
RPOR4	0688	_	_			RP43	२<5:0>			_	_	RP42R<5:0>				0000		
RPOR5	068A	_	_	_	_	_	_	_	_	_	_				0000			
RPOR6	068C			-	—	_		—			_	RP56R<5:0>				0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-46: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	—	—	—	TRISA12	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	—	—	TRISA4	-	—	TRISA1	TRISA0	1F93
PORTA	0E02	_	_	_	RA12	RA11	RA10	RA9	RA8	RA7	_	_	RA4	_	_	RA1	RA0	0000
LATA	0E04	_	_	_	LATA12	LATA11	LATA10	LATA9	LATA8	LATA7	_	_	LATA4	_	_	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	ODCA12	ODCA11	ODCA10	ODCA9	ODCA8	ODCA7	_	_	ODCA4	_	_	ODCA1	ODCA0	0000
CNENA	0E08	_	_	_	CNIEA12	CNIEA11	CNIEA10	CNIEA9	CNIEA8	CNIEA7	_	_	CNIEA4	_	_	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	CNPUA12	CNPUA11	CNPUA10	CNPUA9	CNPUA8	CNPUA7	_	_	CNPUA4	_	_	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	CNPDA12	CNPDA11	CNPDA10	CNPDA9	CNPDA8	CNPDA7	_	_	CNPDA4	_	_	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	—	ANSA12	ANSA11	—	_	_	—		—	ANSA4	-	_	ANSA1	ANSA0	1813

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_		—	_	ANSB8		—	-		ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	_	TRISC13	TRISC12	TRISC11	TRISC10	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	BFFF
PORTC	0E22	RC15	-	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	LATC15		LATC13	LATC12	LATC11	LATC10	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	ODCC15	_	ODCC13	ODCC12	ODCC11	ODCC10	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	CNIEC15	_	CNIEC13	CNIEC12	CNIEC11	CNIEC10	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	CNPUC15	_	CNPUC13	CNPUC12	CNPUC11	CNPUC10	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	CNPDC15	_	CNPDC13	CNPDC12	CNPDC11	CNPDC10	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E		-	-	—	ANSC11	_		_	—	—	_		—	ANSC2	ANSC1	ANSC0	0807

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSC<2:0> bits is loaded into NOSC<2:0> (OSCCON<10:8>) on Reset, which in turn, initializes the system clock.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOST	1 PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit 0
Legend:						<i>(</i> -)	
R = Readat	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 1E		on Interrupt b	.+				
	1 = Interrunte	will clear the	NOZEN bit				
	0 = Interrupts	s have no effect	t on the DOZE	EN bit			
bit 14-12	DOZE<2:0>:	Processor Clo	ck Reduction S	Select bits ⁽¹⁾			
	111 = Fcy div	vided by 128					
	110 = Fcy div	vided by 64					
	101 = FCY div 100 = FCY div	/ided by 32					
	011 = FCY div	vided by 8 (defa	ault)				
	010 = FCY div	vided by 4					
	001 = FCY div	/ided by 2					
bit 11		e Mode Enable	. _{hit} (2,3)				
	1 = DOZER. DOZE < 2:0	0> field specifi	es the ratio be	tween the peri	pheral clocks a	nd the process	or clocks
	0 = Processor	r clock and per	ipheral clock r	atio is forced t	o 1:1		
bit 10-8	FRCDIV<2:0>	Internal Fast	RC Oscillator	Postscaler bit	S		
	111 = FRC di	vided by 256					
	110 = FRC di	vided by 64					
	100 = FRC d i	vided by 32 vided by 16					
	011 = FRC di	vided by 8					
	010 = FRC di	vided by 4					
	001 = FRC di 000 = FRC di	vided by 2 vided by 1 (de	fault)				
bit 7-6	PLLPOST<1:	0>: PLL VCO	Output Divider	r Select bits (al	so denoted as '	N2', PLL posts	caler)
	11 = Output d	livided by 8	,	,		<i>,</i> ,	,
	10 = Reserve	d					
	01 = Output d	livided by 4 (de	etault)				
bit 5	Unimplement	ted: Read as '	0'				
5110	emplement		•				
Note 1:	The DOZE<2:0> bi DOZE<2:0> are igi	its can only be nored.	written to whe	en the DOZEN	bit is clear. If D	OZEN = 1, any	writes to
2:	This bit is cleared v	when the ROI I	oit is set and a	an interrupt occ	urs.		

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled
 - 0 = SPI1 module is enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit⁽²⁾ 1 = ECAN1 module is disabled 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit 1 = ADC1 module is disabled 0 = ADC1 module is enabled
- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
 - 2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

13.2 Timer Control Registers

R/M/ 0	11.0		11.0	11.0	11.0	11.0	11.0					
	0-0		0-0	0-0	0-0	0-0	0-0					
bit 15		TOIDE	_									
51115							bit 0					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0					
	TGATE	TCKPS1	TCKPS0	T32	_	TCS						
bit 7							bit 0					
Legend:												
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown					
bit 15	When T32 = 1 1 = Starts 32-1 0 = Stops 32-1 When T32 = 0 1 = Starts 16-1 0 = Stops 16-1	On bit L: bit Timerx/y bit Timerx/y <u>):</u> bit Timerx bit Timerx										
bit 14	Unimplemented: Read as '0'											
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit									
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 											
bit 12-7	Unimplement	ted: Read as '	י)									
bit 6	Unimplemented: Read as '0' TGATE: Timerx Gated Time Accumulation Enable bit <u>When TCS = 1:</u> This bit is ignored. <u>When TCS = 0:</u> 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled											
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Prescal	e Select bits								
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1											
bit 3	T32: 32-Bit Timer Mode Select bit 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers											
bit 2	Unimplement	ted: Read as 'd	י)									
bit 1	TCS: Timerx (1 = External c 0 = Internal cl	Clock Source S clock is from pir ock (FP)	Select bit n, TxCK (on th	e rising edge)								
bit 0	Unimplement	ted: Read as ')'									

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

14.2 Input Capture Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Stop in Idle Control bit
	1 = Input capture will Halt in CPU Idle mode
	0 = Input capture will continue to operate in CPU Idle mode
bit 12-10	ICTSEL<2:0>: Input Capture Timer Select bits
	111 = Peripheral clock (FP) is the clock source of the ICx
	110 = Reserved
	101 = Reserved
	100 - 11 CLR is the clock source of the ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the ICx
	010 = T4CLK is the clock source of the ICx
	001 = T2CLK is the clock source of the ICx
	000 = T3CLK is the clock source of the ICx
bit 9-7	Unimplemented: Read as '0'
bit 6-5	ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111)
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event
hit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
Dit 4	1 = Input capture buffer overflow occurred
	0 = No input capture buffer overflow occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	1 = Input capture buffer is not empty, at least one more capture value can be read
	0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	111 = Input capture functions as interrupt pin only in CPU Sleep and Idle modes (rising edge detect only, all other control bits are not applicable)
	110 = Unused (module is disabled)
	101 = Capture mode, every 16th rising edge (Prescaler Capture mode)
	100 = Capture mode, every 4th rising edge (Prescaler Capture mode)
	011 = Capture mode, every falling edge (Simple Capture mode)
	001 = Capture mode, every edge rising and falling (Edge Detect mode (ICI<1:0>) is not used in this mode)
	000 = Input capture module is turned off

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

r									
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0		
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32		
bit 15							bit 8		
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0		
OCTRIC	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0		
bit 7							bit 0		
r									
Legend:		HS = Hardwa	ire Settable bit						
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value	at POR	'1' = Bit is set	['0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	FLTMD: Fault	Mode Select	bit						
	1 = Fault mo	de is maintain	ed until the Fa	ault source is r	removed; the c	orresponding	OCFLTx bit is		
	cleared in	n software and	a new PWM pe	eriod starts	loved and a po	N DWM poriod	etarte		
hit 14							Starts		
DIL 14	1 = PWM out	nut is driven h	iah on a Fault						
	0 = PWM out	put is driven lo	w on a Fault						
bit 13	FLTTRIEN: Fa	ault Output Sta	ate Select bit						
	1 = OCx pin i	1 = OCx pin is tri-stated on a Fault condition							
	0 = OCx pin I	/O state is def	ined by the FLT	OUT bit on a F	ault condition				
bit 12	OCINV: Outpu	ut Compare x I	nvert bit						
	1 = OCx outp	out is inverted	bo						
hit 11_9		ted: Read as '	0'						
bit 8	OC32. Casca	de Two OCx M	° Iodules Enable	hit (32-hit oper	ration)				
bit 0	1 = Cascade	module opera	tion is enabled		allony				
	0 = Cascade	module opera	tion is disabled						
bit 7	OCTRIG: Out	put Compare >	k Trigger/Sync S	Select bit					
	1 = Triggers (0 = Synchron	OCx from the s izes OCx with	source designat the source des	ted by the SYN	CSELx bits SYNCSELx bit	s			
bit 6	TRIGSTAT: Ti	mer Trigger St	atus bit	0 ,					
	1 = Timer sou	urce has been	triggered and is	s running					
	0 = Timer sou	urce has not be	een triggered a	nd is being held	d clear				
bit 5	OCTRIS: Out	put Compare x	Coutput Pin Dir	ection Select b	it				
	1 = OCx is tri	-stated							
		ompare x mod	ule drives the C	DCx pin					
Note 1:	Do not use the O	Cx module as i	its own Synchro	nization or Trig	ger source.				
2:	When the OCy module as a Trigg	odule is turned jer source, the	l OFF, it sends a OCy module m	a trigger out sig nust be unseled	gnal. If the OCx	module uses t source prior	he OCy to disabling it.		
3:	Each Output Com	ipare x module	e (OCx) has one	e PTG Trigger/S	Synchronization	n source. See S	Section 24.0		
	PTGO0 = OC1	Jei Generator			malion.				
	PTGO1 = OC2								
	PTGO2 = OC3								
	PTGO3 = OC4								

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 16-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **PDCx<15:0>:** PWMx Generator # Duty Cycle Value bits

REGISTER 16-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_	_	_	_	_	_	_			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE			
bit 7					·		bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-8	Unimplemen	ted: Read as 'o)'							
bit 7	IVRIE: Invalid	I Message Inter	rupt Enable b	bit						
	1 = Interrupt r	equest is enab	led							
		request is not e	nabled							
DIT 6	WAKIE: Bus	vvake-up Activi	ty interrupt Er	Table bit						
	$\perp = \text{Interrupt r}$ 0 = Interrupt r	request is enab	nabled							
bit 5	ERRIE: Frror	Interrupt Enab	le bit							
	1 = Interrupt r	request is enab	led							
	0 = Interrupt r	equest is not e	nabled							
bit 4	Unimplemen	ted: Read as 'd)'							
bit 3	FIFOIE: FIFO	Almost Full Int	errupt Enable	e bit						
	1 = Interrupt r	request is enab	led							
	0 = Interrupt r	request is not e	nabled							
bit 2	RBOVIE: RX	Buffer Overflov	v Interrupt En	able bit						
	1 = Interrupt request is enabled									
hit 1	BBIE: BX But	ffer Interrunt Fr	nable hit							
bit 1	1 = Interrupt r	request is enab	led							
	0 = Interrupt r	request is not e	nabled							
bit 0	TBIE: TX Buff	fer Interrupt En	able bit							
	1 = Interrupt r	request is enab	led							
	0 = Interrupt r	request is not e	nabled							

REGISTER 21-7: CXINTE: ECANX INTERRUPT ENABLE REGISTER

21.5 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—	_	_	SID10	SID9	SID8	SID7	SID6		
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE		
bit 7							bit 0		
[
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-2	SID<10:0>: S	tandard Identif	ier bits						
bit 1	SRR: Substitu	ute Remote Re	quest bit						
	When IDE = 0):							
	1 = Message	will request re	mote transmis	ssion					
	0 = Normal m	essage							
	When IDE = 1	<u>L:</u>							
	The SRR bit r	nust be set to '	1'.						
bit 0	IDE: Extende	d Identifier bit							
	1 = Message	will transmit Ex	ktended Ident	ifier					
	0 = Message	will transmit St	andard Identi	fier					

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	—		EID17	EID16	EID15	EID14	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	—	PTGWDT2	PTGWDT1	PTGWDT0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, reac	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13 PTGCLK<2:0>: Select PTG Module Clock Source bits 111 = Reserved 101 = PTG module clock source will be T3CLK 100 = PTG module clock source will be T2CLK 011 = PTG module clock source will be T1CLK 010 = PTG module clock source will be T1CLK 010 = PTG module clock source will be TAD 001 = PTG module clock source will be Fosc 000 = PTG module clock source will be FP bit 12-8							
	11111 = Divic 11110 = Divic • • • • • • • • • • • • • • • • • • •	de-by-32 de-by-31 de-by-2 de-by-1					
bit 7-4	PTGPWD<3:0	0>: PTG Trigge	er Output Pulse	e-Width bits			
	 IIII = All trigger outputs are 16 PTG clock cycles wide All trigger outputs are 15 PTG clock cycles wide All trigger outputs are 2 PTG clock cycles wide All trigger outputs are 1 PTG clock cycles wide 						
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	PTGWDT<2:0	0>: Select PTG	Watchdog Tir	mer Time-out	Count Value bits	3	
	111 = Watcho 110 = Watcho 101 = Watcho 100 = Watcho 011 = Watcho 010 = Watcho 001 = Watcho 000 = Watcho	dog Timer will t dog Timer is dis	ime-out after 5 ime-out after 2 ime-out after 1 ime-out after 3 ime-out after 3 ime-out after 1 ime-out after 8 sabled	512 PTG clock 256 PTG clock 28 PTG clock 54 PTG clocks 54 PTG clocks 6 PTG clocks 5 PTG clocks	S S S		

REGISTER 24-2: PTGCON: PTG CONTROL REGISTER

Field	Description
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS ((CONTINUED)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 30-42			0,1	0,1	0,1	
10 MHz	—	Table 30-43	—	1	0,1	1	
10 MHz	—	Table 30-44	—	0	0,1	1	
15 MHz	—	—	Table 30-45	1	0	0	
11 MHz	—	—	Table 30-46	1	1	0	
15 MHz	_	_	Table 30-47	0	1	0	
11 MHz	_	_	Table 30-48	0	0	0	

TABLE 30-41: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-22: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

АС СН	AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	DI Characteristic Min. Typ. Max.				Units	Conditions	
		Clock	k Parame	ters			·	
AD50	TAD	ADC Clock Period	76			ns		
AD51	tRC	ADC Internal RC Oscillator Period ⁽²⁾	—	250	—	ns		
		Con	version F	late				
AD55	tCONV	Conversion Time	—	12 Tad	—	—		
AD56	FCNV	Throughput Rate	—	—	1.1	Msps	Using simultaneous sampling	
AD57a	TSAMP	Sample Time when Sampling any ANx Input	2 Tad	—	_	—		
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	4 Tad	_	_	—		
		Timin	g Param	eters			·	
AD60	tPCS	Conversion Start from Sample Trigger ^(2,3)	2 Tad	—	3 Tad	_	Auto-convert trigger is not selected	
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ^(2,3))	2 Tad	—	3 Tad	—		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)		0.5 TAD		_		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)		_	20	μS	(Note 6)	

TABLE 30-61: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADC result is indeterminate.

TABLE 30-62: DMA MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)	—	_	ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

^{© 2011-2013} Microchip Technology Inc.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	_	—	0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)	
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)	
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	—	—	V	IOH ≥ -10 mA, VDD = 3.3V (Note 1)	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	—	—	V	IOH ≥ 15 mA, VDD = 3.3V (Note 1)	
HDO20A	Voн1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	—	—	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)	
			2.0	—	—		IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)	
			3.0	—	—		IOH ≥ -2 mA, VDD = 3.3V (Note 1)	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	_	_	V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)	
			2.0	_	_		IOH ≥ -6.8 mA, VDD = 3.3V (Note 1)	
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V (Note 1)	

TABLE 31-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<15:7> and RC3
 For 64-pin devices: RA4, RA9, RB<15:7>, RC3 and RC15

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension Limits		MIN	NOM	MAX		
Number of Pins	Ν	28				
Pitch	е	0.65 BSC				
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	Е	6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.70		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.70		
Terminal Width	b	0.23	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

 $\label{eq:REF:Reference Dimension, usually without tolerance, for information purposes only.$

Microchip Technology Drawing C04-124C Sheet 2 of 2