

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32mc202-h-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description
U2CTS	1	ST	No	UART2 Clear-To-Send.
U2RTS	0		No	UART2 Ready-To-Send.
U2RX	I.	ST	Yes	UART2 receive.
U2TX	Ó	_	Yes	UART2 transmit.
BCLK2	Ō	ST	No	UART2 IrDA [®] baud clock output.
SCK1	I/O	ST	No	Synchronous serial clock input/output for SPI1.
SDI1	I	ST	No	SPI1 data in.
SDO1	0	—	No	SPI1 data out.
SS1	I/O	ST	No	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	I	ST	Yes	SPI2 data in.
SDO2	0	—	Yes	SPI2 data out.
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.
TMS ⁽⁵⁾	Ι	ST	No	JTAG Test mode select pin.
TCK	I	ST	No	JTAG test clock input pin.
TDI	I	ST	No	JTAG test data input pin.
TDO	0	_	No	JTAG test data output pin.
C1RX ⁽²⁾	I	ST	Yes	ECAN1 bus receive pin.
C1TX ⁽²⁾	0	_	Yes	ECAN1 bus transmit pin.
FLT1 ⁽¹⁾ , FLT2 ⁽¹⁾	I	ST	Yes	PWM Fault Inputs 1 and 2.
FLT3 ⁽¹⁾ , FLT4 ⁽¹⁾	I	ST	No	PWM Fault Inputs 3 and 4.
FLT32 ^(1,3)	I	ST	No	PWM Fault Input 32 (Class B Fault).
DTCMP1-DTCMP3 ⁽¹⁾	I	ST	Yes	PWM Dead-Time Compensation Inputs 1 through 3.
PWM1L-PWM3L ⁽¹⁾	0	—	No	PWM Low Outputs 1 through 3.
PWM1H-PWM3H ⁽¹⁾	0	—	No	PWM High Outputs 1 through 3.
SYNCI1 ⁽¹⁾	I	ST	Yes	PWM Synchronization Input 1.
SYNCO1 ⁽¹⁾	0	—	Yes	PWM Synchronization Output 1.
INDX1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Index1 pulse input.
HOME1 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Home1 pulse input.
QEA1 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
(4)				external clock/gate input in Timer mode.
QEB1 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase B input in QEI1 mode. Auxiliary timer
				external clock/gate input in Timer mode.
CNTCMP1''	υ	—	Yes	Quadrature Encoder Compare Output 1.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

P = Power I = Input

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	—	—		—		_	—	—	-	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	—	_		—		QEI1IF	PSEMIF	—		—		—		MI2C2IF	SI2C2IF		0000
IFS4	0808	_	_	CTMUIF	_		—	_	_		C1TXIF		_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	—	—	—	—	—	—	_	—	—	—	_	—	—	_	0000
IFS6	080C	—	—	—	—	—	—	—	—	_	—	—	—	_	—	—	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF		_		—	_	_		_		_		—	—		0000
IFS9	0812	_	_		_		—	_	_		PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	—	—	—	—	—	—	—	—	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	—	—	—	—	—	QEI1IE	PSEMIE	—	_	—	—	—	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	—	—	CTMUIE	—	—	—	—	—	_	C1TXIE	—	—	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	_	—	_	—	—	—	_	—	_	—	_	_	—	_	0000
IEC6	082C	—	—	_	—	_	—	—	—	_	—	_	—	_	_	—	PWM3IE	0000
IEC7	082E	—	—	_	—	_	—	—	—	_	—	_	—	_	—	—	_	0000
IEC8	0830	JTAGIE	ICDIE	_	—	_	—	—	—	_	—	_	—	_	—	—	_	0000
IEC9	0832	—	—	_	—	_	—		—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	—		T1IP<2:0>		_		OC1IP<2:0)>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842	—		T2IP<2:0>		_		OC2IP<2:0)>	_		IC2IP<2:0>		_	1	DMA0IP<2:0>		4444
IPC2	0844	—		U1RXIP<2:0)>	_		SPI1IP<2:0)>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	—	—	_	—	_	0)MA1IP<2:	0>	_		AD1IP<2:0>		_		U1TXIP<2:0>		0444
IPC4	0848			CNIP<2:0>		_		CMIP<2:0	>			MI2C1IP<2:0	>	_	:	SI2C1IP<2:0>		4444
IPC5	084A	—	—	_	—	_	—		—	_	—	_	—	_		INT1IP<2:0>		0004
IPC6	084C	—		T4IP<2:0>		_		OC4IP<2:0)>	_		OC3IP<2:0>		_	1	DMA2IP<2:0>		4444
IPC7	084E	—		U2TXIP<2:0	>	_	ι	J2RXIP<2:(0>	_		INT2IP<2:0>		_		T5IP<2:0>		4444
IPC8	0850	—		C1IP<2:0>	-	_	0	C1RXIP<2:(0>	_		SPI2IP<2:0>		_		SPI2EIP<2:0>		4444
IPC9	0852	—	—	_	—	_		IC4IP<2:0	>	_		IC3IP<2:0>		_	1	DMA3IP<2:0>		0444
IPC12	0858	—	—	_	—	_	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	_	—	—	_	0440
IPC14	085C	—	_	—	—	—	(QEI1IP<2:0)>	_		PSEMIP<2:0	>	—	—	—	—	0440
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC17	0862	_	—	_	—	_	(C1TXIP<2:0	0>	_	—	—	—	_	_	_	_	0400
IPC19	0866	—	—	_	—	_	—	—	—	_		CTMUIP<2:0	>	_	—	—	_	0040

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

DS70000657H-page 73

			FREKAL FIN SELECT INFUT REGISTER WAF FU															
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0>	>			—	-	-	_	—	—	—	—	0000
RPINR1	06A2	_	_						_				INT2R<6:0>	•			0000	
RPINR3	06A6	_	_	_	_		_		—	_			-	T2CKR<6:0	>			0000
RPINR7	06AE	_				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0					IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	_		_		—	_			(OCFAR<6:0	>			0000
RPINR12	06B8	_				FLT2R<6:0>	>			_	FLT1R<6:0>						0000	
RPINR14	06BC	_			(QEB1R<6:0	>						(QEA1R<6:0	>			0000
RPINR15	06BE				Н	OME1R<6:0	0>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4		_	_	_	_	—	_	_	_	U1RXR<6:0>					0000		
RPINR19	06C6		_	_	_	_	—	_	_	_	U2RXR<6:0>					0000		
RPINR22	06CC				S	CK2INR<6:	0>			_				SDI2R<6:0>	•			0000
RPINR23	06CE		_	_	_	_	—	_	_	_				SS2R<6:0>				0000
RPINR26	06D4							_	_	_	_	_	_	_	_	0000		
RPINR37	06EA			SYNCI1R<6:0>						_	_	_	_	_	_	_	_	0000
RPINR38	06EC	_		DTCMP1R<6:0>						_	—	_	_	_	_	—	—	0000
RPINR39	06EE	_		DTCMP3R<6:0>						_			D	TCMP2R<6:	0>			0000

TABLE 4-29: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—		INT1R<6:0>						_	—	_	—	_	—	—		0000
RPINR1	06A2	—	_							_	INT2R<6:0>					0000		
RPINR3	06A6	—	_							_	T2CKR<6:0>						0000	
RPINR7	06AE	—				IC2R<6:0>				_	IC1R<6:0>						0000	
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	_	_	_	_	OCFAR<6:0>					0000		
RPINR18	06C4	_	_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC	_		SCK2INR<6:0>						_	SDI2R<6:0>						0000	
RPINR23	06CE	_	_	_	_	—	_	_	_	_				SS2R<6:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
CHEN	SIZE	DIR	HALF	NULLW	_	—	—			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
		AMODE1	AMODE0			MODE1	MODE0			
bit 7							bit 0			
Legend:			,			(0)				
R = Readable	bit	W = Writable	bit		mented bit, read	as '0'				
-n = Value at F	POR	'1' = Bit is set		0^{\prime} = Bit is cle	eared	x = Bit is unkn	IOWN			
bit 15		Channel Enabl	o hit							
bit 15	1 = Channel	CHEN: DMA Channel Enable bit								
	0 = Channel	is disabled								
bit 14	SIZE: DMA D	SIZE: DMA Data Transfer Size bit								
	1 = Byte	1 = Byte								
	0 = Word									
bit 13	3 DIR: DMA Transfer Direction bit (source/destination bus select)									
	1 = Reads from 0 = Reads from 1	om RAM addre	ddress. writes to p	s to RAM addr	ess ess					
bit 12	HALF: DMA	Block Transfer	Interrupt Sele	ct bit						
	1 = Initiates i	nterrupt when I	nalf of the dat	a has been mo	oved					
	0 = Initiates i	nterrupt when a	all of the data	has been mov	ved					
bit 11	NULLW: Null	Data Periphera	al Write Mode	Select bit						
	1 = Null data	write to periph	eral in additio	n to RAM write	e (DIR bit must a	also be clear)				
bit 10-6	Unimplemen	ted: Read as '	ר'							
bit 5-4	AMODE<1:0	: DMA Channe	el Addressina	Mode Select	bits					
	11 = Reserve	ed								
	10 = Peripher	ral Indirect Add	ressing mode							
	01 = Register Indirect without Post-Increment mode									
hit 3 2		tod: Pood as '	ost-incremen	tmode						
bit 1_0		DMA Channel	Operating Mc	nda Salact hits						
bit 1-0	11 = One-Sh	ot. Pina-Pona r	nodes are en	abled (one blo	ck transfer from	/to each DMA b	ouffer)			
	10 = Continue	ous, Ping-Pong	modes are e	nabled						
	01 = One-Sho	ot, Ping-Pong r	nodes are dis	abled						
	00 = Continuous, Ping-Pong modes are disabled									

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	_	_	_	_	_	PLLDIV8
bit 15		·					bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0
bit 7		·			•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-9	Unimplemen	ted: Read as '	0'				
bit 8-0	PLLDIV<8:0	>: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	111111111	= 513					
	•						
	•						
	•						
	000110000:	= 50 (default)					
	•						
	•						
	•						
	00000010:	= 4					
	000000001	= 3 = 2					
	0000000000000	-					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
I a manuali							

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **TUN<5:0>:** FRC Oscillator Tuning bits 011111 = Maximum frequency deviation of 1.453% (7.477 MHz) 011110 = Center frequency + 1.406% (7.474 MHz) •••• 000001 = Center frequency + 0.047% (7.373 MHz) 000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency - 0.047% (7.367 MHz) ••• 100001 = Center frequency - 1.453% (7.263 MHz) 100000 = Minimum frequency deviation of -1.5% (7.259 MHz)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC4R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC3R<6:0>			
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	IC4R<6:0>: (see Table 2	Assign Input Ca	pture 4 (IC4) selection nu) to the Correspo mbers)	onding RPn P	in bits	
	1111001 =	Input tied to RPI	121				
	•						
	•						
	0000001 =	Input tied to CM	P1				
bit 7		nput tied to vss	, 0,				
bit 6-0		Assign Input Ca	o unture 3 (IC3)) to the Correspo	ondina RPn P	in hits	
bit 0 0	(see Table 1	11-2 for input pin	selection nu	mbers)		in bits	
	1111001 =	Input tied to RPI	121	,			
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	5				

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP43	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R<5:0>					

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit	7

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP55R<5:0>					
bit 15							bit 8	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		RP54R<5:0>				
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP55R<5:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	TRGDI	V<3:0>		—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TRGSTF	RT<5:0>(1)		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-12	TRGDIV<3:0)>: Trigger # Ou	tput Divider b	vits			
	1111 = Trigg	er output for ev	ery 16th trigg	er event			
	1110 = Trigg	er output for ev	ery 15th trigg	er event			
	1101 = Trigg	er output for ev	ery 14th trigg	er event			
	1100 = Trigg	er output for ev	ery 13th trigg	er event			
	1011 = Irigg	er output for ev	ery 12th trigg	er event			
	1010 = Trigg	per output for ev	ery 11th trigge	er event			
	1001 - Trigg	er output for ev	ery 9th triage	r event			
	0111 = Trigg	er output for ev	erv 8th triage	r event			
	0110 = Trigg	er output for ev	erv 7th triage	r event			
	0101 = Trigg	er output for ev	ery 6th trigge	r event			
	0100 = Trigg	jer output for ev	ery 5th trigge	r event			
	0011 = Trigg	er output for ev	ery 4th trigge	r event			
	0010 = Trigg	er output for ev	ery 3rd trigge	r event			
	0001 = Trigg	er output for ev	ery 2nd trigge	erevent			
	0000 = Trigg	ger output for ev	ery trigger ev	ent			
bit 11-6	Unimplemer	nted: Read as '	0'				
bit 5-0	TRGSTRT<5	5:0>: Trigger Po	stscaler Start	Enable Select	bits ⁽¹⁾		
	111111 = W	aits 63 PWM cy	cles before g	enerating the fir	rst trigger event	after the modu	le is enabled
	•						
	•						
	•						
	000010 = W	aits 2 PWM cyc	les before ge	nerating the firs	t trigger event a	after the module	e is enabled
	000001 = W	aits 1 PWM cyc	le before gen	erating the first	trigger event a	fter the module	is enabled
	000000 = W	aits 0 PWM cyc	les before ge	nerating the firs	t trigger event	after the module	e is enabled

REGISTER 16-12: TRGCONx: PWMx TRIGGER CONTROL REGISTER

REGISTER 21-2: CxC1	RL2: ECANx CON	TROL REGISTER 2
---------------------	----------------	-----------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	_	_	_	_	_	_	
bit 15							bit 8	
							,	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	Writable bit U = Unimplemented bit,		mented bit, read	ead as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	ber bits				
	10010-1111	1 = Invalid sele	ection					
	10001 = Com	pares up to Da	ata Byte 3, bit	6 with EID<17	>			
	•							
	•							
	•							
	00001 = Compares up to Data Byte 1, bit 7 with EID<0> 00000 = Does not compare data bytes							

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F3BF	P<3:0>			F2BP<3:0>					
bit 15				·			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F1BF	P<3:0>			F0B	P<3:0>				
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	U = Unimplemented bit read as '0'					
-n = Value at	POR	'1' = Bit is set	t	0' = Bit is cleared $x = Bit is unknown$						
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 I	oits						
	1111 = Filte	r hits received in	n RX FIFO bu	uffer						
	1110 = Filte	r hits received in	n RX Buffer 1	4						
	•									
	•									
		•								
	0001 = Filter hits received in RX Buffer 1		1							
hit 11 0	E3DD -2:0		k for Filtor 2 l	, hito (como voluc	a aa hita <1 E 1	22)				
	F2BF<3:0>			oits (same value		Z ²)				
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 I	bits (same value	es as bits<15:1	2>)				
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 I	bits (same value	es as bits<15:1	2>)				

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BP	<3:0>			F6BI	><3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BP<3:0>				F4BI	><3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 15-12	F7BP<3:0>: 1111 = Filter	RX Buffer Masl	k for Filter 7 b	its ffer			

1110 = Filter hits received in RX Buffer 14
•
•
0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits<15:12>)
F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits<15:12>)
F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits<15:12>)

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F11BF	P<3:0>			F10B	P<3:0>		
bit 15							bit 8	
R/W_0	R/M-0	R/M/-0	R/M-0	R/\\/_0	R/W/-0	R/M/-0	R/\/_0	
10,00-0	F9BP	>	1000-0	R/W-0 R/W-0 R/W-0 R/W-0				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimpler	nented bit, rea	d as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-12	F11BP<3:0> 1111 = Filter 1110 = Filter • • • 0001 = Filter 0000 = Filter	RX Buffer Mar hits received ir hits received ir hits received ir hits received ir	sk for Filter 1 n RX FIFO bu n RX Buffer 1 n RX Buffer 1 n RX Buffer 0	1 bits iffer 4				
bit 11-8 bit 7-4	F10BP<3:0> F9BP<3:0>:	RX Buffer Ma	sk for Filter 1 k for Filter 9 k	0 bits (same val bits (same value	lues as bits<15 s as bits<15:1	5:12>) 2>)		
bit 3-0	F8BP<3:0>:	RX Buffer Mas	k for Filter 8 k	oits (same value	s as bits<15:1	2>)		

© 2011-2013 Microchip Technology Inc.

22.2 CTMU Control Registers

REGISTER	22-1. CTW		CONTROL	REGISTER	1		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_		_	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimpler	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is			unknown	
bit 15	CTMUEN: C	TMU Enable bit					
	1 = Module i	s enabled					
	0 = Module i	s disabled					
bit 14	Unimplemen	nted: Read as '0'					
bit 13	CTMUSIDL:	CTMU Stop in Id	le Mode bit				
	1 = Discontir	nues module ope	eration when a	device enters lo	dle mode		
	0 = Continue	es module operat	ion in Idle mo	ode			
bit 12	TGEN: Time	Generation Enab	ole bit				
	1 = Enables	edge delay gene	eration				
	0 = Disables	edge delay gene	eration				
bit 11	EDGEN: Edg	e Enable bit					

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.)

- 0 = Software is used to trigger edges (manual set of EDGxSTAT)
- bit 10 EDGSEQEN: Edge Sequence Enable bit
 - 1 = Edge 1 event must occur before Edge 2 event can occur
 - 0 = No edge sequence is needed
- bit 9 IDISSEN: Analog Current Source Control bit⁽¹⁾
 - 1 = Analog current source output is grounded
 - 0 = Analog current source output is not grounded
- bit 8 CTTRIG: ADC Trigger Control bit
 - 1 = CTMU triggers ADC start of conversion
 - 0 = CTMU does not trigger ADC start of conversion
- bit 7-0 Unimplemented: Read as '0'
- **Note 1:** The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ITRIM	5 ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0					
bit 15	·	·					bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	—	—	—	—	_	_	—					
bit 7							bit 0					
Legend:												
R = Read	able bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'						
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown					
bit 15-10	ITRIM<5:0>:	Current Source	Trim bits									
	011111 = Ma	aximum positive	change from	nominal curren	t + 62%							
	011110 = Ma	011110 = Maximum positive change from nominal current + 60%										
	•	•										
	•	•										
	•											
	000010 = Mii	nimum positive (change from r	nominal current	+ 4% + 2%							
	000000 = No	minal current ou	utput specified	bv IRNG<1:0>	>							
	111111 = Mir	nimum negative	change from	nominal curren	nt – 2%							
	111110 = Mi i	111110 = Minimum negative change from nominal current – 4%										
	•	•										
	•											
	•											
	100010 = Ma 100001 = Ma	aximum negative aximum negative	e change from e change from	nominal curre	nt – 60% nt – 62%							
bit 9-8	IRNG<1:0>: (Current Source	Range Select	bits								
	11 = 100 × Ba	ase Current ⁽²⁾										
	$10 = 10 \times Bas$	se Current ⁽²⁾										
	$01 = Base CL00 = 1000 \times F$	Base Current(1,2)									
bit 7-0	Unimplemen	ted: Read as '0	3									
Note 1:	This current range	e is not available	a to be used w	with the internal	temperature n	neasurement di	ode					
		This current range is not available to be used with the internal temperature measurement diode.										

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

2: Refer to the CTMU Current Source Specifications (Table 30-56) in Section 30.0 "Electrical Characteristics" for the current range selection values.

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- **Note 1:** This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet. refer to "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have one ADC module. The ADC module supports up to 16 analog input channels.

On ADC1, the AD12B bit (AD1CON1<10>) allows the ADC module to be configured by the user as either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

23.1 Key Features

23.1.1 10-BIT ADC CONFIGURATION

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- · Up to 16 analog input pins
- Connections to three internal op amps
- Connections to the Charge Time Measurement Unit (CTMU) and temperature measurement diode
- Channel selection and triggering can be controlled by the Peripheral Trigger Generator (PTG)
- External voltage reference input pins
- · Simultaneous sampling of:
 - Up to four analog input pins
 - Three op amp outputs
 - Combinations of analog inputs and op amp outputs
- Automatic Channel Scan mode
- Selectable conversion Trigger source
- · Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

23.1.2 12-BIT ADC CONFIGURATION

The 12-bit ADC configuration supports all the features listed above, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration; therefore, simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 16 analog input pins, designated AN0 through AN15. These analog inputs are shared with op amp inputs and outputs, comparator inputs, and external voltage references. When op amp/comparator functionality is enabled, or an external voltage reference is used, the analog input that shares that pin is no longer available. The actual number of analog input pins, op amps and external voltage reference input configuration depends on the specific device.

A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS		
SSRC2	SSRC1 SSRC0 SSRCG SIMSAM ASAM SAMP DONE ⁽³⁾								
bit 7							bit 0		
Legend:		HC = Hardwa	re Clearable bit	HS = Hardwa	re Settable bit	C = Clearable bi	t		
R = Readab	le bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	vn		
bit 15	ADON: ADO	C1 Operating N	lode bit						
	1 = ADC mo	odule is operati	ng						
	0 = ADC is	off							
bit 14	Unimpleme	ented: Read as	'0'						
bit 13	ADSIDL: AI	DC1 Stop in Idle	e Mode bit						
	1 = Disconti	inues module o	peration when	device enters	Idle mode				
	0 = Continu	es module ope	ration in Idle mo	ode					
bit 12	ADDMABM	: DMA Buffer E	Build Mode bit						
	1 = DMA b	uffers are writte	en in the order	of conversion	; the module p	provides an addre	ess to the DMA		
	0 = DMA bi	uffers are writte	en in Scatter/Ga	ther mode: the	e module prov	ides a Scatter/Ga	ther address to		
	the DM	A channel, bas	ed on the index	of the analog	input and the	size of the DMA	ouffer.		
bit 11	Unimpleme	ented: Read as	'0'						
bit 10	AD12B: AD	C1 10-Bit or 12	2-Bit Operation	Mode bit					
	1 = 12-bit, 1	-channel ADC	operation						
	0 = 10-bit, 4	-channel ADC	operation						
bit 9-8	FORM<1:0	>: Data Output	Format bits						
	For 10-Bit C	Operation:							
	11 = Signed	d fractional (Do	UT = sddd ddd	ld dd00 000	0, where $s = $.	NOT.d<9>)			
	10 = Fractions	hai (DOUT = ac	iaa aaaa aau = cccc cccd		where $c = N($	(<0>b TC			
	00 = Intege	r (Dout = 0000	00dd dddd	dddd)		51.u (0 ²)			
	For 12-Bit C	Deration:		,					
	11 = Signed	fractional (Do	UT = sddd ddd	ld dddd 000	0, where $s = .$	NOT.d<11>)			
	10 = Fractic	onal (Dout = do	ldd dddd ddd	ld 0000)					
	00 = Intege	r (DOUT = 0.000)	- ssss sada) dddd dddd	aaaa aaad, dddd)	where $s = .NC$	JI.U<112)			
		. (2001 - 0000		adduj					
Note 1: S	See Section 24	1.0 "Peripheral	l Trigger Gene	rator (PTG) M	odule" for info	ormation on this s	election.		

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED)

bit 0

CH123SA: Channel 1, 2, 3 Positive Input Select for Sample MUXA bit In 12-bit mode (AD21B = 1), CH123SA is Unimplemented and is Read as '0':

Value	ADC Channel							
value	CH1	CH2	CH3					
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6					
0 (1,2)	OA2/AN0	AN1	AN2					

Note 1: AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCTS	4 ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS
bit 15							bit 8
							=
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0C4C	S OC3CS	OC2CS	OC1CS	OC41SS	OC31SS	OC21SS	OCTISS
DIT 7							Dit U
l egend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit. read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	DC bit			
	1 = Generate	s Trigger wher	the broadcas	t command is	executed		
	0 = Does not	generate Trigg	er when the b	roadcast comr	mand is execute	ed	
bit 14	ADCIS3: Sa	mple Trigger P	IGO14 for AL	DC bit	ovecuted		
	0 = Does not	generate Trigo	er when the b	roadcast com	nand is execute	ed	
bit 13	ADCTS2: Sa	mple Trigger P	TGO13 for AE	DC bit			
	1 = Generate	s Trigger wher	the broadcas	t command is	executed		
	0 = Does not	generate Trigg	er when the b	roadcast comr	mand is execute	ed	
bit 12	ADCIS1: Sa	mple Trigger P	IGO12 for AL	DC bit	overuted		
	0 = Does not	generate Trigo	er when the b	roadcast com	mand is execute	ed	
bit 11	IC4TSS: Trig	ger/Synchroniz	ation Source	for IC4 bit			
	1 = Generate	s Trigger/Sync	hronization wh	nen the broadc	ast command is	s executed	
1.11.4.0	0 = Does not	generate Trigg	er/Synchroniz	ation when the	e broadcast con	nmand is execu	ted
bit 10		ger/Synchroniz	ation Source	for IC3 bit	act command is	overuted	
	0 = Does not	generate Trigo	jer/Synchroniz	ation when the	e broadcast con	mand is executed	ted
bit 9	IC2TSS: Trig	ger/Synchroniz	ation Source	for IC2 bit			
	1 = Generate	s Trigger/Sync	hronization wh	nen the broadc	ast command is	sexecuted	
	0 = Does not	generate Trigg	jer/Synchroniz	ation when the	e broadcast con	nmand is execu	ted
bit 8	IC1TSS: Trig	ger/Synchroniz	ation Source	for IC1 bit			
	0 = Does not	generate Trigo	er/Synchroniz	ation when the	e broadcast con	mand is executed	ted
bit 7	OC4CS: Cloc	ck Source for C	C4 bit				
	1 = Generate	s clock pulse v	when the broad	dcast comman	d is executed		
	0 = Does not	generate clock	c pulse when t	he broadcast o	command is exe	cuted	
bit 6	OC3CS: Cloc	ck Source for C	C3 bit		-l :		
	⊥ = Generate 0 = Does not	aenerate clock	onen the broad	he broadcast c	u is executed command is exe	cuted	
bit 5	OC2CS: Cloc	ck Source for C	C2 bit				
	1 = Generate	s clock pulse v	when the broad	dcast comman	d is executed		
	0 = Does not	generate clock	c pulse when t	he broadcast o	command is exe	cuted	
Note 1:	This register is rea PTGSTRT = 1).	ad-only when th	ne PTG modul	e is executing	Step commands	s (PTGEN = 1 a	and
2:	This register is onl	v used with the	PTGCTRL O	PTION = 1111	Step command	L	

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

30.1 DC Characteristics

|--|

			Maximum MIPS	
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X	
	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70	
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD	PINT + PI/O			W
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN	θJA	28.0	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θJA	48.3		°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θја	41	-	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29.0		°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θја	49.8		°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θја	25.2	_	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm	θJA	28.5		°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θја	30.0		°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θја	71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.