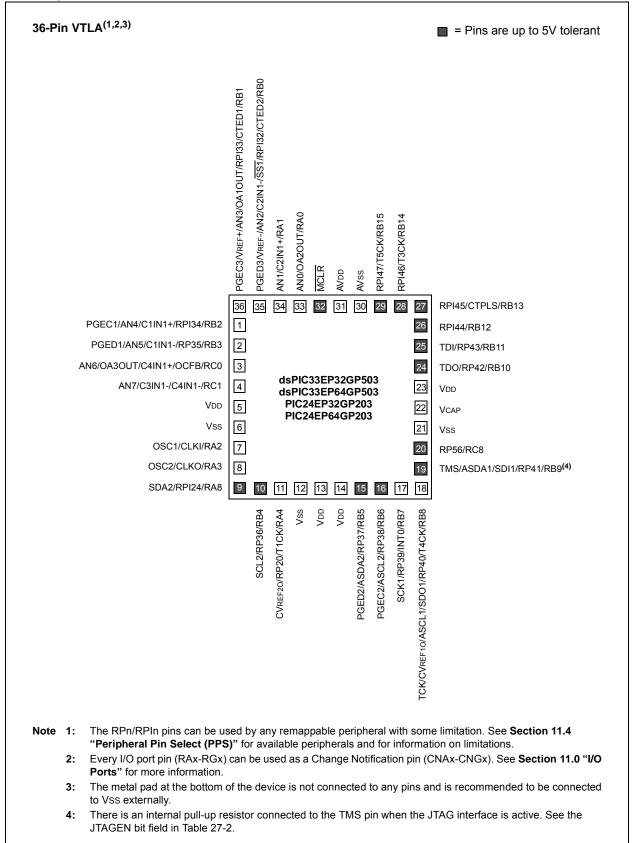


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32mc202-h-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

								•										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	—	TSYNC	TCS		0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Time	er3 Holding	Register (fo	r 32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	—	—	—	_	—	—	TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T3CON	0112	TON	-	TSIDL	_	_	_	_	-	_	TGATE	TCKP	S<1:0>	_	_	TCS		0000
TMR4	0114			•	•	•	•	•	Timer4	Register				•		•		xxxx
TMR5HLD	0116						Т	imer5 Holdir	ng Register	(for 32-bit o	perations on	ly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	—	TSIDL	—	—	—	—	_	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000

TABLE 4-8: TIMER1 THROUGH TIMER5 REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
CHEN	SIZE	DIR	HALF	NULLW							
bit 15							bit				
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
	0-0	AMODE1	AMODE0	0-0	0-0	MODE1	MODE0				
bit 7		AWODET	7 WIODE0			MODET	bit				
Lovende											
Legend: R = Readab	lo hit	M - Mritabla	hit.		monted bit rec	ud aa '0'					
		W = Writable		-	mented bit, rea						
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	CHEN: DMA	Channel Enabl	e bit								
	1 = Channel										
bit 14	 0 = Channel is disabled SIZE: DMA Data Transfer Size bit 										
		1 = Byte									
	0 = Word										
bit 13	DIR: DMA Transfer Direction bit (source/destination bus select)										
		om RAM addre om peripheral a									
bit 12	 0 = Reads from peripheral address, writes to RAM address HALF: DMA Block Transfer Interrupt Select bit 										
	1 = Initiates i	nterrupt when	half of the data	a has been mo							
bit 11	 0 = Initiates interrupt when all of the data has been moved NULLW: Null Data Peripheral Write Mode Select bit 										
		write to periph			e (DIR bit must	also be clear)					
bit 10-6	Unimplemen	ted: Read as '	0'								
bit 5-4	AMODE<1:0>: DMA Channel Addressing Mode Select bits										
	11 = Reserve 10 = Periphe 01 = Register		ressing mode ut Post-Increm	nent mode							
bit 3-2	Unimplemen	ted: Read as '	0'								
bit 1-0	-	DMA Channel		de Select bits							
	11 = One-Sho 10 = Continue	ot, Ping-Pong r ous, Ping-Pong ot, Ping-Pong r	nodes are ena modes are e nodes are dis	abled (one bloc nabled abled	ck transfer fror	n/to each DMA t	ouffer)				

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0				
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0				
bit 15			•				bit 8				
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0				
bit 7							bit (
Legend:											
R = Readable		W = Writable		-	nented bit, read						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
h:+ 45		on Interview h									
bit 15		on Interrupt bis will clear the l									
		s have no effect		EN bit							
bit 14-12	•										
	DOZE<2:0>: Processor Clock Reduction Select bits ⁽¹⁾ 111 = Fcy divided by 128										
	110 = Fcy divided by 64										
	101 = Fcy divided by 32										
	100 = Fcy divided by 16 011 = Fcy divided by 8 (default)										
	011 = FCY divided by 8 (default)010 = FCY divided by 4										
	001 = Fcy divided by 2										
	000 = Fcy divided by 1										
bit 11	DOZEN: Doze Mode Enable bit ^(2,3) 1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks										
						nd the process	or clocks				
		-	-	ratio is forced to							
bit 10-8	FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits										
	111 = FRC divided by 256 110 = FRC divided by 64										
	101 = FRC divided by 64 101 = FRC divided by 32										
	100 = FRC divided by 16										
	011 = FRC divided by 8										
	010 = FRC divided by 4										
	001 = FRC divided by 2 000 = FRC divided by 1 (default)										
bit 7-6	PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler)										
	11 = Output divided by 8										
	10 = Reserved										
		livided by 4 (de	efault)								
bit 5	00 = Output d	ted: Read as '	o'								
	•										
	e DOZE<2:0> b ZE<2:0> are ig		written to whe	en the DOZEN	bit is clear. If D	OZEN = 1, any	writes to				
2: This	s bit is cleared	when the ROI I	oit is set and a	an interrupt occ	urs.						
	DOJENUS				~ ~		<i>.</i>				

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				HOME1R<6:0	>		
bit 15							bit 8
		D # 4 4 0	54446	5444.0	5444.0	-	5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				INDX1R<6:0>	>		
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		nput tied to RPI					
		nput tied to CM nput tied to Vss					
bit 7		nted: Read as '					
bit 6-0	(see Table 1	: Assign QEI1 1-2 for input pin nput tied to RPI	selection nun	,	responding RI	Pn Pin bits	
		nput tied to CM					

NOTES:

14.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

14.1.1 KEY RESOURCES

- "Input Capture" (DS70352) in the "dsPIC33/ PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

	lled low externally in order to clear and disable the fault egister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>
-	d polarity using the IOCON1 register gister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0xF000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	—	—	—	—	—	CHOPC	LK<9:8>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHOPC	LK<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15 bit 14-10 bit 9-0	1 = Chop clos 0 = Chop clos Unimplemen CHOPCLK<9 The frequence	Enable Chop ck generator is ck generator is ted: Read as ' 9:0>: Chop Clo y of the chop c ncy = (FP/PCL)	enabled disabled 0' ck Divider bits lock signal is g	given by the fo	ollowing expressi + 1)	on:	

REGISTER 16-5: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

REGISTER 16-6: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			MDC	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			MD	C<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾ bit 4-2 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1 000 = Secondary prescale 8:1 bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)⁽³⁾ 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - 3: Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER (CONTINUED)

- bit 1 **RBIF:** RX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 **TBIF:** TX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-26:	CxTRmnCON: ECANx TX/RX BUFFER mn CONTROL REGISTER
	(m = 0,2,4,6; n = 1,3,5,7)

	(,_, ., ., ., .,	-,-,-,								
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0				
bit 15							bit 8				
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0				
bit 7							bit C				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown				
bit 15-8	See Definitio	n for bits<7:0>,	Controls Buffe	<u>er n</u>							
bit 7											
		TXENm: TX/RX Buffer Selection bit 1 = Buffer TRBn is a transmit buffer									
	0 = Buffer TR	RBn is a receive	buffer								
bit 6	TXABTm: Message Aborted bit ⁽¹⁾										
	1 = Message was aborted										
		completed tran									
bit 5	TXLARBm: Message Lost Arbitration bit ⁽¹⁾										
		lost arbitration did not lose ar									
bit 4	TXERRm: Er	TXERRm: Error Detected During Transmission bit ⁽¹⁾									
		or occurred wh or did not occu									
bit 3		essage Send F									
		0	•	bit automatic	ally clears wher	n the message	is successfully				
	0 = Clearing	the bit to '0' wh	nile set reques	ts a message	abort						
bit 2	RTRENm: Au	uto-Remote Tra	Insmit Enable	bit							
		emote transmit emote transmit	•								
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	iority bits							
	11 = Highest	message prior	ity								
	0	ermediate mes									
		ermediate mess message priori									
			-								
Note 1: ⊤	his bit is cleared	when TXREQ	s set.								

Note: The buffers, SID, EID, DLC, Data Field, and Receive Status registers are located in DMA RAM.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	23-2: Al		CONTROL REG							
R/W-0	R/W-	-0 R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
VCFG2	VCFC	G1 VCFG0	—	—	CSCNA	CHPS1	CHPS0			
bit 15							bit			
R-0	R/W-	-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	SMP		SMPI2	SMPI1	SMPI0	BUFM	ALTS			
bit 7	Sivil		SIVILIZ			BOTIM	bit			
Logondi										
Legend:	. hit	M = Mritable			montod hit roo					
R = Readable		W = Writable			mented bit, read					
-n = Value at	POR	'1' = Bit is se	et '()' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-13	VCFG<2	2:0>: Converter Vol	tage Reference C	onfiguration	bits					
	Value	VREFH	VREFL							
	000	Avdd	Avss							
	001	External VREF+	Avss							
	010	Avdd	External VREF-							
	011	External VREF+	External VREF-							
	1xx	Avdd	Avss							
bit 12-11	Unimple	emented: Read as	'O'							
bit 10	CSCNA: Input Scan Select bit									
	1 = Scans inputs for CH0+ during Sample MUXA									
		s not scan inputs	5 1							
bit 9-8	CHPS<1:0>: Channel Select bits									
	In 12-bit mode (AD21B = 1), the CHPS<1:0> bits are Unimplemented and are Read as '0':									
	1x = Converts CH0, CH1, CH2 and CH3									
	01 = Converts CH0 and CH1 00 = Converts CH0									
L:1 7										
bit 7		Buffer Fill Status bit		-	o ucor opplicat	ion chould coor	oo data in t			
	1 = ADC is currently filling the second half of the buffer; the user application should access data in th first half of the buffer									
	0 = ADC is currently filling the first half of the buffer; the user application should access data in the									
	second half of the buffer									
bit 6-2	SMPI<4	:0>: Increment Rat	e bits							
	When ADDMAEN = 0:									
	x1111 = Generates interrupt after completion of every 16th sample/conversion operation									
	x1110 = Generates interrupt after completion of every 15th sample/conversion operation									
	•									
	•									
		Generates interru					n			
		 Generates interru 	pt after completior	of every sa	ample/conversion	n operation				
		$\frac{\text{DDMAEN} = 1}{\text{Increments the DN}}$	11 address offer a	omplation of	four 20rd of	male (conversi	on onoratio			
		Increments the DI Increments the DI								
	•			Simpletion	n every orac sa					
	•									
	•	- Increments the DI								

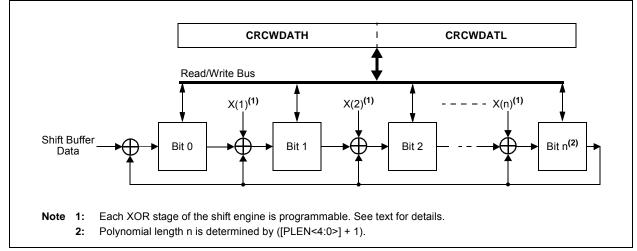
. . ACOND. ADCA CONTROL DECISTED 2

24.3 PTG Control Registers

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
PTGEN	—	PTGSIDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS	
bit 15 bit 8								
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/W-0		
PTGSTRT	PTGWDTO	_	_	_	_	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾	

bit 7


Legend:	HS = Hardware Settable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15		PTGEN: Module Enable bit
		1 = PTG module is enabled
		0 = PTG module is disabled
bit 14		Unimplemented: Read as '0'
bit 13		PTGSIDL: PTG Stop in Idle Mode bit
		 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12		PTGTOGL: PTG TRIG Output Toggle Mode bit
		 1 = Toggle state of the PTGOx for each execution of the PTGTRIG command 0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGPWDx bits
bit 11		Unimplemented: Read as '0'
bit 10		PTGSWT: PTG Software Trigger bit ⁽²⁾
		1 = Triggers the PTG module
		0 = No action (clearing this bit will have no effect)
bit 9		PTGSSEN: PTG Enable Single-Step bit ⁽³⁾
		1 = Enables Single-Step mode
		0 = Disables Single-Step mode
bit 8		PTGIVIS: PTG Counter/Timer Visibility Control bit
		1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx)
		 Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those limit registers
bit 7		PTGSTRT: PTG Start Sequencer bit
		1 = Starts to sequentially execute commands (Continuous mode)0 = Stops executing commands
bit 6		PTGWDTO: PTG Watchdog Timer Time-out Status bit
		1 = PTG Watchdog Timer has timed out
		0 = PTG Watchdog Timer has not timed out.
bit 5-2		Unimplemented: Read as '0'
Note	1: Th	nese bits apply to the PTGWHI and PTGWLO commands only.
	2: Th	is bit is only used with the PTGCTRL step command software trigger option.

3: Use of the PTG Single-Step mode is reserved for debugging tools only.

bit 0

26.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

$$\begin{array}{c} x16+x12+x5+1\\ \text{and}\\ x32+x26+x23+x22+x16+x12+x11+x10+x8+x7\\ +x5+x4+x2+x+1 \end{array}$$

To program these polynomials into the CRC generator, set the register bits as shown in Table 26-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 26-1:CRC SETUP EXAMPLES FOR16 AND 32-BIT POLYNOMIAL

CRC Control	Bit Values						
Bits	16-bit Polynomial	32-bit Polynomial					
PLEN<4:0>	01111	11111					
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001					
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x					

26.2 Programmable CRC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

26.2.1 KEY RESOURCES

- "Programmable Cyclic Redundancy Check (CRC)" (DS70346) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

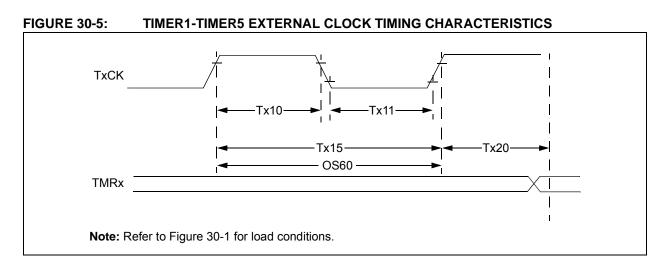
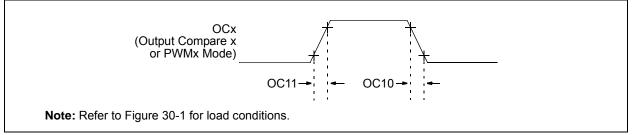

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
25 DAW		DAW Wn		Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm , Wn ⁽¹⁾	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit15,Expr ⁽¹⁾	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn, Expr(1)	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address		4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X


TABLE 30-23: TIME	R1 EXTERNAL CLOCK TIMING REQUIREMENTS ⁽¹⁾)
-------------------	--	---

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol Characteristic ⁽²⁾		cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	35	_	—	ns	
TA11	ΤτχL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	10		—	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	—	ns	N = prescale value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC		50	kHz	
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal T1CK to Timer	0.75 Tcy + 40	_	1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

FIGURE 30-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

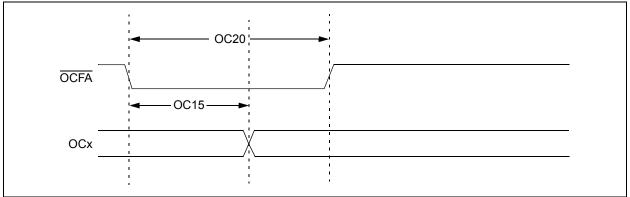


TABLE 30-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
OC10	TccF	OCx Output Fall Time	_		_	ns	See Parameter DO32		
OC11	TccR	OCx Output Rise Time	_	_	—	ns	See Parameter DO31		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

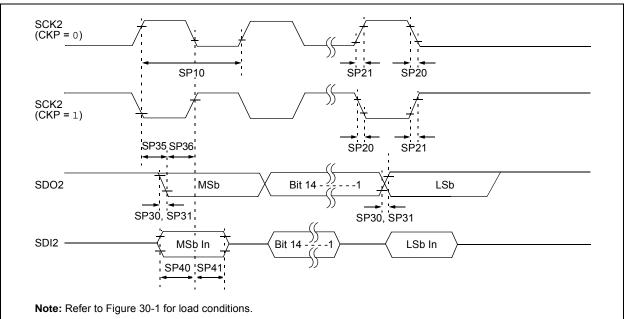


TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC15	TFD	Fault Input to PWMx I/O Change	—	_	Tcy + 20	ns		
OC20	TFLT	Fault Input Pulse Width	TCY + 20		—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-17: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-36:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency		—	9	MHz	-40°C to +125°C (Note 3)
SP20	TscF	SCK2 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK2 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.