

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

•XFI

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                           |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 70 MIPs                                                                         |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                            |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT                   |
| Number of I/O              | 21                                                                              |
| Program Memory Size        | 32KB (10.7K x 24)                                                               |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 2K x 16                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 6x10b/12b                                                                   |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 28-VQFN Exposed Pad                                                             |
| Supplier Device Package    | 28-QFN-S (6x6)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32mc202-i-mm |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER









## FIGURE 4-9: DATA MEMORY MAP FOR dsPIC33EP128MC20X/50X AND dsPIC33EP128GP50X DEVICES





| TADLL 4-2  |       |         |           |         |                                            |                                                                |            |          |                                    |        |          |        |                           |           |          |        |        |               |
|------------|-------|---------|-----------|---------|--------------------------------------------|----------------------------------------------------------------|------------|----------|------------------------------------|--------|----------|--------|---------------------------|-----------|----------|--------|--------|---------------|
| File Name  | Addr. | Bit 15  | Bit 14    | Bit 13  | Bit 12                                     | Bit 11                                                         | Bit 10     | Bit 9    | Bit 8                              | Bit 7  | Bit 6    | Bit 5  | Bit 4                     | Bit 3     | Bit 2    | Bit 1  | Bit 0  | All<br>Resets |
| C1CTRL1    | 0400  | _       | —         | CSIDL   | ABAT                                       | CANCKS                                                         | R          | EQOP<2:0 | )>                                 | OPN    | NODE<2:0 | >      | _                         | CANCAP    | _        | _      | WIN    | 0480          |
| C1CTRL2    | 0402  | _       | —         | _       | —                                          | —                                                              | —          | _        | _                                  | _      | —        | _      |                           | D         | NCNT<4:0 | >      |        | 0000          |
| C1VEC      | 0404  | _       | _         | _       |                                            | F                                                              | ILHIT<4:0> |          |                                    | _      |          |        |                           | ICODE<6:0 | >        |        |        | 0040          |
| C1FCTRL    | 0406  | [       | DMABS<2:0 | >       | —                                          | —                                                              |            | —        | _                                  | _      | —        | —      |                           |           | FSA<4:0> |        |        | 0000          |
| C1FIFO     | 0408  | _       | _         |         |                                            | FBP<                                                           | 5:0>       |          |                                    | _      | _        |        |                           | FNRB      | <5:0>    |        |        | 0000          |
| C1INTF     | 040A  | _       | _         | ТХВО    | TXBP                                       | RXBP                                                           | TXWAR      | RXWAR    | EWARN                              | IVRIF  | WAKIF    | ERRIF  | _                         | FIFOIF    | RBOVIF   | RBIF   | TBIF   | 0000          |
| C1INTE     | 040C  | _       | _         | _       | —                                          | —                                                              | _          | _        | _                                  | IVRIE  | WAKIE    | ERRIE  | _                         | FIFOIE    | RBOVIE   | RBIE   | TBIE   | 0000          |
| C1EC       | 040E  |         |           |         | TERRCN                                     | T<7:0>                                                         |            |          |                                    |        |          |        | RERRCM                    | NT<7:0>   |          |        |        | 0000          |
| C1CFG1     | 0410  | _       | _         | _       | —                                          | —                                                              | _          | _        | _                                  | SJW<   | 1:0>     |        |                           | BRP       | <5:0>    |        |        | 0000          |
| C1CFG2     | 0412  | _       | WAKFIL    | _       | SEG2PH<2:0> SEG2PHTS SAM SEG1PH<2:0> PRSEG |                                                                |            |          | RSEG<2:0                           | >      | 0000     |        |                           |           |          |        |        |               |
| C1FEN1     | 0414  | FLTEN15 | FLTEN14   | FLTEN13 | FLTEN12                                    | FLTEN11                                                        | FLTEN10    | FLTEN9   | FLTEN8                             | FLTEN7 | FLTEN6   | FLTEN5 | FLTEN4                    | FLTEN3    | FLTEN2   | FLTEN1 | FLTEN0 | FFFF          |
| C1FMSKSEL1 | 0418  | F7MS    | K<1:0>    | F6MS    | K<1:0>                                     | <1:0> F5MSK<1:0> F4MSK<1:0>                                    |            |          | F3MSK<1:0> F2MSK<1:0>              |        |          | K<1:0> | :0> F1MSK<1:0> F0MSK<1:0> |           | 0000     |        |        |               |
| C1FMSKSEL2 | 041A  | F15MS   | SK<1:0>   | F14MS   | K<1:0>                                     | <pre>&lt;&lt;1:0&gt; F13MSK&lt;1:0&gt; F12MSK&lt;1:0&gt;</pre> |            |          | F11MSK<1:0> F10MSK<1:0> F9MSK<1:0> |        |          | <<1:0> | F8MSK<1:0> 00             |           | 0000     |        |        |               |

#### TABLE 4-21: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 OR 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

| File Name | Addr          | Bit 15                                                                                                         | Bit 14  | Bit 13                                                                                                                                | Bit 12  | Bit 11  | Bit 10                                                                           | Bit 9   | Bit 8         | Bit 7       | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   | All<br>Resets |
|-----------|---------------|----------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------------------------------------------------------------------------------|---------|---------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------------|
|           | 0400-<br>041E |                                                                                                                |         |                                                                                                                                       |         |         |                                                                                  | S       | ee definition | when WIN    | = x     |         |         |         |         |         |         |               |
| C1RXFUL1  | 0420          | RXFUL15                                                                                                        | RXFUL14 | RXFUL13                                                                                                                               | RXFUL12 | RXFUL11 | RXFUL10                                                                          | RXFUL9  | RXFUL8        | RXFUL7      | RXFUL6  | RXFUL5  | RXFUL4  | RXFUL3  | RXFUL2  | RXFUL1  | RXFUL0  | 0000          |
| C1RXFUL2  | 0422          | RXFUL31                                                                                                        | RXFUL30 | RXFUL29                                                                                                                               | RXFUL28 | RXFUL27 | RXFUL26                                                                          | RXFUL25 | RXFUL24       | RXFUL23     | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 | 0000          |
| C1RXOVF1  | 0428          | RXOVF15                                                                                                        | RXOVF14 | RXOVF13                                                                                                                               | RXOVF12 | RXOVF11 | 11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 |         |               |             |         |         |         |         | 0000    |         |         |               |
| C1RXOVF2  | 042A          | RXOVF31                                                                                                        | RXOVF30 | 0 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF18 RXOVF17 RXOVF16 000 |         |         |                                                                                  |         |               |             |         |         |         |         |         | 0000    |         |               |
| C1TR01CON | 0430          | TXEN1                                                                                                          | TXABT1  | TXLARB1                                                                                                                               | TXERR1  | TXREQ1  | RTREN1                                                                           | TX1PF   | RI<1:0>       | TXEN0       | TXABAT0 | TXLARB0 | TXERR0  | TXREQ0  | RTREN0  | TX0PF   | RI<1:0> | 0000          |
| C1TR23CON | 0432          | TXEN3                                                                                                          | TXABT3  | TXLARB3                                                                                                                               | TXERR3  | TXREQ3  | RTREN3                                                                           | TX3PF   | RI<1:0>       | TXEN2       | TXABAT2 | TXLARB2 | TXERR2  | TXREQ2  | RTREN2  | TX2PF   | RI<1:0> | 0000          |
| C1TR45CON | 0434          | TXEN5                                                                                                          | TXABT5  | TXLARB5                                                                                                                               | TXERR5  | TXREQ5  | RTREN5                                                                           | TX5PF   | RI<1:0>       | TXEN4       | TXABAT4 | TXLARB4 | TXERR4  | TXREQ4  | RTREN4  | TX4PF   | RI<1:0> | 0000          |
| C1TR67CON | 0436          | TXEN7 TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7 TX7PRI<1:0> TXEN6 TXABAT6 TXLARB6 TXER6 TXREQ6 RTREN6 TX6PRI<1:0> xx |         |                                                                                                                                       |         |         |                                                                                  |         |               |             |         |         | xxxx    |         |         |         |         |               |
| C1RXD     | 0440          | ECAN1 Receive Data Word xxx                                                                                    |         |                                                                                                                                       |         |         |                                                                                  |         |               |             |         |         |         | xxxx    |         |         |         |               |
| C1TXD     | 0442          |                                                                                                                |         |                                                                                                                                       |         |         |                                                                                  | E       | CAN1 Trans    | smit Data W | ord     |         |         |         |         |         |         | xxxx          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-24: CRC REGISTER MAP

| File Name | Addr. | Bit 15 | Bit 14                    | Bit 13 | Bit 12 | Bit 11 | Bit 10    | Bit 9 | Bit 8    | Bit 7        | Bit 6  | Bit 5   | Bit 4 | Bit 3   | Bit 2     | Bit 1 | Bit 0 | All<br>Resets |
|-----------|-------|--------|---------------------------|--------|--------|--------|-----------|-------|----------|--------------|--------|---------|-------|---------|-----------|-------|-------|---------------|
| CRCCON1   | 0640  | CRCEN  | —                         | CSIDL  |        | V      | WORD<4:(  | )>    |          | CRCFUL       | CRCMPT | CRCISEL | CRCGO | LENDIAN | —         | -     | —     | 0000          |
| CRCCON2   | 0642  | _      | _                         | _      |        | D      | WIDTH<4:0 | )>    |          | _            | _      | _       |       | F       | PLEN<4:0> |       |       | 0000          |
| CRCXORL   | 0644  |        | X<15:1> 000               |        |        |        |           |       |          |              |        |         |       |         |           | 0000  |       |               |
| CRCXORH   | 0646  |        | X<31:16> 000              |        |        |        |           |       |          |              |        |         |       |         | 0000      |       |       |               |
| CRCDATL   | 0648  |        |                           |        |        |        |           |       | CRC Data | Input Low V  | Vord   |         |       |         |           |       |       | 0000          |
| CRCDATH   | 064A  |        |                           |        |        |        |           |       | CRC Data | Input High \ | Nord   |         |       |         |           |       |       | 0000          |
| CRCWDATL  | 064C  |        | CRC Result Low Word 0000  |        |        |        |           |       |          |              |        |         |       | 0000    |           |       |       |               |
| CRCWDATH  | 064E  |        | CRC Result High Word 0000 |        |        |        |           |       |          |              |        |         |       |         |           |       |       |               |

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

# TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC202/502 AND PIC24EPXXXGP/MC202 DEVICES ONLY DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12     | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5         | Bit 4 | Bit 3 | Bit 2  | Bit 1 | Bit 0 | All<br>Resets |  |
|--------------|-------|--------|--------|--------|------------|--------|--------|-------|-------|-------|-------|---------------|-------|-------|--------|-------|-------|---------------|--|
| RPOR0        | 0680  | _      | —      |        | RP35R<5:0> |        |        |       |       |       | —     | RP20R<5:0> 00 |       |       |        |       |       |               |  |
| RPOR1        | 0682  | _      | _      |        | RP37R<5:0> |        |        |       |       |       | _     | RP36R<5:0> 01 |       |       |        |       |       |               |  |
| RPOR2        | 0684  | _      | _      |        |            | RP39F  | २<5:0> |       |       | —     | _     | RP38R<5:0>    |       |       |        |       |       | 0000          |  |
| RPOR3        | 0686  | _      | _      |        | RP41R<5:0> |        |        |       |       | —     | _     | RP40R<5:0> 0  |       |       |        |       | 0000  |               |  |
| RPOR4        | 0688  | _      | —      |        | RP43R<5:0> |        |        |       |       |       | _     |               |       | RP42F | २<5:0> |       |       | 0000          |  |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC203/503 AND PIC24EPXXXGP/MC203 DEVICES ONLY DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12     | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4      | Bit 3 | Bit 2  | Bit 1 | Bit 0 | All<br>Resets |  |
|--------------|-------|--------|--------|--------|------------|--------|--------|-------|-------|-------|-------|-------|------------|-------|--------|-------|-------|---------------|--|
| RPOR0        | 0680  | —      | _      |        | RP35R<5:0> |        |        |       |       |       | _     |       |            | RP20  | R<5:0> |       |       | 0000          |  |
| RPOR1        | 0682  | _      | _      |        |            | RP37   | २<5:0> |       |       | _     | _     |       |            | RP36  | २<5:0> |       |       | 0000          |  |
| RPOR2        | 0684  | _      | _      |        | RP39R<5:0> |        |        |       |       |       | _     |       | RP38R<5:0> |       |        |       |       |               |  |
| RPOR3        | 0686  | _      | _      |        |            | RP41   | २<5:0> |       |       | _     | _     |       | RP40R<5:0> |       |        |       |       |               |  |
| RPOR4        | 0688  | _      | _      |        |            | RP43   | २<5:0> |       |       | _     | _     |       |            | RP42  | २<5:0> |       |       | 0000          |  |
| RPOR5        | 068A  | _      | _      | _      |            |        |        |       |       |       | _     |       |            |       |        |       |       | 0000          |  |
| RPOR6        | 068C  |        |        | -      | —          | _      |        | —     |       |       | _     |       |            | RP56  | R<5:0> |       |       | 0000          |  |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| R/W-1           | R/W-0                 | R/W-0             | U-0               | U-0                      | U-0              | U-0             | U-0    |
|-----------------|-----------------------|-------------------|-------------------|--------------------------|------------------|-----------------|--------|
| GIE             | DISI                  | SWTRAP            |                   | _                        | _                | _               | —      |
| bit 15          |                       |                   |                   | ·                        |                  |                 | bit 8  |
|                 |                       |                   |                   |                          |                  |                 |        |
| U-0             | U-0                   | U-0               | U-0               | U-0                      | R/W-0            | R/W-0           | R/W-0  |
|                 |                       | _                 | _                 | —                        | INT2EP           | INT1EP          | INT0EP |
| bit 7           |                       |                   |                   |                          |                  |                 | bit 0  |
|                 |                       |                   |                   |                          |                  |                 |        |
| Legend:         | L:1                   |                   | L:1               |                          |                  | (0)             |        |
| R = Readable    | DIT                   | vv = vvritable    | DIT               |                          | mented bit, read | as '0'          |        |
| -n = value at I | POR                   | "1" = Bit is set  |                   | $0^{\circ} = Bit is cle$ | eared            | x = Bit is unkr | nown   |
| hit 15          |                       | ntorrunt Enable   | , hit             |                          |                  |                 |        |
| DIL 15          |                       | and associate     | d IF hits are e   | nahled                   |                  |                 |        |
|                 | 0 = Interrupts        | are disabled,     | but traps are s   | still enabled            |                  |                 |        |
| bit 14          | DISI: DISI Ir         | nstruction Statu  | s bit             |                          |                  |                 |        |
|                 | 1 = DISI ins          | truction is activ | e                 |                          |                  |                 |        |
|                 | 0 = DISI <b>ins</b> i | truction is not a | ictive            |                          |                  |                 |        |
| bit 13          | SWTRAP: So            | oftware Trap St   | atus bit          |                          |                  |                 |        |
|                 | 1 = Software          | trap is enabled   | 4                 |                          |                  |                 |        |
| hit 12-3        |                       | ted. Read as '    | <br>              |                          |                  |                 |        |
| bit 2           | INT2FP: Exte          | ernal Interrupt 2 | ∘<br>PEdge Detect | Polarity Selec           | et bit           |                 |        |
|                 | 1 = Interrupt         | on negative ed    | ae                |                          |                  |                 |        |
|                 | 0 = Interrupt         | on positive edg   | le                |                          |                  |                 |        |
| bit 1           | INT1EP: Exte          | ernal Interrupt ? | Edge Detect       | Polarity Selec           | ct bit           |                 |        |
|                 | 1 = Interrupt         | on negative ed    | ge                |                          |                  |                 |        |
|                 | 0 = Interrupt         | on positive edg   | e                 |                          |                  |                 |        |
| bit 0           | INTOEP: Exte          | ernal Interrupt ( | ) Edge Detect     | Polarity Selec           | ct bit           |                 |        |
|                 | $\perp$ = interrupt   | on negative ed    | ye<br>Ie          |                          |                  |                 |        |
|                 |                       |                   |                   |                          |                  |                 |        |

#### REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

| R/W-0           | R/W-0                             | R/W-0            | R/W-0               | R/W-0                     | U-0               | U-0             | U-0     |
|-----------------|-----------------------------------|------------------|---------------------|---------------------------|-------------------|-----------------|---------|
| CHEN            | SIZE                              | DIR              | HALF                | NULLW                     | _                 | —               | —       |
| bit 15          |                                   |                  |                     |                           |                   |                 | bit 8   |
|                 |                                   |                  |                     |                           |                   |                 |         |
| U-0             | U-0                               | R/W-0            | R/W-0               | U-0                       | U-0               | R/W-0           | R/W-0   |
|                 |                                   | AMODE1           | AMODE0              |                           |                   | MODE1           | MODE0   |
| bit 7           |                                   |                  |                     |                           |                   |                 | bit 0   |
|                 |                                   |                  |                     |                           |                   |                 |         |
| Legend:         |                                   |                  | ,                   |                           |                   | (0)             |         |
| R = Readable    | bit                               | W = Writable     | bit                 |                           | mented bit, read  | as '0'          |         |
| -n = Value at F | POR                               | '1' = Bit is set |                     | $0^{\prime}$ = Bit is cle | eared             | x = Bit is unkn | IOWN    |
| bit 15          |                                   | Channel Enabl    | o hit               |                           |                   |                 |         |
| bit 15          | 1 = Channel                       | is enabled       |                     |                           |                   |                 |         |
|                 | 0 = Channel                       | is disabled      |                     |                           |                   |                 |         |
| bit 14          | SIZE: DMA D                       | ata Transfer Si  | ze bit              |                           |                   |                 |         |
|                 | 1 = Byte                          |                  |                     |                           |                   |                 |         |
|                 | 0 = Word                          |                  |                     |                           |                   |                 |         |
| bit 13          | DIR: DMA Tra                      | ansfer Direction | ) bit (source/d     | estination bus            | select)           |                 |         |
|                 | 1 = Reads from  0 = Reads from  1 | om RAM addre     | ddress. writes to p | s to RAM addr             | ess<br>ess        |                 |         |
| bit 12          | HALF: DMA                         | Block Transfer   | Interrupt Sele      | ct bit                    |                   |                 |         |
|                 | 1 = Initiates i                   | nterrupt when I  | nalf of the dat     | a has been mo             | oved              |                 |         |
|                 | 0 = Initiates i                   | nterrupt when a  | all of the data     | has been mov              | ved               |                 |         |
| bit 11          | NULLW: Null                       | Data Periphera   | al Write Mode       | Select bit                |                   |                 |         |
|                 | 1 = Null data                     | write to periph  | eral in additio     | n to RAM write            | e (DIR bit must a | also be clear)  |         |
| bit 10-6        | Unimplemen                        | ted: Read as '   | ר'                  |                           |                   |                 |         |
| bit 5-4         | AMODE<1:0                         | : DMA Channe     | el Addressina       | Mode Select               | bits              |                 |         |
|                 | 11 = Reserve                      | ed               |                     |                           |                   |                 |         |
|                 | 10 = Peripher                     | ral Indirect Add | ressing mode        |                           |                   |                 |         |
|                 | 01 = Register                     | Indirect withou  | ut Post-Increm      | nent mode                 |                   |                 |         |
| hit 3 2         |                                   | tod: Pood as '   | ost-incremen        | tmode                     |                   |                 |         |
| bit $1_0$       |                                   | DMA Channel      | Operating Mc        | nda Salact hits           |                   |                 |         |
| bit 1-0         | 11 = One-Sh                       | ot. Pina-Pona r  | nodes are en        | abled (one blo            | ck transfer from  | /to each DMA b  | ouffer) |
|                 | 10 = Continue                     | ous, Ping-Pong   | modes are e         | nabled                    |                   |                 |         |
|                 | 01 = One-Sho                      | ot, Ping-Pong r  | nodes are dis       | abled                     |                   |                 |         |
|                 |                                   | ous, Ping-Pong   | modes are d         | ISADIEO                   |                   |                 |         |

#### REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

## dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| U-0           | U-0                        | U-0              | U-0                      | U-0               | U-0              | U-0             | U-0   |
|---------------|----------------------------|------------------|--------------------------|-------------------|------------------|-----------------|-------|
| _             |                            | —                | —                        | —                 | —                | —               | —     |
| bit 15        |                            |                  |                          |                   |                  |                 | bit 8 |
|               |                            |                  |                          |                   |                  |                 |       |
| U-0           | U-0                        | U-0              | R/W-0                    | R/W-0             | U-0              | U-0             | U-0   |
|               |                            |                  | DMA0MD <sup>(1)</sup>    |                   |                  |                 |       |
| _             | _                          | _                | DMA1MD <sup>(1)</sup>    | PTGMD             | _                | _               | _     |
|               |                            |                  | DMA2MD <sup>(1)</sup>    | 1 TOME            |                  |                 |       |
|               |                            |                  | DMA3MD <sup>(1)</sup>    |                   |                  |                 |       |
| bit 7         |                            |                  |                          |                   |                  |                 | bit 0 |
|               |                            |                  |                          |                   |                  |                 |       |
| Legend:       |                            |                  |                          |                   |                  |                 |       |
| R = Readable  | e bit                      | W = Writable     | bit                      | U = Unimplem      | nented bit, read | l as '0'        |       |
| -n = Value at | POR                        | '1' = Bit is set |                          | '0' = Bit is clea | ared             | x = Bit is unkn | iown  |
|               |                            |                  |                          |                   |                  |                 |       |
| bit 15-5      | Unimplement                | ted: Read as '   | D'                       |                   |                  |                 |       |
| bit 4         | DMA0MD: DN                 | /A0 Module Di    | sable bit <sup>(1)</sup> |                   |                  |                 |       |
|               | 1 = DMA0 mo                | dule is disable  | d                        |                   |                  |                 |       |
|               | 0 = DMA0 mo                | dule is enable   | d<br>                    |                   |                  |                 |       |
|               | DMA1MD: DN                 | /A1 Module Di    | sable bit(")             |                   |                  |                 |       |
|               | 1 = DMA1 mo<br>0 = DMA1 mo | dule is disable  | d<br>d                   |                   |                  |                 |       |
|               |                            |                  | sable bit(1)             |                   |                  |                 |       |
|               | 1 = DMA2 mo                | dule is disable  | d                        |                   |                  |                 |       |
|               | 0 = DMA2 mo                | dule is enable   | d                        |                   |                  |                 |       |
|               | DMA3MD: DN                 | /A3 Module Di    | sable bit <sup>(1)</sup> |                   |                  |                 |       |
|               | 1 = DMA3 mo                | dule is disable  | d                        |                   |                  |                 |       |
|               | 0 = DMA3 mo                | dule is enable   | b                        |                   |                  |                 |       |
| bit 3         | PTGMD: PTG                 | Module Disab     | le bit                   |                   |                  |                 |       |
|               | 1 = PTG mod                | ule is disabled  |                          |                   |                  |                 |       |
|               | $0 = PIG \mod 1$           | uie is enabled   | -1                       |                   |                  |                 |       |
| DIT 2-0       | Unimplement                | tea: Read as '   | J.                       |                   |                  |                 |       |
| Note 1: Th    | nis single bit ena         | ables and disat  | oles all four DM         | A channels.       |                  |                 |       |
|               |                            |                  |                          |                   |                  |                 |       |

#### REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

#### 15.2 Output Compare Control Registers

#### REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

| U-0        | U-0                           | R/W-0                                   | R/W-0                           | R/W-0                         | R/W-0                  | U-0             | R/W-0          |
|------------|-------------------------------|-----------------------------------------|---------------------------------|-------------------------------|------------------------|-----------------|----------------|
|            |                               | OCSIDL                                  | OCTSEL2                         | OCTSEL1                       | OCTSEL0                | _               | ENFLTB         |
| bit 15     |                               |                                         |                                 |                               |                        |                 | bit 8          |
|            |                               |                                         |                                 |                               |                        |                 |                |
| R/W-0      | U-0                           | R/W-0, HSC                              | R/W-0, HSC                      | R/W-0                         | R/W-0                  | R/W-0           | R/W-0          |
| ENFLTA     |                               | OCFLTB                                  | OCFLTA                          | TRIGMODE                      | OCM2                   | OCM1            | OCM0           |
| bit 7      |                               |                                         |                                 |                               |                        |                 | bit 0          |
|            |                               |                                         |                                 |                               |                        |                 |                |
| Legend:    |                               | HSC = Hardw                             | are Settable/Cl                 | earable bit                   |                        |                 |                |
| R = Reada  | ible bit                      | W = Writable I                          | bit                             | U = Unimplem                  | nented bit, read       | as '0'          |                |
| -n = Value | at POR                        | '1' = Bit is set                        |                                 | '0' = Bit is clea             | ared                   | x = Bit is unkr | nown           |
|            |                               |                                         |                                 |                               |                        |                 |                |
| bit 15-14  | Unimplemen                    | ted: Read as '0                         | )'                              |                               |                        |                 |                |
| bit 13     | OCSIDL: Out                   | tput Compare x                          | Stop in Idle Mo                 | de Control bit                |                        |                 |                |
|            | 1 = Output C                  | compare x Halts                         | in CPU Idle me                  | ode<br>via CDU Idia m         | odo                    |                 |                |
| bit 12 10  |                               |                                         | nues lo operale                 |                               | oue                    |                 |                |
| DIL 12-10  | 111 = Perinh                  | eral clock (Ep)                         | pare x Clock S                  |                               |                        |                 |                |
|            | 110 = Reserv                  | /ed                                     |                                 |                               |                        |                 |                |
|            | 101 <b>= PTGO</b>             | x clock <sup>(2)</sup>                  |                                 |                               |                        |                 |                |
|            | 100 = T1CLK                   | is the clock so                         | urce of the OC                  | k (only the sync              | hronous clock          | is supported)   |                |
|            | 011 = 15CLK                   | is the clock sou                        | urce of the OC                  | х<br>~                        |                        |                 |                |
|            | 001 = T3CLK                   | is the clock so                         | urce of the OC                  | x<br>X                        |                        |                 |                |
|            | 000 = T2CLK                   | is the clock so                         | urce of the OC                  | ĸ                             |                        |                 |                |
| bit 9      | Unimplemen                    | ted: Read as '0                         | )'                              |                               |                        |                 |                |
| bit 8      | ENFLTB: Fau                   | ult B Input Enab                        | le bit                          |                               |                        |                 |                |
|            | 1 = Output C<br>0 = Output C  | ompare Fault B<br>compare Fault B       | input (OCFB)<br>input (OCFB)    | is enabled<br>is disabled     |                        |                 |                |
| bit 7      | ENFLTA: Fau                   | ult A Input Enabl                       | le bit                          |                               |                        |                 |                |
|            | 1 = Output C                  | ompare Fault A                          | input (OCFA)                    | is enabled                    |                        |                 |                |
|            | 0 = Output C                  | ompare Fault A                          | input (OCFA)                    | is disabled                   |                        |                 |                |
| bit 6      | Unimplemen                    | ted: Read as '0                         | )'                              |                               |                        |                 |                |
| bit 5      | OCFLTB: PW                    | M Fault B Cond                          | dition Status bit               |                               |                        |                 |                |
|            | 1 = PWM Fa<br>0 = No PWM      | ult B condition of<br>Fault B condition | on OCFB pin ha<br>on on OCFB pi | as occurred<br>n has occurred |                        |                 |                |
| bit 4      | OCFLTA: PW                    | /M Fault A Cond                         | dition Status bit               |                               |                        |                 |                |
|            | 1 = PWM Fa                    | ult A condition of                      | on OCFA pin ha                  | as occurred                   |                        |                 |                |
|            | 0 = No PWM                    | I Fault A condition                     | on on OCFA pi                   | n has occurred                |                        |                 |                |
| Note 1:    | OCxR and OCxF                 | RS are double-b                         | ouffered in PWN                 | A mode only.                  |                        |                 |                |
| 2:         | Each Output Cor               | mpare x module                          | (OCx) has one                   | PTG clock sou                 | urce. See <b>Secti</b> | on 24.0 "Perip  | oheral Trigger |
|            | Generator (PTG<br>PTGO4 = OC1 | ) wodule" for r                         | nore informatio                 | n.                            |                        |                 |                |
|            | PTGO5 = OC2                   |                                         |                                 |                               |                        |                 |                |
|            | PTGO6 = OC3                   |                                         |                                 |                               |                        |                 |                |
|            | PTGO7 = OC4                   |                                         |                                 |                               |                        |                 |                |

#### 16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to 6 outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and frequency resolution of Tcy/2 (7.14 ns at Fcy = 70MHz)
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

**Note:** In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 8.32 ns.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the high-speed PWMx module with an external signal. The SYNCO1 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

#### 16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs to include FLT1 and FLT2 which are remappable using the PPS feature, FLT3 and FLT4 which are available only on the larger 44-pin and 64-pin packages, and FLT32 which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

#### 16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCON<1:0>), regardless of the state of FLT32.

#### 16.2 PWM Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en555464              |

#### 16.2.1 KEY RESOURCES

- "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

#### dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

#### REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

| R/W-x  | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
|--------|-------|-------|-------|-------|-------|-------|-------|
| EID15  | EID14 | EID13 | EID12 | EID11 | EID10 | EID9  | EID8  |
| bit 15 |       |       |       |       |       |       | bit 8 |
|        |       |       |       |       |       |       |       |

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7  | EID6  | EID5  | EID4  | EID3  | EID2  | EID1  | EID0  |
| bit 7 |       |       |       |       |       |       | bit 0 |

# Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

#### REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

| R/W-0         | R/W-0                                                                                | R/W-0                                                                      | R/W-0                                                                    | R/W-0                            | R/W-0           | R/W-0           | R/W-0  |  |
|---------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|-----------------|-----------------|--------|--|
| F7M           | SK<1:0>                                                                              | F6MSI                                                                      | K<1:0>                                                                   | F5MS                             | K<1:0>          | F4MSK<1:0>      |        |  |
| bit 15        |                                                                                      |                                                                            |                                                                          |                                  |                 |                 | bit 8  |  |
|               |                                                                                      |                                                                            |                                                                          |                                  |                 |                 |        |  |
| R/W-0         | R/W-0                                                                                | R/W-0                                                                      | R/W-0                                                                    | R/W-0                            | R/W-0           | R/W-0           | R/W-0  |  |
| F3M           | SK<1:0>                                                                              | F2MSI                                                                      | K<1:0>                                                                   | F1MS                             | K<1:0>          | F0MS            | K<1:0> |  |
| bit 7         |                                                                                      |                                                                            |                                                                          |                                  |                 |                 | bit 0  |  |
|               |                                                                                      |                                                                            |                                                                          |                                  |                 |                 |        |  |
| Legend:       |                                                                                      |                                                                            |                                                                          |                                  |                 |                 |        |  |
| R = Readabl   | le bit                                                                               | W = Writable                                                               | bit                                                                      | U = Unimplen                     | nented bit, rea | d as '0'        |        |  |
| -n = Value at | t POR                                                                                | '1' = Bit is set                                                           | :                                                                        | '0' = Bit is clea                | ared            | x = Bit is unkr | nown   |  |
| bit 15-14     | <b>F7MSK&lt;1:0:</b><br>11 = Reserve<br>10 = Accepta<br>01 = Accepta<br>00 = Accepta | >: Mask Source<br>ed<br>ance Mask 2 re<br>ance Mask 1 re<br>ance Mask 0 re | for Filter 7 bi<br>gisters contair<br>gisters contair<br>gisters contair | ts<br>n mask<br>n mask<br>n mask |                 |                 |        |  |
| bit 13-12     | F6MSK<1:0                                                                            | >: Mask Source                                                             | for Filter 6 bi                                                          | ts (same values                  | as bits<15:14   | <b>!</b> >)     |        |  |
| bit 11-10     | F5MSK<1:0                                                                            | >: Mask Source                                                             | for Filter 5 bi                                                          | ts (same values                  | as bits<15:14   | <b>!</b> >)     |        |  |
| bit 9-8       | F4MSK<1:0                                                                            | >: Mask Source                                                             | for Filter 4 bi                                                          | ts (same values                  | as bits<15:14   | <b>!</b> >)     |        |  |
| bit 7-6       | F3MSK<1:0:                                                                           | >: Mask Source                                                             | for Filter 3 bi                                                          | ts (same values                  | s as bits<15:14 | l>)             |        |  |
| bit 5-4       | F2MSK<1:0                                                                            | >: Mask Source                                                             | for Filter 2 bi                                                          | ts (same values                  | s as bits<15:14 | <b>!</b> >)     |        |  |
| bit 3-2       | F1MSK<1:0                                                                            | >: Mask Source                                                             | for Filter 1 bi                                                          | ts (same values                  | s as bits<15:14 | ł>)             |        |  |
| bit 1-0       | F0MSK<1:0                                                                            | Hask Source                                                                | for Filter 0 bi                                                          | ts (same values                  | s as bits<15:14 | <b>!</b> >)     |        |  |
|               |                                                                                      |                                                                            |                                                                          |                                  |                 |                 |        |  |

| R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0  | R/C-0  |
|---------|---------|---------|---------|---------|---------|--------|--------|
| RXOVF15 | RXOVF14 | RXOVF13 | RXOVF12 | RXOVF11 | RXOVF10 | RXOVF9 | RXOVF8 |
| bit 15  |         |         |         |         |         |        | bit 8  |
|         |         |         |         |         |         |        |        |
| R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0  | R/C-0  |

#### REGISTER 21-24: CxRXOVF1: ECANx RECEIVE BUFFER OVERFLOW REGISTER 1

RXOVF4

| bit 7            |                          |                                         | bit 0 |
|------------------|--------------------------|-----------------------------------------|-------|
|                  |                          |                                         |       |
| Legend:          | C = Writable bit, but or | nly '0' can be written to clear the bit |       |
| R = Readable bit | W = Writable bit         | U = Unimplemented bit, read as '0'      |       |

RXOVF3

RXOVF2

| R = Readable bit  | vv = vvritable bit | U = Unimplemented bit, read | as 0               |
|-------------------|--------------------|-----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set   | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-0 RXOVF<15:0>: Receive Buffer n Overflow bits

RXOVF6

RXOVF7

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

RXOVF5

#### REGISTER 21-25: CxRXOVF2: ECANx RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15  |         |         |         |         |         |         | bit 8   |

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:           | C = Writable bit, but only '0 | ' can be written to clear the bi | t                  |
|-------------------|-------------------------------|----------------------------------|--------------------|
| R = Readable bit  | W = Writable bit              | U = Unimplemented bit, read      | d as '0'           |
| -n = Value at POR | '1' = Bit is set              | '0' = Bit is cleared             | x = Bit is unknown |

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

RXOVF0

RXOVF1

## dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

#### REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER

| U-0    | U-0 | U-0 | U-0 | R/W-0    | R/W-0    | R/W-0    | RW-0     |
|--------|-----|-----|-----|----------|----------|----------|----------|
| —      | —   | —   | —   | SELSRCC3 | SELSRCC2 | SELSRCC1 | SELSRCC0 |
| bit 15 |     |     |     |          |          |          | bit 8    |
|        |     |     |     |          |          |          |          |

| R/W-0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7    |          |          |          |          |          |          | bit 0    |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

#### bit 15-12 Unimplemented: Read as '0'

| bit 11-8 | SELSRCC<3:0>: Mask C Input Select bits                                                                                                                                                                                                                                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 1111 <b>= FLT4</b>                                                                                                                                                                                                                                                                                                       |
|          | 1110 <b>= FLT2</b>                                                                                                                                                                                                                                                                                                       |
|          | 1101 <b>= PTGO19</b>                                                                                                                                                                                                                                                                                                     |
|          | 1100 <b>= PTGO18</b>                                                                                                                                                                                                                                                                                                     |
|          | 1011 = Reserved                                                                                                                                                                                                                                                                                                          |
|          | 1010 = Reserved                                                                                                                                                                                                                                                                                                          |
|          | 1001 = Reserved                                                                                                                                                                                                                                                                                                          |
|          | 1000 = Reserved                                                                                                                                                                                                                                                                                                          |
|          | 0111 = Reserved                                                                                                                                                                                                                                                                                                          |
|          | 0110 = Reserved                                                                                                                                                                                                                                                                                                          |
|          | 0101 <b>= PWM3H</b>                                                                                                                                                                                                                                                                                                      |
|          | 0100 = PWM3L                                                                                                                                                                                                                                                                                                             |
|          | 0011 = PWM2H                                                                                                                                                                                                                                                                                                             |
|          | 0010 = PWM2L                                                                                                                                                                                                                                                                                                             |
|          | 0001 = PWM1H                                                                                                                                                                                                                                                                                                             |
|          | 0000 = PWM1L                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                                                                                                                                                                                                                          |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits                                                                                                                                                                                                                                                                                   |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4                                                                                                                                                                                                                                                                    |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2                                                                                                                                                                                                                                                     |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19                                                                                                                                                                                                                                    |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18                                                                                                                                                                                                                   |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved                                                                                                                                                                                                |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved<br>1010 = Reserved                                                                                                                                                                             |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved<br>1010 = Reserved<br>1001 = Reserved                                                                                                                                                          |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved<br>1010 = Reserved<br>1001 = Reserved<br>1000 = Reserved                                                                                                                                       |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved<br>1001 = Reserved<br>1000 = Reserved<br>0011 = Reserved<br>0111 = Reserved                                                                                                                    |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved<br>1010 = Reserved<br>1000 = Reserved<br>0111 = Reserved<br>0111 = Reserved<br>0110 = Reserved<br>0110 = Reserved                                                                              |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved<br>1010 = Reserved<br>1001 = Reserved<br>1000 = Reserved<br>0111 = Reserved<br>0110 = Reserved<br>0110 = Reserved<br>0110 = PWM3H<br>0100 = PWM3I                                              |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved<br>1010 = Reserved<br>1000 = Reserved<br>0111 = Reserved<br>0111 = Reserved<br>0110 = Reserved<br>0110 = PWM3H<br>0100 = PWM3L<br>0011 = PWM2H                                                 |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved<br>1010 = Reserved<br>1001 = Reserved<br>1000 = Reserved<br>0111 = Reserved<br>0110 = Reserved<br>0110 = PWM3H<br>0100 = PWM3L<br>0011 = PWM2H<br>0010 = PWM2I                                 |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved<br>1010 = Reserved<br>1001 = Reserved<br>0101 = Reserved<br>0111 = Reserved<br>0110 = Reserved<br>0110 = PWM3H<br>0100 = PWM3L<br>0011 = PWM2H<br>0010 = PWM2L<br>0001 = PWM1H                 |
| bit 7-4  | SELSRCB<3:0>: Mask B Input Select bits<br>1111 = FLT4<br>1110 = FLT2<br>1101 = PTGO19<br>1100 = PTGO18<br>1011 = Reserved<br>1010 = Reserved<br>1001 = Reserved<br>0101 = Reserved<br>0111 = Reserved<br>0110 = Reserved<br>0110 = PWM3H<br>0100 = PWM3L<br>0011 = PWM2H<br>0010 = PWM2L<br>0001 = PWM1H<br>0000 = PWM1I |



#### **FIGURE 30-3: I/O TIMING CHARACTERISTICS**

#### TABLE 30-21: I/O TIMING REQUIREMENTS

| AC CHARACTERISTICS |        |                                   | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^\circ C \leq T_A \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq T_A \leq +125^\circ C \mbox{ for Extended} \end{array}$ |                     |      |       |            |
|--------------------|--------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------|------------|
| Param<br>No.       | Symbol | Characteristic                    | Min.                                                                                                                                                                                                                                                                               | Тур. <sup>(1)</sup> | Max. | Units | Conditions |
| DO31               | TIOR   | Port Output Rise Time             | _                                                                                                                                                                                                                                                                                  | 5                   | 10   | ns    |            |
| DO32               | TIOF   | Port Output Fall Time             | —                                                                                                                                                                                                                                                                                  | 5                   | 10   | ns    |            |
| DI35               | TINP   | INTx Pin High or Low Time (input) | 20                                                                                                                                                                                                                                                                                 | _                   |      | ns    |            |
| DI40               | TRBP   | CNx High or Low Time (input)      | 2                                                                                                                                                                                                                                                                                  |                     | _    | TCY   |            |

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

#### FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS









| AC CHARACTERISTICS                |        |                                               | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)(1)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |      |       |       |                                                         |
|-----------------------------------|--------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|---------------------------------------------------------|
| Param<br>No.                      | Symbol | Characteristic                                | Min.                                                                                                                                                                                                    | Тур. | Max.  | Units | Conditions                                              |
| ADC Accuracy (10-Bit Mode)        |        |                                               |                                                                                                                                                                                                         |      |       |       |                                                         |
| AD20b                             | Nr     | Resolution                                    | 10 Data Bits                                                                                                                                                                                            |      | bits  |       |                                                         |
| AD21b                             | INL    | Integral Nonlinearity                         | -0.625                                                                                                                                                                                                  |      | 0.625 | LSb   | -40°C ≤ TA ≤ +85°C (Note 2)                             |
|                                   |        |                                               | -1.5                                                                                                                                                                                                    | _    | 1.5   | LSb   | +85°C < TA ≤ +125°C (Note 2)                            |
| AD22b                             | DNL    | Differential Nonlinearity                     | -0.25                                                                                                                                                                                                   | _    | 0.25  | LSb   | -40°C $\leq$ TA $\leq$ +85°C (Note 2)                   |
|                                   |        |                                               | -0.25                                                                                                                                                                                                   |      | 0.25  | LSb   | +85°C < TA $\leq$ +125°C (Note 2)                       |
| AD23b                             | Gerr   | Gain Error                                    | -2.5                                                                                                                                                                                                    |      | 2.5   | LSb   | -40°C $\leq$ TA $\leq$ +85°C (Note 2)                   |
|                                   |        |                                               | -2.5                                                                                                                                                                                                    | _    | 2.5   | LSb   | +85°C < TA $\leq$ +125°C (Note 2)                       |
| AD24b                             | EOFF   | Offset Error                                  | -1.25                                                                                                                                                                                                   |      | 1.25  | LSb   | $-40^{\circ}C \le TA \le +85^{\circ}C \text{ (Note 2)}$ |
|                                   |        |                                               | -1.25                                                                                                                                                                                                   | _    | 1.25  | LSb   | +85°C < TA $\leq$ +125°C (Note 2)                       |
| AD25b                             | —      | Monotonicity                                  | _                                                                                                                                                                                                       | _    | _     |       | Guaranteed                                              |
| Dynamic Performance (10-Bit Mode) |        |                                               |                                                                                                                                                                                                         |      |       |       |                                                         |
| AD30b                             | THD    | Total Harmonic Distortion <sup>(3)</sup>      |                                                                                                                                                                                                         | 64   | —     | dB    |                                                         |
| AD31b                             | SINAD  | Signal to Noise and Distortion <sup>(3)</sup> | -                                                                                                                                                                                                       | 57   | _     | dB    |                                                         |
| AD32b                             | SFDR   | Spurious Free Dynamic<br>Range <sup>(3)</sup> | —                                                                                                                                                                                                       | 72   | —     | dB    |                                                         |
| AD33b                             | Fnyq   | Input Signal Bandwidth <sup>(3)</sup>         | _                                                                                                                                                                                                       | 550  |       | kHz   |                                                         |
| AD34b                             | ENOB   | Effective Number of Bits <sup>(3)</sup>       | —                                                                                                                                                                                                       | 9.4  | —     | bits  |                                                         |

#### TABLE 30-59: ADC MODULE SPECIFICATIONS (10-BIT MODE)

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

**3:** Parameters are characterized but not tested in manufacturing.

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### **RECOMMENDED LAND PATTERN**

|                          | MILLIMETERS |      |          |      |
|--------------------------|-------------|------|----------|------|
| Dimension Limits         |             | MIN  | NOM      | MAX  |
| Contact Pitch            | E           |      | 0.80 BSC |      |
| Contact Pad Spacing      | C1          |      | 11.40    |      |
| Contact Pad Spacing      | C2          |      | 11.40    |      |
| Contact Pad Width (X44)  | X1          |      |          | 0.55 |
| Contact Pad Length (X44) | Y1          |      |          | 1.50 |
| Distance Between Pads    | G           | 0.25 |          |      |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



RECOMMENDED LAND PATTERN

|                          | MILLIMETERS |      |          |      |
|--------------------------|-------------|------|----------|------|
| Dimension Limits         |             | MIN  | NOM      | MAX  |
| Contact Pitch            | E           |      | 0.50 BSC |      |
| Contact Pad Spacing      | C1          |      | 11.40    |      |
| Contact Pad Spacing      | C2          |      | 11.40    |      |
| Contact Pad Width (X64)  | X1          |      |          | 0.30 |
| Contact Pad Length (X64) | Y1          |      |          | 1.50 |
| Distance Between Pads    | G           | 0.20 |          |      |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

#### Revision C (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see Section 20.1 "UART Helpful Tips" and Section 3.6 "CPU Resources". All occurrences of TLA were updated to VTLA throughout the document, with the exception of the pin diagrams (updated diagrams were not available at time of publication).

A new chapter, Section 31.0 "DC and AC Device Characteristics Graphs", was added.

All other major changes are referenced by their respective section in Table A-2.

| Section Name                                                                                                                                                            | Update Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "16-bit Microcontrollers<br>and Digital Signal<br>Controllers (up to<br>256-Kbyte Flash and<br>32-Kbyte SRAM) with High-<br>Speed PWM, Op amps, and<br>Advanced Analog" | The content on the first page of this section was extensively reworked to provide the reader with the key features and functionality of this device family in an "at-a-glance" format.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Section 1.0 "Device<br>Overview"                                                                                                                                        | Updated the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and<br>PIC24EPXXXGP/MC20X Block Diagram (see Figure 1-1), which now contains a CPU<br>block and a reference to the CPU diagram.<br>Updated the description and Note references in the Pinout I/O Descriptions for these<br>pins: C1IN2- C2IN2- C3IN2- OA1OUT OA2OUT and OA3OUT (see Table 1-1)                                                                                                                                                                                                                                                                                       |
| Section 2.0 "Guidelines for<br>Getting Started with 16-bit<br>Digital Signal Controllers<br>and Microcontrollers"                                                       | Updated the Recommended Minimum Connection diagram (see Figure 2-1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Section 3.0 "CPU"                                                                                                                                                       | Updated the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and<br>PIC24EPXXXGP/MC20X CPU Block Diagram (see Figure 3-1).<br>Updated the Status register definition in the Programmer's Model (see Figure 3-2).                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Section 4.0 "Memory<br>Organization"                                                                                                                                    | Updated the Data Memory Maps (see Figure 4-6 and Figure 4-11).<br>Removed the DCB<1:0> bits from the OC1CON2, OC2CON2, OC3CON2, and<br>OC4CON2 registers in the Output Compare 1 Through Output Compare 4 Register<br>Map (see Table 4-10).<br>Added the TRIG1 and TRGCON1 registers to the PWM Generator 1 Register Map<br>(see Table 4-13).<br>Added the TRIG2 and TRGCON2 registers to the PWM Generator 2 Register Map<br>(see Table 4-14).<br>Added the TRIG3 and TRGCON3 registers to the PWM Generator 3 Register Map<br>(see Table 4-15).<br>Updated the second note in Section 4.7.1 "Bit-Reversed Addressing<br>Implementation". |
| Section 8.0 "Direct Memory<br>Access (DMA)"                                                                                                                             | Updated the DMA Controller diagram (see Figure 8-1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Section 14.0 "Input<br>Capture"                                                                                                                                         | Updated the bit values for the ICx clock source of the ICTSEL<12:10> bits in the ICxCON1 register (see Register 14-1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Section 15.0 "Output<br>Compare"                                                                                                                                        | Updated the bit values for the OCx clock source of the OCTSEL<2:0> bits in the OCxCON1 register (see Register 15-1).<br>Removed the DCB<1:0> bits from the Output Compare x Control Register 2 (see Register 15-2).                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### TABLE A-2: MAJOR SECTION UPDATES