Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | etails | | |-------------------------|---| | oduct Status | Active | | re Processor | dsPIC | | re Size | 16-Bit | | eed | 70 MIPs | | nnectivity | I ² C, IrDA, LINbus, QEI, SPI, UART/USART | | ripherals | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT | | imber of I/O | 21 | | ogram Memory Size | 32KB (10.7K x 24) | | gram Memory Type | FLASH | | PROM Size | - | | M Size | 2K x 16 | | cage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | a Converters | A/D 6x10b/12b | | illator Type | Internal | | erating Temperature | -40°C ~ 85°C (TA) | | unting Type | Surface Mount | | ckage / Case | 28-SOIC (0.295", 7.50mm Width) | | pplier Device Package | 28-SOIC | | chase URL | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32mc202-i-so | ## FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION Note 1: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 1Ω and the inductor capacity greater than 10 mA. Where: $$f= rac{FCNV}{2}$$ (i.e., ADC conversion rate/2) $$f= rac{1}{(2\pi\sqrt{LC})}$$ $L=\left(rac{1}{(2\pi f\sqrt{C})} ight)^2$ ## 2.2.1 TANK CAPACITORS On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF . # 2.3 CPU Logic Filter Capacitor Connection (VCAP) A low-ESR (< 1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 30.0** "Electrical Characteristics" for additional information. The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 27.3** "On-Chip Voltage Regulator" for details. ## 2.4 Master Clear (MCLR) Pin The MCLR pin provides two specific device functions: - · Device Reset - · Device Programming and Debugging. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements. For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations. Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin. FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS - Note 1: $R \le 10 \text{ k}\Omega$ is recommended. A suggested starting value is 10 k Ω . Ensure that the \overline{MCLR} pin VIH and VIL specifications are met. - 2: R1 ≤ 470Ω will limit any current flowing into MCLR from the external capacitor, C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met. FIGURE 2-7: INTERLEAVED PFC FIGURE 2-8: BEMF VOLTAGE MEASURED USING THE ADC MODULE ## REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED) bit 2 SFA: Stack Frame Active Status bit 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space bit 1 RND: Rounding Mode Select bit⁽¹⁾ 1 = Biased (conventional) rounding is enabled0 = Unbiased (convergent) rounding is enabled bit 0 **IF:** Integer or Fractional Multiplier Mode Select bit⁽¹⁾ 1 = Integer mode is enabled for DSP multiply0 = Fractional mode is enabled for DSP multiply Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only. 2: This bit is always read as '0'. 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level. TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED) | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | AII
Resets | |-----------|-------|--------|---------------|--------|--------|--------|----------------------------|-------|-----------|-----------|-------|-------|--------|-------|-------|-------|-------|---------------| | SR | 0042 | OA | ОВ | SA | SB | OAB | SAB | DA | DC | IPL2 | IPL1 | IPL0 | RA | N | OV | Z | С | 0000 | | CORCON | 0044 | VAR | _ | US< | 1:0> | EDT | EDT DL<2:0> | | | | SATB | SATDW | ACCSAT | IPL3 | SFA | RND | IF | 0020 | | MODCON | 0046 | XMODEN | YMODEN | - | - | | BWM<3:0> YWM<3:0> XWM<3:0> | | | | | | | | | | 0000 | | | XMODSRT | 0048 | | XMODSRT<15:0> | | | | | | | | | _ | 0000 | | | | | | | XMODEND | 004A | | XMODEND<15:0> | | | | | | | | | | _ | 0001 | | | | | | YMODSRT | 004C | | | | | | | YMO | DSRT<15:0 | > | | | | | | | _ | 0000 | | YMODEND | 004E | | | | | | | YMO | DEND<15:0 | > | | | | | | | _ | 0001 | | XBREV | 0050 | BREN | | | | | | | XBF | REV<14:0> | | | | | | | | 0000 | | DISICNT | 0052 | _ | _ | | | | | | | DISICNT< | 13:0> | | | | | | | 0000 | | TBLPAG | 0054 | _ | TBLPAG<7:0> | | | | | | | | | | 0000 | | | | | | | MSTRPR | 0058 | | MSTRPR<15:0> | | | | | | | | | 0000 | | | | | | | dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X **Legend:** x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. | Ō | |----| | Ñ | | 0 | | Ō | | ō | | Ō | | ത | | čń | | ×ί | | ~ | | ÷ | | ⇔ | | ñ | | õ | | Æ | | v | | 0 | | S | | | | TABLE 4-2: | CPU CORE REGISTER MAP FOR PIC24EPXXXGP/MC20X DEVICES ONLY | |------------|---| | IADLL 4-2. | CFU CUIL INLUISTEN WAF TUN FICZALFAAAGF/WICZUA DEVICES UNET | | File
Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|-------|---------------|--------|--------|--------|--------|--------|-------|----------|-------|-------|-------|-----------|----------|-------|-------|-------|---------------| | W0 | 0000 | | | | | | | | W0 (WR | EG) | | | | | | | | xxxx | | W1 | 0002 | | | | | | | | W1 | | | | | | | | | xxxx | | W2 | 0004 | | | | | | | | W2 | | | | | | | | | xxxx | | W3 | 0006 | | W3 | | | | | | | | | | | | xxxx | | | | | W4 | 8000 | | W4 | | | | | | | | | | | | xxxx | | | | | W5 | 000A | | W5 | | | | | | | | | | | | xxxx | | | | | W6 | 000C | | W6 | | | | | | | | | | | | xxxx | | | | | W7 | 000E | | | | | | | | W7 | | | | | | | | | xxxx | | W8 | 0010 | | | | | | | | W8 | | | | | | | | | xxxx | | W9 | 0012 | | | | | | | | W9 | | | | | | | | | xxxx | | W10 | 0014 | | | | | | | | W10 | | | | | | | | | xxxx | | W11 | 0016 | | | | | | | | W11 | | | | | | | | | xxxx | | W12 | 0018 | | | | | | | | W12 | | | | | | | | | xxxx | | W13 | 001A | | | | | | | | W13 | | | | | | | | | xxxx | | W14 | 001C | | | | | | | | W14 | | | | | | | | | xxxx | | W15 | 001E | | | | | | | | W15 | | | | | | | | | xxxx | | SPLIM | 0020 | | | | | | | | SPLIM<1 | 5:0> | | | | | | | | 0000 | | PCL | 002E | | | | | | | P | CL<15:1> | | | | | | | | _ | 0000 | | PCH | 0030 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | PCH<6:0> | | | | 0000 | | DSRPAG | 0032 | _ | _ | _ | _ | _ | _ | | | | | DSRPA | G<9:0> | | | | | 0001 | | DSWPAG | 0034 | _ | _ | _ | _ | _ | _ | _ | | | | DS | SWPAG<8:0 |)> | | | | 0001 | | RCOUNT | 0036 | | | | | | | | RCOUNT< | 15:0> | | | | | | | | 0000 | | SR | 0042 | _ | _ | _ | _ | _ | _ | _ | DC | IPL2 | IPL1 | IPL0 | RA | N | OV | Z | С | 0000 | | CORCON | 0044 | VAR | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | IPL3 | SFA | _ | _ | 0020 | | DISICNT | 0052 | DISICNT<13:0> | | | | | | | | | | | 0000 | | | | | | | TBLPAG | 0054 | TBLPAG<7:0> | | | | | | | | | | | 0000 | | | | | | | MSTRPR | 0058 | | | | | | | | MSTRPR< | 15:0> | | | | | | | | 0000 | dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X **Legend:** x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. ## TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED) | File
Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|-------|--------|--------|--------|---------|---------|--------|-------|-------|-------------|---------|---------|---------|---------|--------|---------|--------|---------------| | INTCON1 | 08C0 | NSTDIS | OVAERR | OVBERR | COVAERR | COVBERR | OVATE | OVBTE | COVTE | SFTACERR | DIV0ERR | DMACERR | MATHERR | ADDRERR | STKERR | OSCFAIL | _ | 0000 | | INTCON2 | 08C2 | GIE | DISI | SWTRAP | _ | - | _ | _ | - | ı | ı | _ | _ | _ | INT2EP | INT1EP | INT0EP | 8000 | | INTCON3 | 08C4 | - | _ | _ | _ | - | _ | _ | - | ı | ı | DAE | DOOVR | _ | - | - | _ | 0000 | | INTCON4 | 08C6 | - | _ | _ | _ | - | _ | _ | - | ı | ı | _ | _ | _ | - | - | SGHT | 0000 | | INTTREG | 08C8 | | _ | _ | _ | | ILR< | 3:0> | | VECNUM<7:0> | | | | | | 0000 | | | dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X **Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal. ## 11.4.4.2 Output Mapping In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3). A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default. FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn ## 11.4.4.3 Mapping Limitations The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view. TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn) | Function | RPxR<5:0> | Output Name | |-------------------------|-----------|---| | Default PORT | 000000 | RPn tied to Default Pin | | U1TX | 000001 | RPn tied to UART1 Transmit | | U2TX | 000011 | RPn tied to UART2 Transmit | | SDO2 | 001000 | RPn tied to SPI2 Data Output | | SCK2 | 001001 | RPn tied to SPI2 Clock Output | | SS2 | 001010 | RPn tied to SPI2 Slave Select | | C1TX ⁽²⁾ | 001110 | RPn tied to CAN1 Transmit | | OC1 | 010000 | RPn tied to Output Compare 1 Output | | OC2 | 010001 | RPn tied to Output Compare 2 Output | | OC3 | 010010 | RPn tied to Output Compare 3 Output | | OC4 | 010011 | RPn tied to Output Compare 4 Output | | C1OUT | 011000 | RPn tied to Comparator Output 1 | | C2OUT | 011001 | RPn tied to Comparator Output 2 | | C3OUT | 011010 | RPn tied to Comparator Output 3 | | SYNCO1 ⁽¹⁾ | 101101 | RPn tied to PWM Primary Time Base Sync Output | | QEI1CCMP ⁽¹⁾ | 101111 | RPn tied to QEI 1 Counter Comparator Output | | REFCLKO | 110001 | RPn tied to Reference Clock Output | | C4OUT | 110010 | RPn tied to Comparator Output 4 | Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only. 2: This function is available in dsPIC33EPXXXGP/MC50X devices only. ## REGISTER 11-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18 | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-0 |-------|-------|-------|-------|------------|-------|-------|-------| | _ | | | | U1RXR<6:0> | > | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 **Unimplemented:** Read as '0' bit 6-0 U1RXR<6:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss ## REGISTER 11-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19 | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-0 |-------|-------|-------|-------|-----------|-------|-------|-------| | _ | | | | U2RXR<6:0 | > | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 **Unimplemented:** Read as '0' bit 6-0 **U2RXR<6:0>:** Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 • 0000001 = Input tied to CMP1 0000000 = Input tied to Vss ## REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER (2) | R/W-1 | R/W-1 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-------|-------|-------|----------------------|----------------------|--------|--------| | PENH | PENL | POLH | POLL | PMOD1 ⁽¹⁾ | PMOD0 ⁽¹⁾ | OVRENH | OVRENL | | bit 15 | | | | | | | bit 8 | | R/W-0 |---------|---------|---------|---------|--------|--------|-------|-------| | OVRDAT1 | OVRDAT0 | FLTDAT1 | FLTDAT0 | CLDAT1 | CLDAT0 | SWAP | OSYNC | | bit 7 | | | | | | | bit 0 | Legend: bit 12 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared -n = Value at POR x = Bit is unknown bit 15 PENH: PWMxH Output Pin Ownership bit 1 = PWMx module controls PWMxH pin 0 = GPIO module controls PWMxH pin bit 14 PENL: PWMxL Output Pin Ownership bit 1 = PWMx module controls PWMxL pin 0 = GPIO module controls PWMxL pin bit 13 POLH: PWMxH Output Pin Polarity bit > 1 = PWMxH pin is active-low 0 = PWMxH pin is active-high POLL: PWMxL Output Pin Polarity bit 1 = PWMxL pin is active-low 0 = PWMxL pin is active-high PMOD<1:0>: PWMx # I/O Pin Mode bits(1) bit 11-10 11 = Reserved; do not use 10 = PWMx I/O pin pair is in the Push-Pull Output mode 01 = PWMx I/O pin pair is in the Redundant Output mode 00 = PWMx I/O pin pair is in the Complementary Output mode bit 9 **OVRENH:** Override Enable for PWMxH Pin bit 1 = OVRDAT<1> controls output on PWMxH pin 0 = PWMx generator controls PWMxH pin bit 8 **OVRENL:** Override Enable for PWMxL Pin bit 1 = OVRDAT<0> controls output on PWMxL pin 0 = PWMx generator controls PWMxL pin bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits bit 5-4 If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current-limit is active, PWMxH is driven to the state specified by CLDAT<1>. If current-limit is active, PWMxL is driven to the state specified by CLDAT<0>. **Note 1:** These bits should not be changed after the PWMx module is enabled (PTEN = 1). If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed. # REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15) | R/W-x |--------|-------|-------|-------|-------|-------|-------|-------| | SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 | | bit 15 | | | | | | | bit 8 | | R/W-x | R/W-x | R/W-x | U-0 | R/W-x | U-0 | R/W-x | R/W-x | |-------|-------|-------|-----|-------|-----|-------|-------| | SID2 | SID1 | SID0 | _ | EXIDE | _ | EID17 | EID16 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 **EXIDE:** Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 **EID<17:16>:** Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter 0 = Message address bit, EIDx, must be '0' to match filter #### **FIGURE 23-1:** ADC MODULE BLOCK DIAGRAM WITH CONNECTION OPTIONS FOR ANX PINS AND OP AMPS This diagram depicts all of the available CH1. CH2 and CH3. - Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs. - Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation. - These bits can be updated with Step commands from the PTG module. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. - When ADDMAEN (AD1CON4<8>) = 1, enabling DMA, only ADC1BUF0 is used. - 5: OA3 is not available for 28-pin devices. | OTES: | | | | |--------|--|--|--| | /I E3. | ## 27.5 Watchdog Timer (WDT) For dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled. ## 27.5.1 PRESCALER/POSTSCALER The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Timeout period (TWDT), as shown in Parameter SY12 in Table 30-22. A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved. The WDT, prescaler and postscaler are reset: - · On any device Reset - On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor) - When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered) - When the device exits Sleep or Idle mode to resume normal operation - By a CLRWDT instruction during normal execution Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed. ## 27.5.2 SLEEP AND IDLE MODES If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3,2>) needs to be cleared in software after the device wakes up. ## 27.5.3 ENABLING WDT The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled. The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings. The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software. ### 27.5.4 WDT WINDOW The Watchdog Timer has an optional Windowed mode, enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<6>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>). ## FIGURE 27-2: WDT BLOCK DIAGRAM TABLE 28-2: INSTRUCTION SET OVERVIEW | Base
Instr
| Assembly
Mnemonic | | Assembly Syntax | Description | # of
Words | # of
Cycles ⁽²⁾ | Status Flags
Affected | |--------------------|----------------------|-------|-------------------------|--|---------------|-------------------------------|--------------------------| | 1 | ADD | ADD | Acc ⁽¹⁾ | Add Accumulators | 1 | 1 | OA,OB,SA,SB | | | | ADD | f | f = f + WREG | 1 | 1 | C,DC,N,OV,Z | | | | ADD | f,WREG | WREG = f + WREG | 1 | 1 | C,DC,N,OV,Z | | | | ADD | #lit10,Wn | Wd = lit10 + Wd | 1 | 1 | C,DC,N,OV,Z | | | | ADD | Wb,Ws,Wd | Wd = Wb + Ws | 1 | 1 | C,DC,N,OV,Z | | | | ADD | Wb,#lit5,Wd | Wd = Wb + lit5 | 1 | 1 | C,DC,N,OV,Z | | | | ADD | Wso,#Slit4,Acc | 16-bit Signed Add to Accumulator | 1 | 1 | OA,OB,SA,SB | | 2 | ADDC | ADDC | f | f = f + WREG + (C) | 1 | 1 | C,DC,N,OV,Z | | | | ADDC | f,WREG | WREG = f + WREG + (C) | 1 | 1 | C,DC,N,OV,Z | | | | ADDC | #lit10,Wn | Wd = lit10 + Wd + (C) | 1 | 1 | C,DC,N,OV,Z | | | | ADDC | Wb,Ws,Wd | Wd = Wb + Ws + (C) | 1 | 1 | C,DC,N,OV,Z | | | | ADDC | Wb,#lit5,Wd | Wd = Wb + lit5 + (C) | 1 | 1 | C,DC,N,OV,Z | | 3 | AND | AND | f | f = f .AND. WREG | 1 | 1 | N,Z | | | | AND | f,WREG | WREG = f .AND. WREG | 1 | 1 | N,Z | | | | AND | #lit10,Wn | Wd = lit10 .AND. Wd | 1 | 1 | N,Z | | | | AND | Wb, Ws, Wd | Wd = Wb .AND. Ws | 1 | 1 | N,Z | | | | AND | Wb,#lit5,Wd | Wd = Wb .AND. lit5 | 1 | 1 | N,Z | | 4 | ASR | ASR | f | f = Arithmetic Right Shift f | 1 | 1 | C,N,OV,Z | | | | ASR | f,WREG | WREG = Arithmetic Right Shift f | 1 | 1 | C,N,OV,Z | | | | ASR | Ws,Wd | Wd = Arithmetic Right Shift Ws | 1 | 1 | C,N,OV,Z | | | | ASR | Wb, Wns, Wnd | Wnd = Arithmetic Right Shift Wb by Wns | 1 | 1 | N,Z | | | | ASR | Wb,#lit5,Wnd | Wnd = Arithmetic Right Shift Wb by lit5 | 1 | 1 | N,Z | | 5 | BCLR | BCLR | f,#bit4 | Bit Clear f | 1 | 1 | None | | | | BCLR | Ws,#bit4 | Bit Clear Ws | 1 | 1 | None | | 6 | BRA | BRA | C,Expr | Branch if Carry | 1 | 1 (4) | None | | | | BRA | GE, Expr | Branch if greater than or equal | 1 | 1 (4) | None | | | | BRA | GEU, Expr | Branch if unsigned greater than or equal | 1 | 1 (4) | None | | | | BRA | GT,Expr | Branch if greater than | 1 | 1 (4) | None | | | | BRA | GTU, Expr | Branch if unsigned greater than | 1 | 1 (4) | None | | | | BRA | LE, Expr | Branch if less than or equal | 1 | 1 (4) | None | | | | BRA | LEU, Expr | Branch if unsigned less than or equal | 1 | 1 (4) | None | | | | BRA | LT,Expr | Branch if less than | 1 | 1 (4) | None | | | | BRA | LTU, Expr | Branch if unsigned less than | 1 | 1 (4) | None | | | | BRA | N,Expr | Branch if Negative | 1 | 1 (4) | None | | | | BRA | NC,Expr | Branch if Not Carry | 1 | 1 (4) | None | | | | BRA | NN, Expr | Branch if Not Negative | 1 | 1 (4) | None | | | | BRA | NOV, Expr | Branch if Not Overflow | 1 | 1 (4) | None | | | | BRA | NZ,Expr | Branch if Not Zero | 1 | 1 (4) | None | | | | BRA | OA, Expr(1) | Branch if Accumulator A overflow | 1 | 1 (4) | None | | | | BRA | OB, Expr ⁽¹⁾ | Branch if Accumulator B overflow | 1 | 1 (4) | None | | | | BRA | OV, Expr ⁽¹⁾ | Branch if Overflow | 1 | 1 (4) | None | | | | BRA | SA, Expr ⁽¹⁾ | Branch if Accumulator A saturated | 1 | 1 (4) | None | | | | BRA | SB, Expr ⁽¹⁾ | Branch if Accumulator B saturated | 1 | 1 (4) | None | | | | BRA | Expr | Branch Unconditionally | 1 | 4 | None | | | | BRA | Z,Expr | Branch if Zero | 1 | 1 (4) | None | | | | BRA | Wn | Computed Branch | 1 | 4 | None | | 7 | DCFT | | | Bit Set f | 1 | 1 | None | | ' | BSET | BSET | f,#bit4 | | | + | | | 0 | DOM | BSET | Ws,#bit4 | Bit Set Ws | 1 | 1 | None | | 8 | BSW | BSW.C | Ws, Wb | Write C bit to Ws <wb></wb> | 1 | 1 | None | | | | BSW.Z | Ws,Wb | Write Z bit to Ws <wb></wb> | 1 | 1 | None | Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only. ^{2:} Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED) | Base
Instr
| Assembly
Mnemonic | | Assembly Syntax | Description | # of
Words | # of
Cycles ⁽²⁾ | Status Flags
Affected | |--------------------|----------------------|--------|--|--|---------------|-------------------------------|--------------------------| | 46 | MOV | MOV | f,Wn | Move f to Wn | 1 | 1 | None | | | | MOV | f | Move f to f | 1 | 1 | None | | | | MOV | f,WREG | Move f to WREG | 1 | 1 | None | | | | MOV | #lit16,Wn | Move 16-bit literal to Wn | 1 | 1 | None | | | | MOV.b | #lit8,Wn | Move 8-bit literal to Wn | 1 | 1 | None | | | | MOV | Wn,f | Move Wn to f | 1 | 1 | None | | | | MOV | Wso,Wdo | Move Ws to Wd | 1 | 1 | None | | | | MOV | WREG, f | Move WREG to f | 1 | 1 | None | | | | MOV.D | Wns, Wd | Move Double from W(ns):W(ns + 1) to Wd | 1 | 2 | None | | | | MOV.D | Ws, Wnd | Move Double from Ws to W(nd + 1):W(nd) | 1 | 2 | None | | 47 | MOVPAG | MOVPAG | #lit10,DSRPAG | Move 10-bit literal to DSRPAG | 1 | 1 | None | | | | MOVPAG | #lit9,DSWPAG | Move 9-bit literal to DSWPAG | 1 | 1 | None | | | | MOVPAG | #lit8,TBLPAG | Move 8-bit literal to TBLPAG | 1 | 1 | None | | | | MOVPAG | Ws, DSRPAG | Move Ws<9:0> to DSRPAG | 1 | 1 | None | | | | MOVPAG | Ws, DSWPAG | Move Ws<8:0> to DSWPAG | 1 | 1 | None | | | | MOVPAG | Ws, TBLPAG | Move Ws<7:0> to TBLPAG | 1 | 1 | None | | 48 | MOVSAC | MOVSAC | Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾ | Prefetch and store accumulator | 1 | 1 | None | | 49 | MPY | MPY | Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾ | Multiply Wm by Wn to Accumulator | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | | | MPY | Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾ | Square Wm to Accumulator | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | 50 | MPY.N | MPY.N | Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾ | -(Multiply Wm by Wn) to Accumulator | 1 | 1 | None | | 51 | MSC | MSC | Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾ | Multiply and Subtract from Accumulator | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only. ^{2:} Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) | DC CHARACTERISTICS | | | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended | | | | | | |--------------------|--------------------------------|---------------|--|-----------------------|------------------|--|--|--| | Parameter
No. | Тур. | Max. | Units | Conditions | | | | | | Power-Down (| Current (IPD) ⁽¹⁾ – | dsPIC33EP32GI | P50X, dsPIC33EF | 232MC20X/50X and PIC2 | 24EP32GP/MC20X | | | | | DC60d | 30 | 100 | μΑ | -40°C | | | | | | DC60a | 35 | 100 | μΑ | +25°C | 3.3V | | | | | DC60b | 150 | 200 | μΑ | +85°C | | | | | | DC60c | 250 | 500 | μΑ | +125°C | | | | | | Power-Down (| Current (IPD) ⁽¹⁾ – | dsPIC33EP64GI | P50X, dsPIC33EF | P64MC20X/50X and PIC2 | 24EP64GP/MC20X | | | | | DC60d | 25 | 100 | μΑ | -40°C | | | | | | DC60a | 30 | 100 | μΑ | +25°C | 3.3V | | | | | DC60b | 150 | 350 | μΑ | +85°C | J.5V | | | | | DC60c | 350 | 800 | μΑ | +125°C | | | | | | Power-Down C | Current (IPD) ⁽¹⁾ – | dsPIC33EP128G | P50X, dsPIC33E | P128MC20X/50X and PIC | C24EP128GP/MC20X | | | | | DC60d | 30 | 100 | μΑ | -40°C | | | | | | DC60a | 35 | 100 | μА | +25°C | 3.3V | | | | | DC60b | 150 | 350 | μΑ | +85°C | 3.5 v | | | | | DC60c | 550 | 1000 | μΑ | +125°C | | | | | | Power-Down C | Current (IPD) ⁽¹⁾ – | dsPIC33EP256G | P50X, dsPIC33E | P256MC20X/50X and PIC | C24EP256GP/MC20X | | | | | DC60d | 35 | 100 | μΑ | -40°C | | | | | | DC60a | 40 | 100 | μΑ | +25°C | 3.3V | | | | | DC60b | 250 | 450 | μА | +85°C | 3.5V | | | | | DC60c | 1000 | 1200 | μА | +125°C | | | | | | Power-Down C | Current (IPD) ⁽¹⁾ – | dsPIC33EP512G | P50X, dsPIC33E | P512MC20X/50X and PIC | C24EP512GP/MC20X | | | | | DC60d | 40 | 100 | μА | -40°C | | | | | | DC60a | 45 | 100 | μΑ | +25°C | 3.3V | | | | | DC60b | 350 | 800 | μΑ | +85°C | J.JV | | | | | DC60c | 1100 | 1500 | μА | +125°C |] | | | | Note 1: IPD (Sleep) current is measured as follows: - CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required) - · CLKO is configured as an I/O input pin in the Configuration Word - · All I/O pins are configured as inputs and pulled to Vss - MCLR = VDD, WDT and FSCM are disabled - All peripheral modules are disabled (PMDx bits are all set) - The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode) - The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode) - · JTAG is disabled #### 32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes Note: only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. Absolute Maximum 3.00 3.50 2.50 **FIGURE 32-2: VOH - 8x DRIVER PINS** 0.50 1.00 1.50 2.00 0.020 0.015 0.010 0.005 0.000 dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X | ECAN Module | | Instruction Set | | |--|----------|---|------| | Control Registers | 290 | Overview | 390 | | Modes of Operation | 289 | Summary | 387 | | Overview | 287 | Symbols Used in Opcode Descriptions | 388 | | Resources | 289 | Inter-Integrated Circuit (I ² C) | 273 | | Electrical Characteristics | 401 | Control Registers | | | AC | 413, 471 | Resources | | | Enhanced CAN (ECAN) Module | | Internal RC Oscillator | | | Equations | | Use with WDT | 385 | | Device Operating Frequency | 154 | Internet Address | | | FPLLO Calculation | | Interrupt Controller | 02-7 | | FVCO Calculation | | • | 121 | | | | Control and Status Registers | | | Errata | 23 | INTCON1 | | | F | | INTCON2 | | | | 400 | INTCON3 | | | Filter Capacitor (CEFC) Specifications | | INTCON4 | | | Flash Program Memory | | INTTREG | | | Control Registers | | Interrupt Vector Details | | | Programming Operations | | Interrupt Vector Table (IVT) | 127 | | Resources | | Reset Sequence | 127 | | RTSP Operation | 120 | Resources | 131 | | Table Instructions | 119 | _ | | | Flexible Configuration | 379 | J | | | _ | | JTAG Boundary Scan Interface | 379 | | G | | JTAG Interface | | | Guidelines for Getting Started | 29 | o in Contact | | | Application Examples | | M | | | Basic Connection Requirements | | Memory Maps | | | | | · · | 100 | | CPU Logic Filter Capacitor Connection (VCAP) | | Extended Data Space | | | Decoupling Capacitors | | Memory Organization | | | External Oscillator Pins | | Resources | | | ICSP Pins | | Microchip Internet Web Site | | | Master Clear (MCLR) Pin | | Modulo Addressing | | | Oscillator Value Conditions on Start-up | 32 | Applicability | 115 | | Unused I/Os | 32 | Operation Example | 114 | | | | Start and End Address | 114 | | Н | | W Address Register Selection | 114 | | High-Speed PWM | 225 | MPLAB Assembler, Linker, Librarian | | | Control Registers | 230 | MPLAB ICD 3 In-Circuit Debugger | | | Faults | | MPLAB PM3 Device Programmer | | | Resources | | MPLAB REAL ICE In-Circuit Emulator System | | | High-Temperature Electrical Characteristics | | MPLAB X Integrated Development | 000 | | Absolute Maximum Ratings | | • ' | 207 | | Absolute Maximum Natings | 407 | Environment Software | | | | | MPLAB X SIM Software Simulator | | | I/O Ports | 170 | MPLIB Object Librarian | | | | 173 | MPLINK Object Linker | 398 | | Helpful Tips | | 0 | | | Parallel I/O (PIO) | | 0 | | | Resources | | Op Amp | | | Write/Read Timing | | Application Considerations | 358 | | In-Circuit Debugger | 386 | Configuration A | 358 | | In-Circuit Emulation | 379 | Configuration B | 359 | | In-Circuit Serial Programming (ICSP) | 379, 386 | Op Amp/Comparator | | | Input Capture | | Control Registers | | | Control Registers | | Resources | | | Resources | | Open-Drain Configuration | | | Input Change Notification (ICN) | | | 174 | | | | Oscillator | 450 | | Instruction Addressing Modes | | Control Registers | | | File Register Instructions | | Resources | | | Fundamental Modes Supported | | Output Compare | 219 | | MAC Instructions | | Control Registers | 221 | | MCU Instructions | | Resources | 220 | | Move and Accumulator Instructions | 113 | | | | Other Instructions | 113 | | | ## Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 == #### **Trademarks** The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 9781620773949 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.