

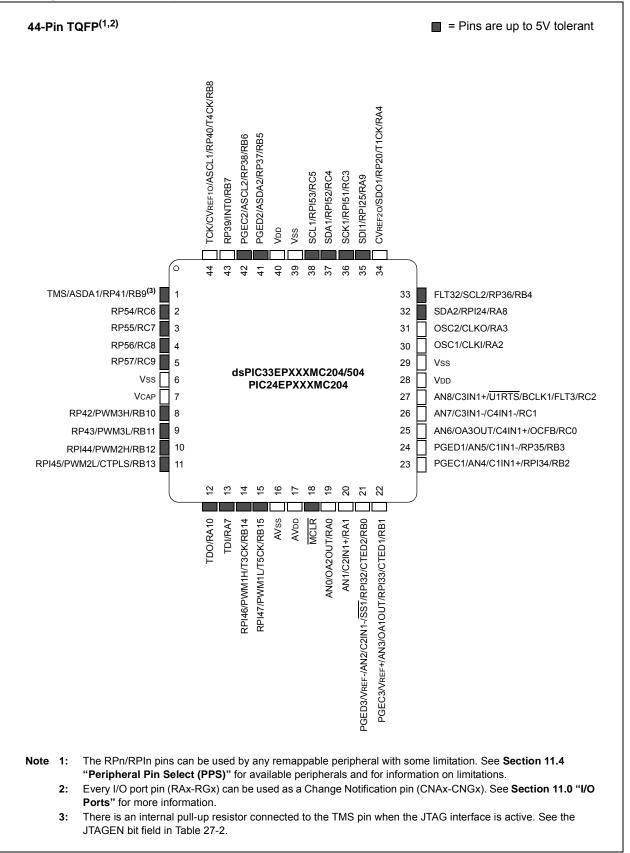
Welcome to E-XFL.COM

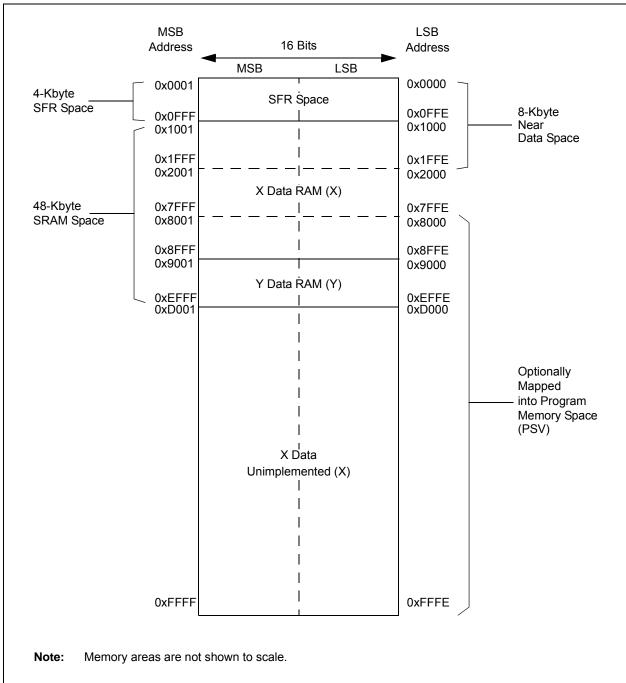
What is "Embedded - Microcontrollers"?

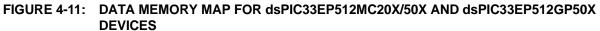
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XEI


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32mc204t-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

1:	CPU C	ORE RE	EGISTEI	R MAP F	OR dsF	PIC33EP	XXXMC	20X/50X	(AND d	sPIC33	EPXXX	GP50X	DEVICE	S ONL	Y (CON	TINUE	D)
Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
0044	VAR	_	US<	:1:0>	EDT	EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3 SFA RND						IF	0020				
0046	XMODEN	YMODEN	_	_		BWM<3:0> YWM<3:0> XWM<3:0>								0000			
0048		•		•	•	XMODSRT<15:0>									0000		
004A						XMODEND<15:0> —										0001	
004C							YMC	DSRT<15:0)>								0000
004E							YMC	DEND<15:0)>								0001
0050	BREN							XBF	REV<14:0>								0000
0052	_	_							DISICNT<	13:0>							0000
0054	_	_	_	_	_	_	_					TBLPA	G<7:0>				0000
0058				•	•	•	•	MSTRPR<	<15:0>								0000
	Addr. 0042 0044 0046 0048 0048 004A 004C 004C 004E 0050 0052 0054	Addr. Bit 15 0042 OA 0044 VAR 0046 XMODEN 0048 - 0044 - 0045 - 0046 BREN 0047 -	Addr. Bit 15 Bit 14 0042 OA OB 0044 VAR — 0046 XMODEN YMODEN 0048 —	Addr. Bit 15 Bit 14 Bit 13 0042 OA OB SA 0044 VAR — US<	Addr. Bit 15 Bit 14 Bit 13 Bit 12 0042 OA OB SA SB 0044 VAR — US<1:0> 0046 XMODEN YMODEN — — 0048 —	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0042 OA OB SA SB OAB 0044 VAR — US<1:0> EDT 0046 XMODEN YMODEN — — — 0048	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0042 OA OB SA SB OAB SAB 0044 VAR — US<1:0> EDT 0046 XMODEN MODEN — — BWM 0048	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0042 OA OB SA SB OAB SAB DA 0044 VAR — US<1:0> EDT DL<2:0> 0046 XMODEN MODEN — — BWM<3:0> 0048 — — — BWM<3:0> XMC 0040 — — — BWM<3:0> XMC 0044 O — — — MC 0048 — — — — MC 00404 — — — — MC 00404 — — — — YMC 00404 — — — YMC YMC 00410 — — — YMC YMC 0050 BREN — — — — — 0051 — — <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0042 OA OB SA SB OAB SAB DA DC 0044 VAR — US<1:0> EDT DL<2:0> D04 DC 0046 XMODEN YMODEN — — BWM<3:0> XMODENDRT<15:0</td> 0048 — — XMODENDRT<15:0	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0042 OA OB SA SB OAB SAB DA DC 0044 VAR — US<1:0> EDT DL<2:0> D04 DC 0046 XMODEN YMODEN — — BWM<3:0> XMODENDRT<15:0	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 70042OAOBSASBOABSABDADCIPL20044VARUS<1:0>EDT $DL<2:0>$ SATA0046XMODENYMODENBWM<3:0>SATA0048 $$ BWM<3:0>SATA0044 $$ BWM<3:0>SATA0045 $$ BWM<3:0>SATA0046 $$ SATA0047 $$ $$ SATA0048 $$ $$ $$ SATA0049 $$ $$ $$ $$ 0040 $$ $$ $$ $$ 0041 $$ $$ $$ $$ 0042 $$ $$ $$ $$ 0043 $$ $$ $$ $$ 0044 $$ $$ $$ $$ 0045 $$ $$ $$ $$ 0050BREN $$ $$ $$ $$ 0051 $$ $$ $$ $$ $$ 0052 $$ $$ $$ $$ $$ 0054 $$ $$ $$ $$ $$	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60042OAOBSASBOABSABDADCIPL2IPL10044VARUS<1:0>EDT $DL<2:0>$ SATASATB0046XMODENMODEN $BWM<3:0>$ VMODSRT<15:0>0048 $VMODEN$ $MMODENYWM0044VMODENMMODENYWM0045VMODENMMODENYWM0046VMODENMMODEN<15:0>YWM0047VMODENYMODEND<15:0>YWM0048VMODENYMODEND<15:0>YWM0049VMODENYMODEND<15:0>YMODEND0040VMODENYMODEND<15:0>YMODEND0050BRENVMODENUSICNT<13:0>00510054$	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 0044 VAR — US<1:0> EDT DL<2:0> SATA SATB SATDW 0046 XMODEN YMODEN — — BUM<	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA 0044 VAR US<1:0> EDT DL<2:0> SATA SATB SATDW ACCSAT 0046 XMODEN MODEN BWM<3:0> YWM<:0> YWM YWM YWM YWM YWM BWM<3:0> YWM YWM	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N 0044 VAR US<1:0> EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3 0046 XMODEN YMODEN BWH<3:0> YWMODSRT<15:0> YWM IPL3 0046 V BWH<3:0> YWMODSRT<15:0> YWM YMODSRT<15:0> VWMOSRT<15:0> VMODSRT<15:0> VMODEN YMODEN YMODSRT<15:0> VWMOSRT<15:0> VWM YMODSRT<15:0> VWM	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20042OAOBSASBOABSABDADCIPL2IPL1IPL0RANOV0044VAR-US<1:0-	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z 0044 VAR — US<1:0> EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3 SFA RND 0046 XMODEN YMODEN — — BWM<3:0> YWM<3:0> XWM<3:0> XWM<3:0	Addr. Bit 13 Bit 13 Bit 13 Bit 13 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z C 0044 VAR - US<1:> EDT DL<2:> SATA SATB SATDW ACCSAT IPL3 SFA RND IFF 0046 VMODEN YMODEN - - BWM<3:> ST SATA SATB SATDW ACCSAT IPL3 SFA RND IFF 0048 VMODEN YMODEN - - BWM<3:> ST SATA SATB SATDW ACCSAT IPL3 SAT RND IFF 0044 U VMOTEN VMOTEN VMOTEN VMOTEN VMOTEN VMOTEN - - - -

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 64

TABLE 4-42: OP AMP/COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	_	-	—	C4EVT	C3EVT	C2EVT	C1EVT	_	-	—	—	C4OUT	C3OUT	C2OUT	C10UT	0000
CVRCON	0A82		CVR2OE	_	_	_	VREFSEL	_	_	CVREN	CVR10E	CVRR	CVRSS		CVR<	3:0>		0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM1MSKSRC	0A86		_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A		_	_	_	_	_	_	_	_	C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	—	_	CCH	<1:0>	0000
CM2MSKSRC	0A8E		_	_	_		SELSR	CC<3:0>		SELSRCB<3:0>				SELSRCA<3:0>			0000	
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_	_	_	_	_	_	_		C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM3CON ⁽¹⁾	0A94	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	—	_	CCH	<1:0>	0000
CM3MSKSRC(1)	0A96	_	_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM3MSKCON ⁽¹⁾	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR ⁽¹⁾	0A9A	_	_	_	_	_	_	_	_		C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM4CON	0A9C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL	_<1:0>	_	CREF	—	_	CCH	<1:0>	0000
CM4MSKSRC	0A9E	_	_		_		SELSR	CC<3:0>	-		SELSRC	B<3:0>	•		SELSRC	A<3:0>		0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	_	_		_	_	_	_	_	—	C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are unavailable on dsPIC33EPXXXGP502/MC502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

TABLE 4-43: CTMU REGISTER MAP

File N	lame	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUC	CON1	033A	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	_	_	_	_	_	_	_	0000
CTMUC	CON2	033C	EDG1MOD	EDG1POL		EDG1	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2S	EL<3:0>		_	-	0000
CTMU	ICON	033E			ITRIM<5	5:0>			IRNG	<1:0>		_	_	_	_	_	-	_	0000

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: JTAG INTERFACE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	—	_	_		JDATAH<27:16> 2										xxxx	
JDATAL	0FF2						JDATAL<15:0>									0000		

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 97

	Vector	IRQ		Inte	errupt Bit L	Location	
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority	
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>	
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_	
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>	
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>	
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>	
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—	
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>	
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—	
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>	
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—	
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>	
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>	
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>	
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—	
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>	
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>	
Reserved	152	144	0x000134	—	_	_	
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>	
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>	
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>	
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>	
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>	
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>	
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_	
	Lowe	est Natura	I Order Priority				

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
GIE	DISI	SWTRAP				_	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—				INT2EP	INT1EP	INT0EP
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown
bit 15	GIE: Global	Interrupt Enable	e bit				
	1 = Interrupt	s and associate	d IE bits are	enabled			
		s are disabled, I	•	still enabled			
bit 14	DISI: DISI	nstruction Statu	s bit				
		struction is active struction is not a	-				
bit 13	SWTRAP: S	Software Trap St	atus bit				
		e trap is enabled e trap is disabled					
bit 12-3	Unimpleme	nted: Read as '	0'				
bit 2	INT2EP: Ext	ternal Interrupt 2	2 Edge Detec	t Polarity Selec	t bit		
		on negative edg					
bit 1	INT1EP: Ext	ternal Interrupt 1	Edge Detec	t Polarity Selec	t bit		
		on negative edg					
bit 0	INTOEP: Ext	ternal Interrupt C	Edge Detec	t Polarity Selec	t bit		
		on negative edg					

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0					
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0					
bit 15			•				bit 8					
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0					
bit 7							bit (
Legend:												
R = Readable		W = Writable		-	nented bit, read							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
h:+ 45		on Interview h										
bit 15		on Interrupt bis will clear the l										
		s have no effect		EN bit								
bit 14-12	•	Processor Clo										
	111 = Fcy div											
	110 = Fcy div	vided by 64										
	101 = Fcy div											
	100 = FCY div		oult)									
	011 = FCY divided by 8 (default) 010 = FCY divided by 4											
	001 = FCY divided by 2											
	000 = Fcy div	•										
bit 11		e Mode Enable										
					pheral clocks a	nd the process	or clocks					
		-	-	ratio is forced to								
bit 10-8			RC Oscillator	r Postscaler bit	S							
	111 = FRC di 110 = FRC di											
	101 = FRC di											
	100 = FRC d i	vided by 16										
	011 = FRC di											
	010 = FRC di 001 = FRC di	2										
		vided by 2 vided by 1 (de	fault)									
bit 7-6			-	r Select bits (al	so denoted as	'N2', PLL posts	caler)					
	11 = Output d						,					
	10 = Reserve											
		livided by 4 (de	efault)									
bit 5	00 = Output d	ted: Read as '	o'									
	•											
	e DOZE<2:0> b ZE<2:0> are ig		written to whe	en the DOZEN	bit is clear. If D	OZEN = 1, any	writes to					
2: This	s bit is cleared	when the ROI I	oit is set and a	an interrupt occ	urs.							
	DOJENUS				~ ~		<i>.</i>					

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

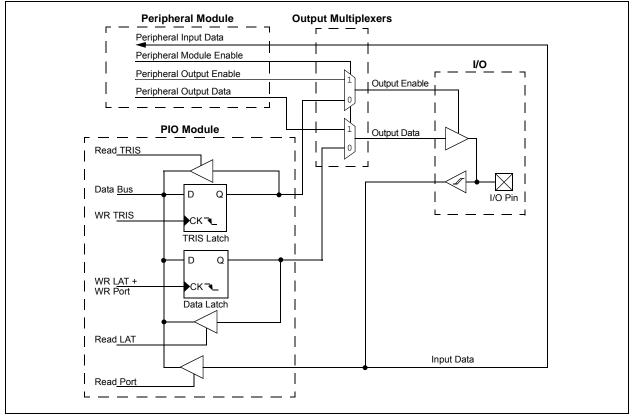
11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70598) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

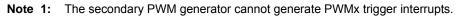
11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx) read the latch. Writes to the Latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.


When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	TRGD	V<3:0>		—		—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				TRGSTF	RT<5:0> (1)		
bit 7							bit
Legend:	1. 1.4						
R = Readab		W = Writable		•	nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-12)>: Trigger # Ou	-				
		per output for ev					
		ger output for ev					
		ger output for ev					
		ger output for ev ger output for ev					
		ger output for ev					
		ger output for ev					
		per output for ev					
		per output for ev					
		ger output for ev					
		ger output for ev					
	0100 = Trigg	ger output for ev	ery 5th trigge	r event			
		ger output for ev					
		ger output for ev					
		ger output for ev					
	0000 = Trigg	ger output for ev	ery trigger ev	ent			
bit 11-6	-	nted: Read as '					
bit 5-0	TRGSTRT<	5:0>: Trigger Po	stscaler Start	Enable Select	bits ⁽¹⁾		
	111111 = W	aits 63 PWM cy	cles before g	enerating the fir	st trigger event	after the modu	le is enable
	•			·			
	•			-			
	•			-			
	• • •	aits 2 PW/M ava	les hefore co	nerating the fire	t trigger event :	after the module	a is anabled
		/aits 2 PWM cyc /aits 1 PWM cyc					

REGISTER 16-12: TRGCONx: PWMx TRIGGER CONTROL REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0
		TERR	CNT<7:0>			
						bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0
		RERR	CNT<7:0>			
						bit 0
oit	W = Writable b	it	U = Unimpleme	ented bit, rea	ad as '0'	
OR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkr	nown
	R-0	R-0 R-0 it W = Writable b	TERR R-0 R-0 R-0 RERR it W = Writable bit	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0>	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT	TERRCNT<7:0> R-0 R-0 R-0 R-0 RERRCNT<7:0> U = Unimplemented bit, read as '0'

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	$10 = \text{Length is } 3 \times \text{Tq}$
	$01 = \text{Length is } 2 \times \text{T} Q$
	$00 = \text{Length is } 1 \times \text{Tq}$

```
bit 5-0 BRP<5:0>: Baud Rate Prescaler bits
```

```
11 1111 = TQ = 2 x 64 x 1/FCAN
```

•

- 00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN
- 00 0000 = Tq = 2 x 1 x 1/FCAN

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1				
bit 15							bit 8				
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0				
bit 7							bit 0				
Lonondi											
Legend:	l. h.:.		L.11			-l (O)					
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set		(0) = Bit is cleared x = E		x = Bit is unkr	Bit is unknown				
bit 15-10	EID<5:0>: E	xtended Identifi	er bits								
bit 9	RTR: Remot	RTR: Remote Transmission Request bit									
	When IDE = 1:										
	1 = Message will request remote transmission										
	0 = Normal message										
		<u>When IDE = 0:</u> The RTR bit is ignored.									
bit 8											
bit 8 RB1: Reserved Bit 1 User must set this bit to '0' per CAN protocol.											
			-	0001.							
bit 7-5	•	nted: Read as '	0								
bit 4	RB0: Reserv										
	User must se	et this bit to '0' p	per CAN proto	ocol.							
hit 2 0		DLC -2:0 - Data Langth Cada hita									

BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 0			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-8 Byte 1<15:8>: ECAN Message Byte 1 bits

bit 7-0 Byte 0<7:0>: ECAN Message Byte 0 bits

24.4 Step Commands and Format

TABLE 24-1: PTG STEP COMMAND FORMAT

Step Command Byte:		
	STEPx<7:0>	
CMD<3:0>		OPTION<3:0>
bit 7	bit 4 bit 3	bit 0

bit 7-4	CMD<3:0>	Step Command	Command Description
	0000	PTGCTRL	Execute control command as described by OPTION<3:0>.
	0001	PTGADD	Add contents of PTGADJ register to target register as described by OPTION<3:0>.
		PTGCOPY	Copy contents of PTGHOLD register to target register as described by OPTION<3:0>.
	001x	PTGSTRB	Copy the value contained in CMD<0>:OPTION<3:0> to the CH0SA<4:0> bits (AD1CHS0<4:0>).
	0100	PTGWHI	Wait for a low-to-high edge input from the selected PTG trigger input as described by OPTION<3:0>.
	0101	PTGWLO	Wait for a high-to-low edge input from the selected PTG trigger input as described by OPTION<3:0>.
	0110	Reserved	Reserved.
	0111	PTGIRQ	Generate individual interrupt request as described by OPTION3<:0>.
	100x	PTGTRIG	Generate individual trigger output as described by < <cmd<0>:OPTION<3:0>>.</cmd<0>
	101x	PTGJMP	Copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that Step queue.</cmd<0>
	110x	PTGJMPC0	PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR).
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR), and jump to that Step queue</cmd<0>
	111x	PTGJMPC1	PTGC1 = PTGC1LIM: Increment the Queue Pointer (PTGQPTR).
			$PTGC1 \neq PTGC1LIM$: Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR), and jump to that Step queue.</cmd<0>

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

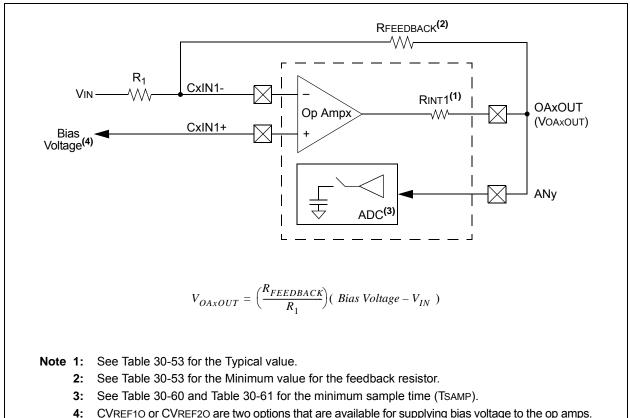
2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.


25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 25-7: OP AMP CONFIGURATION B

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 26-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<3	31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<2	23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable		W = Writable	bit U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 26-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				_
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-1X<15:1>: XOR of Polynomial Term Xⁿ Enable bitsbit 0Unimplemented: Read as '0'

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

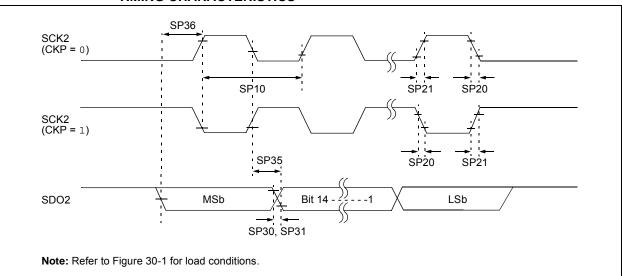
- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write back destination


The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

TABLE 30-34: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency	_	_	15	MHz	(Note 3)	
SP20	TscF	SCK2 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK2 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	-	_		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		

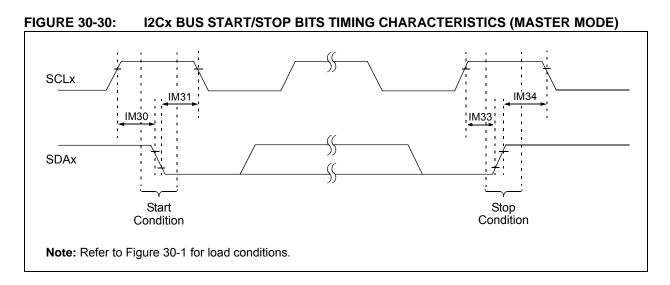
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

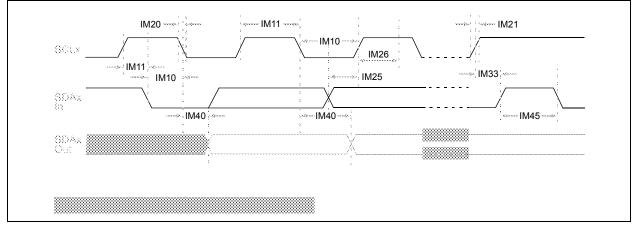
3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-39:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS


AC CHARACTERISTICS			$\label{eq:standard operating Conditions: 3.0V to 3.6V} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	—	—	15	MHz	(Note 3)	
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	-	_	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—		ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

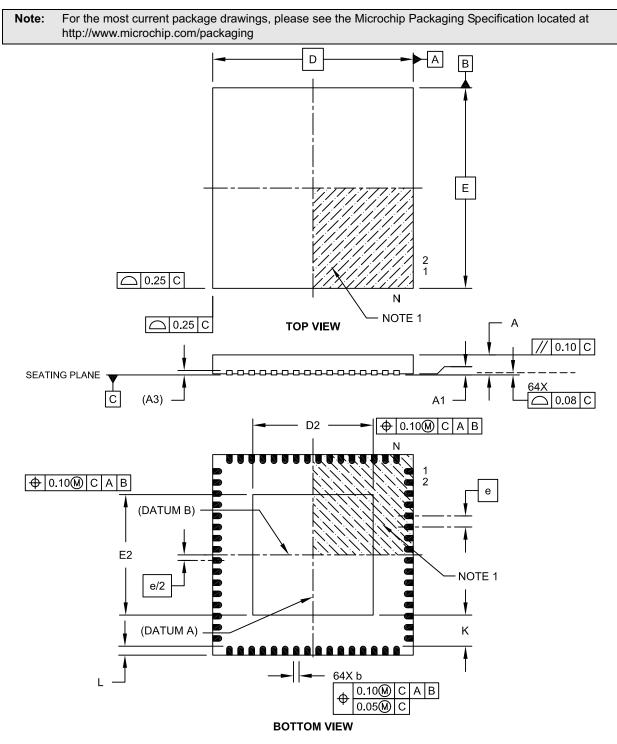

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
	-	Cloci	k Paramet	ters			·	
AD50	TAD	ADC Clock Period	117.6	_	_	ns		
AD51	tRC	ADC Internal RC Oscillator Period ⁽²⁾		250	_	ns		
		Conv	version R	ate				
AD55	tCONV	Conversion Time	_	14 Tad		ns		
AD56	FCNV	Throughput Rate	_	_	500	ksps		
AD57a	TSAMP	Sample Time when Sampling any ANx Input	3 Tad	—	_			
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	3 Tad	—	-			
		Timin	g Parame	ters				
AD60	tPCS	Conversion Start from Sample Trigger ^(2,3)	2 Tad	-	3 Tad	—	Auto-convert trigger is not selected	
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ^(2,3)	2 Tad	—	3 Tad			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)		0.5 Tad	—			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μS	(Note 6)	

TABLE 30-60: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- **6:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADC result is indeterminate.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2