

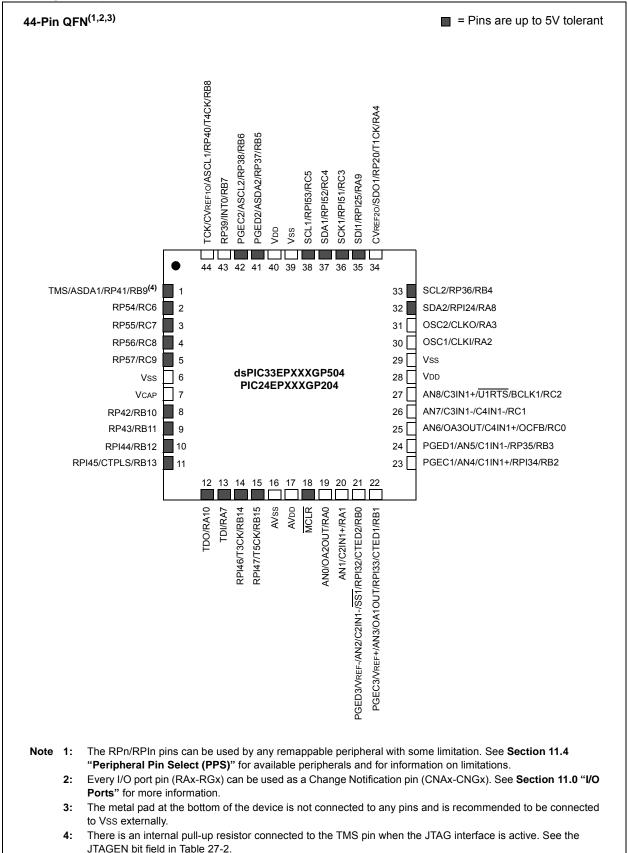
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K × 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32mc502t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.7 CPU Control Registers

REGISTER	3-1: SR: CI	PU STATUS I	REGISTER									
R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0					
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC					
bit 15							bit 8					
R/W-0 ^(2,3)	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
IPL2	IPL1	IPL0	RA	N	OV	Z	С					
bit 7	·	•		•			bit (
Legend:		C = Clearable	e bit									
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'						
-n = Value a	t POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown					
bit 15	OA: Accumul	ator A Overflov	v Status bit ⁽¹⁾									
	1 = Accumula	ator A has over	flowed									
	0 = Accumula	ator A has not o	verflowed									
bit 14	OB: Accumul	ator B Overflov	v Status bit ⁽¹⁾									
	1 = Accumula	1 = Accumulator B has overflowed										
		ator B has not c										
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	tus bit ^(1,4)								
		ator A is saturat ator A is not sat		en saturated at	some time							
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ^(1,4)								
	1 = Accumula	ator B is saturat ator B is not sat	ted or has bee		some time							
bit 11				vorflow Status	ы#(1)							
		DAB: OA OB Combined Accumulator Overflow Status bit ⁽¹⁾ = Accumulators A or B have overflowed										
		ccumulators A		erflowed								
bit 10		B Combined Ad			(1)							
					urated at some	time						
	0 = Neither A	ccumulators A	or B are satur	ated								
bit 9	DA: DO Loop	Active bit ⁽¹⁾										
	1 = DO loop is	s in progress										
	0 = DO loop is	s not in progres	S									
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit									
		out from the 4th sult occurred	low-order bit (for byte-sized c	lata) or 8th low-	order bit (for wo	rd-sized data					
	0 = No carry			oit (for byte-siz	ed data) or 8th	low-order bit (f	or word-size					
	his bit is available						-					
L	he IPL<2:0> bits evel. The value ir PL<3> = 1.											

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

IABLE 4-2	23: E	CAN1 I	REGIST	ER MA	P WHE	N WIN	(CICIE	<l1<0></l1<0>	•) = 1 FC	OR dsPIC	33EPX	XXMC/G	P50X D	EVICES	ONLY (NUED)	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E	046E EID<15:8>							EID<7:0>							xxxx		
C1RXF12SID	0470		SID<10:3>								SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF12EID	0472		EID<15:8>						EID<7:0>						xxxx			
C1RXF13SID	0474				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF13EID	0476				EID<	:15:8>				EID<7:0>							xxxx	
C1RXF14SID	0478				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF14EID	047A	EID<15:8>									EID<	7:0>				xxxx		
C1RXF15SID	047C	SID<10:3>							SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx		
C1RXF15EID	047E	E EID<15:8>									EID<	7:0>				xxxx		

ECANI DECISTED MAD WHEN WIN (CICTDI 1 -0.) 1 EOD doDIC22EDXXXMC/CDE0X DEVICES ONLY (CONTINUED) TARIE 1 22.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-52: PORTG REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	_	-	_	_	-	—	TRISG9	TRISG8	TRISG7	TRISG6	_	_	_	_	_	—	03C0
PORTG	0E62			-	_	_	_	RG9	RG8	RG7	RG6	_	_	_	_	_	_	xxxx
LATG	0E64			-	_	_	_	LATG9	LATG8	LATG7	LATG6	_	_	_	_	_	_	xxxx
ODCG	0E66			-	_	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	_	_	_	_	0000
CNENG	0E68			-	_	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	_	_	_	_	0000
CNPUG	0E6A			-	_	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	_	_	_	_	0000
CNPDG	0E6C	_	-	_	_			CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_	-	_	_		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	Vector	IRQ		Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	—	—	_
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_
	Lowe	est Natura	I Order Priority			

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: These bits are available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP57	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP56	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	bit 13-8 RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)						
bit 7-6 Unimplemented: Read as '0'							

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

(see Table 11-3 for peripheral function numbers)

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP97	R<5:0>		
bit 15							bit 8

RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

bit 5-0

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-	6	DTC<1:0>: Dead-Time Control bits
		11 = Dead-Time Compensation mode
		10 = Dead-time function is disabled
		01 = Negative dead time is actively applied for Complementary Output mode
		00 = Positive dead time is actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		When Set to '1':
		If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened.
		If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
		<u>When Set to '0':</u> If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened.
		If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		1 = PWM generator uses the secondary master time base for synchronization and as the clock source
		for the PWM generation logic (if secondary time base is available)
		0 = PWM generator uses the primary master time base for synchronization and as the clock source
		for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
		0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWMx Reset Control bit ⁽⁵⁾
		 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
		0 = External pins do not affect PWMx time base
bit 0		IUE: Immediate Update Enable bit ⁽²⁾
		1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate
		 Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	23-2: Al	DICONZ. ADCI	CONTROL REG	ISIER Z			
R/W-0	R/W-	0 R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG2	VCFO	G1 VCFG0	—	—	CSCNA	CHPS1	CHPS0
bit 15							bit
R-0	R/W-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	SMP		SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7	OWIT					Borim	bit
Legend:							
R = Readable	, hit	W = Writable	bit I	l – Llnimolo	monted hit rea	d oo 'O'	
					mented bit, read		
-n = Value at	POR	'1' = Bit is se	t 't)' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	VCFG<2	2:0>: Converter Vol	tage Reference C	onfiguration	bits		
	Value	VREFH	VREFL				
	000	Avdd	Avss				
	001	External VREF+	Avss				
	010	Avdd	External VREF-				
	011	External VREF+	External VREF-				
	1xx	Avdd	Avss				
bit 12-11	Unimple	emented: Read as	ʻ0'				
bit 10	CSCNA	Input Scan Select	bit				
		ns inputs for CH0+		JXA			
	0 = Does	s not scan inputs	C .				
bit 9-8	CHPS<1	:0>: Channel Sele	ct bits				
		mode (AD21B = 1)		bits are Uni	mplemented ar	id are Read as	<u>'0':</u>
		nverts CH0, CH1, C					
		nverts CH0 and CH nverts CH0	11				
bit 7		Buffer Fill Status bit	(oply valid when F				
		C is currently filling t			ne user applicat	ion should acco	ee data in th
		half of the buffer	ne second hall of	ule bullet, u	ie usei applicat		555 Uala III li
		C is currently filling	the first half of the	e buffer; the	e user applicatio	on should acce	ss data in th
	seco	ond half of the buffe	er				
bit 6-2	SMPI<4	:0>: Increment Rate	e bits				
		DDMAEN = 0:					
		Generates interrup					
	x1110 =	Generates interrup	ot after completion	of every 18	oth sample/conv	ersion operation	on
	•						
	•						
		Generates interrup					n
		Generates interrup	ot after completion	of every sa	imple/conversion	on operation	
		$\frac{\text{DDMAEN} = 1}{\text{Increments the DN}}$	1A address after a	omplotion o	of overy 32nd s	mplo/convorsi	on operation
		Increments the DN					
	•						
	•						
	•					., .	
	00001 -	Increments the DI	"A address offer a	omplation o	t avany 2nd aar		

. . ACOND. ADCA CONTROL DECISTED 2

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity-selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage⁽²⁾ 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	 11 = Unimplemented 10 = Unimplemented 01 = Inverting input of the comparator connects to the CxIN2- pin⁽²⁾ 00 = Inverting input of the op amp/comparator connects to the CxIN1- pin

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

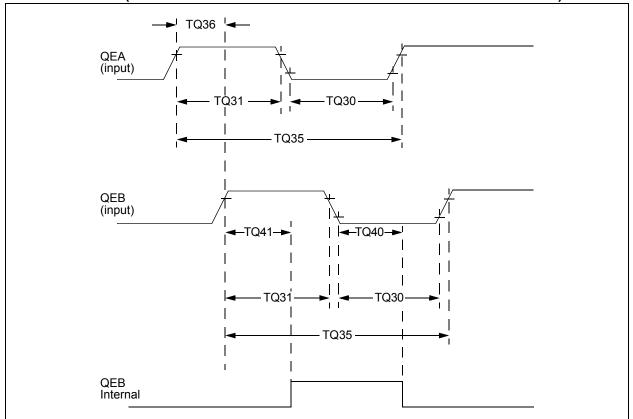
REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

- bit 3-0 SELSRCA<3:0>: Mask A Input Select bits
 - 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0
	CVR2OE ⁽¹⁾	_		_	VREFSEL	_	_
bit 15							bit
D 444 0	DANIO		D 444.0	D 444 0	DAALO	DAMA	D 444 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVR10E ⁽¹⁾	CVRR	CVRSS ⁽²⁾	CVR3	CVR2	CVR1	CVR0
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	Unimplement						
bit 14		•	ige Reference	•	ble bit ⁽¹⁾		
			nected to the C onnected from		nin		
bit 13-11	Unimplement				F		
bit 10	-		age Reference	e Select bit			
	1 = CVREFIN =	-	U				
	0 = CVREFIN is	s generated by	y the resistor ne	etwork			
bit 9-8	Unimplement	ed: Read as '	0'				
bit 7			e Reference E				
			erence circuit is erence circuit is		wn		
bit 6	CVR1OE: Co	mparator Volta	ige Reference	1 Output Ena	ble bit ⁽¹⁾		
			n the CVREF1C		n		
bit 5	CVRR: Comp	arator Voltage	Reference Ra	nge Selection	n bit		
	1 = CVRSRC/2 0 = CVRSRC/3	•					
bit 4	CVRSS: Com	parator Voltag	e Reference S	ource Selecti	on bit ⁽²⁾		
		0	erence source, erence source,	· ·	ref+) – (AVss) /dd – AVss		
bit 3-0	CVR<3:0> Co	mparator Volt	age Reference	Value Select	ion $0 \leq CVR < 3$:	$0> \le 15$ bits	
	When CVRR =		(CVRSRC)				
	When CVRR = CVREFIN = (CV	= 0:		(\mathbf{C})			

REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER


- 2: In order to operate with CVRSS = 1, at least one of the comparator modules must be enabled.

Base Instr # Assembly Mnemonic 9 BTG			Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
		BTG f,#bit4		Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB(1)	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	СОМ	f	$f = \bar{f}$	1	1	N,Z
		COM	f,WREG	WREG = \overline{f}	1	1	N,Z
		СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
	01	CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
10	010	CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
	012	CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if \neq	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 28-2:	INSTRUCTION SET OVERVIEW (CONTINUED)
		CONTINUED	,

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHAR	ACTERIST	rics	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	TQUH	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns	
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

TABLE 30-45:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА		rics	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	_		Lesser of FP or 15	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	—		—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—		_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—		—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30		_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30		—	ns		
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120		—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)	
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—		50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

AC CHA	ARACTER	RISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾					
			$\begin{array}{ll} Operating \ temperature & -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ -40^\circ C \leq TA \leq +125^\circ C \ for \ Extended \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		Cloci	k Parame	eters				
AD50	TAD	ADC Clock Period	76	_	_	ns		
AD51	tRC	ADC Internal RC Oscillator Period ⁽²⁾		250	_	ns		
	•	Conv	version F	Rate		•		
AD55	tCONV	Conversion Time		12 Tad	_			
AD56	FCNV	Throughput Rate	_	—	1.1	Msps	Using simultaneous sampling	
AD57a	TSAMP	Sample Time when Sampling any ANx Input	2 Tad	—	_	—		
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	4 Tad	_	—	—		
		Timin	g Param	eters				
AD60	tPCS	Conversion Start from Sample Trigger ^(2,3)	2 Tad	—	3 Tad	_	Auto-convert trigger is not selected	
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ^(2,3))	2 Tad	—	3 Tad	—		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)	_	0.5 Tad		—		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)		—	20	μs	(Note 6)	

TABLE 30-61: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

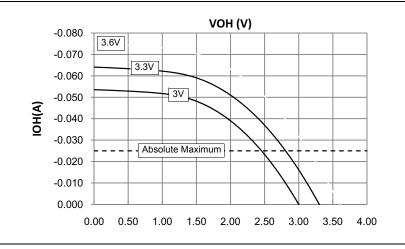
- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADC result is indeterminate.

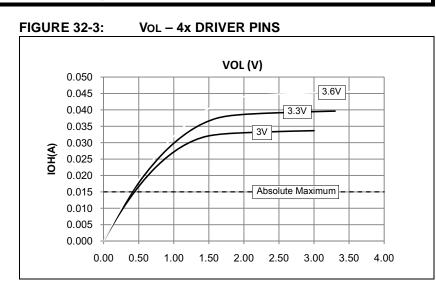
TABLE 30-62: DMA MODULE TIMING REQUIREMENTS

		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)	_	_	ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.


^{© 2011-2013} Microchip Technology Inc.


32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

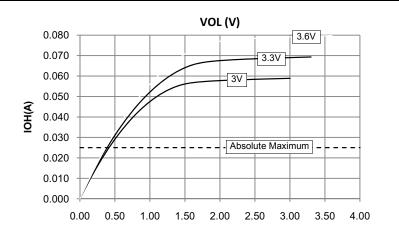

FIGURE 32-1: VOH – 4x DRIVER PINS VOH (V) -0.050 -0.045 3.6V -0.040 3.3V -0.035 3V -0.030 IOH(A) -0.025 -0.020 Absolute Maximum -0.015 -0.010 -0.005 0.000 0.50 1.00 2.00 2.50 3.00 3.50 0.00 1.50 4.00

FIGURE 32-2: VOH – 8x DRIVER PINS

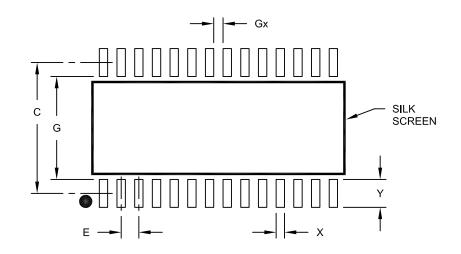
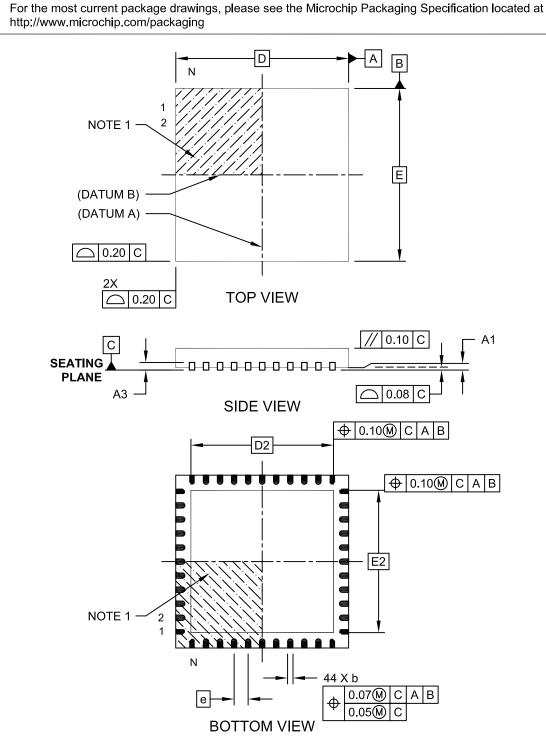


FIGURE 32-4: Vol – 8x DRIVER PINS

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN


	N		S	
Dimension	Dimension Limits			MAX
Contact Pitch	Е	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note:

Microchip Technology Drawing C04-103C Sheet 1 of 2