

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 70 MIPs                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                     |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT                    |
| Number of I/O              | 25                                                                               |
| Program Memory Size        | 32KB (10.7K x 24)                                                                |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 2K x 16                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 8x10b/12b                                                                    |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 36-VFTLA Exposed Pad                                                             |
| Supplier Device Package    | 36-VTLA (5x5)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32mc503t-i-tl |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **Pin Diagrams (Continued)**



#### 4.2.5 X AND Y DATA SPACES

# The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/MC20X devices.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

#### 4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en555464              |

#### 4.3.1 KEY RESOURCES

- "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

| TABLE 4                                                                     | -12:  | PWM RI   | EGISTE | R MAP  | FOR de | sPIC33E | PXXXN  | AC20X/50 | DX AND F | PIC24EP | PXXXM | C20X [ | DEVICE  | S ONI | _Y    |            |       |               |
|-----------------------------------------------------------------------------|-------|----------|--------|--------|--------|---------|--------|----------|----------|---------|-------|--------|---------|-------|-------|------------|-------|---------------|
| File Name                                                                   | Addr. | Bit 15   | Bit 14 | Bit 13 | Bit 12 | Bit 11  | Bit 10 | Bit 9    | Bit 8    | Bit 7   | Bit 6 | Bit 5  | Bit 4   | Bit 3 | Bit 2 | Bit 1      | Bit 0 | All<br>Resets |
| PTCON                                                                       | 0C00  | PTEN     | —      | PTSIDL | SESTAT | SEIEN   | EIPU   | SYNCPOL  | SYNCOEN  | SYNCEN  | SY    | NCSRC< | 2:0>    |       | SEV   | /TPS<3:0>  |       | 0000          |
| PTCON2                                                                      | 0C02  | _        | —      | _      | _      | _       | —      | _        | —        | —       | _     | —      | _       | —     |       | PCLKDIV<2: | 0>    | 0000          |
| PTPER                                                                       | 0C04  |          |        |        |        |         |        |          | PTPER<15 | :0>     |       |        |         |       |       |            |       | 00F8          |
| SEVTCMP                                                                     | 0C06  |          |        |        |        |         |        |          | SEVTCMP< | 5:0>    |       |        |         |       |       |            |       | 0000          |
| MDC                                                                         | 0C0A  |          |        |        |        |         |        |          | MDC<15:  | )>      |       |        |         |       |       |            |       | 0000          |
| CHOP                                                                        | 0C1A  | CHPCLKEN | _      | _      | _      | _       | _      |          |          |         |       | CHOPCI | _K<9:0> |       |       |            |       | 0000          |
| PWMKEY                                                                      | 0C1E  |          |        |        |        |         |        |          | PWMKEY<1 | 5:0>    |       |        |         |       |       |            |       | 0000          |
| Legend: — = unimplemented read as '0' Reset values are shown in bexadecimal |       |          |        |        |        |         |        |          |          |         |       |        |         |       |       |            |       |               |

# TABLE 4-13: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

| File Name | Addr. | Bit 15  | Bit 14 | Bit 13  | Bit 12   | Bit 11    | Bit 10                                         | Bit 9  | Bit 8     | Bit 7    | Bit 6  | Bit 5   | Bit 4   | Bit 3 | Bit 2    | Bit 1 | Bit 0  | All<br>Resets |
|-----------|-------|---------|--------|---------|----------|-----------|------------------------------------------------|--------|-----------|----------|--------|---------|---------|-------|----------|-------|--------|---------------|
| PWMCON1   | 0C20  | FLTSTAT | CLSTAT | TRGSTAT | FLTIEN   | CLIEN     | TRGIEN                                         | ITB    | MDCS      | DTC<     | <1:0>  | DTCP    | —       | MTBS  | CAM      | XPRES | IUE    | 0000          |
| IOCON1    | 0C22  | PENH    | PENL   | POLH    | POLL     | PMOD      | )<1:0>                                         | OVRENH | OVRENL    | OVRDA    | T<1:0> | FLTDA   | \T<1:0> | CLDA  | T<1:0>   | SWAP  | OSYNC  | C000          |
| FCLCON1   | 0C24  | _       |        | (       | CLSRC<4: | 0>        |                                                | CLPOL  | CLMOD     |          | FL     | TSRC<4: | )>      |       | FLTPOL   | FLTMO | D<1:0> | 0000          |
| PDC1      | 0C26  |         |        |         |          |           |                                                |        | PDC1<15:  | 0>       |        |         |         |       |          |       |        | FFF8          |
| PHASE1    | 0C28  |         |        |         |          |           |                                                |        | PHASE1<15 | 5:0>     |        |         |         |       |          |       |        | 0000          |
| DTR1      | 0C2A  | _       | _      |         |          |           |                                                |        |           | DTR1<13  | :0>    |         |         |       |          |       |        | 0000          |
| ALTDTR1   | 0C2C  | _       | _      |         |          |           |                                                |        | A         | LTDTR1<1 | 13:0>  |         |         |       |          |       |        | 0000          |
| TRIG1     | 0C32  |         |        |         |          |           |                                                |        | TRGCMP<1  | 5:0>     |        |         |         |       |          |       |        | 0000          |
| TRGCON1   | 0C34  |         | TRGDI  | V<3:0>  |          | _         | _                                              | —      | _         | _        | _      |         |         | TRG   | STRT<5:0 | >     |        | 0000          |
| LEBCON1   | 0C3A  | PHR     | PHF    | PLR     | PLF      | FLTLEBEN  | CLLEBEN                                        | _      | _         | _        | _      | BCH     | BCL     | BPHH  | BPHL     | BPLH  | BPLL   | 0000          |
| LEBDLY1   | 0C3C  | _       | _      | _       | —        | LEB<11:0> |                                                |        |           |          |        | 0000    |         |       |          |       |        |               |
| AUXCON1   | 0C3E  | _       | _      | _       | —        |           | BLANKSEL<3:0> — — CHOPSEL<3:0> CHOPHEN CHOPLEN |        |           |          |        |         | 0000    |       |          |       |        |               |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| File Name  | Addr          | Bit 15 | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8      | Bit 7        | Bit 6    | Bit 5          | Bit 4 | Bit 3             | Bit 2 | Bit 1  | Bit 0  | All    |
|------------|---------------|--------|--------|---------|--------|--------|--------|--------|------------|--------------|----------|----------------|-------|-------------------|-------|--------|--------|--------|
|            | 0.400         |        |        |         |        |        |        |        | Cas dafini | tion         |          |                |       |                   |       |        |        | Resets |
|            | 0400-<br>041E |        |        |         |        |        |        |        | See defini | tion when wi | IN = x   |                |       |                   |       |        |        |        |
| C1BUFPNT1  | 0420          |        | F3B    | P<3:0>  |        |        | F2BI   | ><3:0> |            |              | F1BP     | o<3:0>         |       |                   | F0BP  | <3:0>  |        | 0000   |
| C1BUFPNT2  | 0422          |        | F7B    | P<3:0>  |        |        | F6BI   | ><3:0> |            |              | F5BP     | <b>2</b> <3:0> |       |                   | F4BP  | <3:0>  |        | 0000   |
| C1BUFPNT3  | 0424          |        | F11B   | 3P<3:0> |        |        | F10B   | P<3:0> |            |              | F9BP     | <b>2</b> <3:0> |       |                   | F8BP  | <3:0>  |        | 0000   |
| C1BUFPNT4  | 0426          |        | F15E   | 3P<3:0> |        |        | F14B   | P<3:0> |            |              | F13B     | P<3:0>         |       |                   | F12B  | ><3:0> |        | 0000   |
| C1RXM0SID  | 0430          |        |        |         | SID    | :10:3> |        |        |            |              | SID<2:0> |                | _     | MIDE              | _     | EID<   | 17:16> | xxxx   |
| C1RXM0EID  | 0432          |        |        |         | EID≪   | :15:8> |        |        |            |              |          |                | EID<  | :7:0>             |       |        |        | xxxx   |
| C1RXM1SID  | 0434          |        |        |         | SID    | :10:3> |        |        |            |              | SID<2:0> |                | —     | MIDE              | —     | EID<   | 17:16> | xxxx   |
| C1RXM1EID  | 0436          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | :7:0>             |       |        |        | xxxx   |
| C1RXM2SID  | 0438          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                | —     | MIDE              | —     | EID<   | 17:16> | xxxx   |
| C1RXM2EID  | 043A          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | 7:0>              |       | -      |        | xxxx   |
| C1RXF0SID  | 0440          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                | —     | EXIDE             | —     | EID<   | 17:16> | xxxx   |
| C1RXF0EID  | 0442          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | 7:0>              |       | -      |        | xxxx   |
| C1RXF1SID  | 0444          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                | —     | EXIDE             | —     | EID<   | 17:16> | xxxx   |
| C1RXF1EID  | 0446          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | 7:0>              |       | -      |        | xxxx   |
| C1RXF2SID  | 0448          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                | —     | EXIDE             | _     | EID<   | 17:16> | xxxx   |
| C1RXF2EID  | 044A          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | :7:0>             | _     | _      |        | xxxx   |
| C1RXF3SID  | 044C          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                |       | EXIDE — EID<17:10 |       |        |        | xxxx   |
| C1RXF3EID  | 044E          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | :7:0>             | _     |        |        | xxxx   |
| C1RXF4SID  | 0450          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                |       | EXIDE             | _     | EID<   | 17:16> | xxxx   |
| C1RXF4EID  | 0452          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | :7:0>             | _     | _      |        | xxxx   |
| C1RXF5SID  | 0454          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                |       | EXIDE             | _     | EID<   | 17:16> | xxxx   |
| C1RXF5EID  | 0456          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | :7:0>             | _     | _      |        | xxxx   |
| C1RXF6SID  | 0458          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                |       | EXIDE             | _     | EID<   | 17:16> | xxxx   |
| C1RXF6EID  | 045A          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | :7:0>             |       | -      |        | xxxx   |
| C1RXF7SID  | 045C          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                |       | EXIDE             | —     | EID<   | 17:16> | xxxx   |
| C1RXF7EID  | 045E          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | :7:0>             | _     | _      |        | xxxx   |
| C1RXF8SID  | 0460          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                |       | EXIDE             | _     | EID<   | 17:16> | xxxx   |
| C1RXF8EID  | 0462          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | :7:0>             | _     | _      |        | xxxx   |
| C1RXF9SID  | 0464          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                |       | EXIDE             | _     | EID<   | 17:16> | xxxx   |
| C1RXF9EID  | 0466          |        |        |         | EID<   | :15:8> |        |        |            |              |          |                | EID<  | :7:0>             |       | -      |        | xxxx   |
| C1RXF10SID | 0468          |        |        |         | SID<   | :10:3> |        |        |            |              | SID<2:0> |                | —     | EXIDE             | —     | EID<   | 17:16> | xxxx   |
| C1RXF10EID | 046A          |        |        |         | EID    | :15:8> |        |        |            |              |          |                | EID<  | 7:0>              |       | _      |        | xxxx   |
| C1RXF11SID | 046C          |        |        |         | SID    | :10:3> |        |        |            |              | SID<2:0> |                | —     | EXIDE             | _     | EID<   | 17:16> | xxxx   |

#### TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7  | Bit 6 | Bit 5 | Bit 4                                | Bit 3  | Bit 2  | Bit 1  | Bit 0 | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|--------|--------|-------|-------|--------|-------|-------|--------------------------------------|--------|--------|--------|-------|---------------|
| PMD1         | 0760  | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | —      | —     | —     | I2C1MD | U2MD  | U1MD  | SPI2MD                               | SPI1MD | —      | C1MD   | AD1MD | 0000          |
| PMD2         | 0762  | _      | _      | _      | _      | IC4MD  | IC3MD  | IC2MD | IC1MD | _      | _     | _     | _                                    | OC4MD  | OC3MD  | OC2MD  | OC1MD | 0000          |
| PMD3         | 0764  | _      | _      | _      | _      | _      | CMPMD  | _     | _     | CRCMD  | _     | _     | _                                    | _      | _      | I2C2MD | _     | 0000          |
| PMD4         | 0766  | _      | _      | _      | _      | _      | _      | _     | _     | _      | _     | _     | _                                    | REFOMD | CTMUMD | _      | _     | 0000          |
| PMD6         | 076A  | _      | _      | _      | _      | _      | _      | _     | _     | _      | _     | _     | _                                    | _      | _      | _      | _     | 0000          |
| PMD7         | 076C  |        | _      |        |        | _      |        | _     |       | _      | _     |       | DMA0MD<br>DMA1MD<br>DMA2MD<br>DMA3MD | PTGMD  | _      | _      | _     | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0 | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|-------|---------------|
| PMD1         | 0760  | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  | —      | I2C1MD | U2MD  | U1MD  | SPI2MD | SPI1MD | —      | C1MD   | AD1MD | 0000          |
| PMD2         | 0762  | _      | _      | _      | _      | IC4MD  | IC3MD  | IC2MD  | IC1MD  | _      | _     | —     | _      | OC4MD  | OC3MD  | OC2MD  | OC1MD | 0000          |
| PMD3         | 0764  | _      | _      | _      | _      | _      | CMPMD  | _      | _      | CRCMD  | _     | —     | _      | —      | _      | I2C2MD | _     | 0000          |
| PMD4         | 0766  | _      | _      | _      | _      | _      | _      | _      | —      | _      | _     | —     | _      | REFOMD | CTMUMD | _      | _     | 0000          |
| PMD6         | 076A  | _      | _      | _      | _      | _      | PWM3MD | PWM2MD | PWM1MD | _      | _     | —     | _      | —      | _      | _      | _     | 0000          |
|              |       |        |        |        |        |        |        |        |        |        |       |       | DMA0MD |        |        |        |       |               |
|              | 0760  |        |        |        |        |        |        |        |        |        |       |       | DMA1MD | DTOMD  |        |        |       |               |
| PIVID7       | 0760  | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     | _     | DMA2MD | PIGMD  | _      | _      | _     | 0000          |
|              |       |        |        |        |        |        |        |        |        |        |       |       | DMA3MD | ]      |        |        |       |               |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 95

#### 4.4.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Example 4-1. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when base address bit, EA<15> = 1, DSWPAG<8:0> are concatenated onto EA<14:0> to form the 24-bit EDS write address.





# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| R/W-0  | U-0   | R/W-0 | R/W-0  | R/W-0               | R-0 | R-0   | R-0   |
|--------|-------|-------|--------|---------------------|-----|-------|-------|
| VAR    | —     | US1   | US0    | EDT                 | DL2 | DL1   | DL0   |
| bit 15 |       |       |        |                     |     |       | bit 8 |
|        |       |       |        |                     |     |       |       |
| R/W-0  | R/W-0 | R/W-1 | R/W-0  | R/C-0               | R-0 | R/W-0 | R/W-0 |
| SATA   | SATB  | SATDW | ACCSAT | IPL3 <sup>(2)</sup> | SFA | RND   | IF    |
| bit 7  |       |       |        |                     |     |       | bit 0 |
|        |       |       |        |                     |     |       |       |

# **REGISTER 7-2:** CORCON: CORE CONTROL REGISTER<sup>(1)</sup>

| Legend:           | C = Clearable bit |                             |                    |
|-------------------|-------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit  | U = Unimplemented bit, read | 1 as '0'           |
| -n = Value at POR | '1'= Bit is set   | '0' = Bit is cleared        | x = Bit is unknown |

bit

| bit 15 | VAR: Variable Exception Processing Latency Control             |
|--------|----------------------------------------------------------------|
|        | 1 = Variable exception processing is enabled                   |
|        | 0 = Fixed exception processing is enabled                      |
| bit 3  | IPL3: CPU Interrupt Priority Level Status bit 3 <sup>(2)</sup> |
|        | 1 = CPU Interrupt Priority Level is greater than 7             |
|        | 0 = CPU Interrupt Priority Level is 7 or less                  |

**Note 1:** For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

| U-0          | U-0                                                             | U-0                                                              | U-0                                             | U-0                                       | U-0              | U-0             | U-0   |
|--------------|-----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------|-----------------|-------|
|              | _                                                               |                                                                  | _                                               | _                                         |                  | _               |       |
| bit 15       |                                                                 |                                                                  | •                                               |                                           |                  |                 | bit 8 |
|              |                                                                 |                                                                  |                                                 |                                           |                  |                 |       |
| U-0          | U-0                                                             | U-0                                                              | U-0                                             | R-1                                       | R-1              | R-1             | R-1   |
| —            | —                                                               |                                                                  | _                                               |                                           | LSTCI            | H<3:0>          |       |
| bit 7        |                                                                 |                                                                  |                                                 | -                                         |                  |                 | bit 0 |
|              |                                                                 |                                                                  |                                                 |                                           |                  |                 |       |
| Legend:      |                                                                 |                                                                  |                                                 |                                           |                  |                 |       |
| R = Readab   | le bit                                                          | W = Writable                                                     | bit                                             | U = Unimpler                              | mented bit, read | 1 as '0'        |       |
| -n = Value a | It POR                                                          | '1' = Bit is set                                                 |                                                 | '0' = Bit is cle                          | ared             | x = Bit is unkr | nown  |
|              |                                                                 |                                                                  |                                                 |                                           |                  |                 |       |
| bit 15-4     | Unimplemen                                                      | ted: Read as '                                                   | 0'                                              |                                           |                  |                 |       |
| bit 3-0      | LSTCH<3:0>                                                      | : Last DMAC C                                                    | hannel Active                                   | e Status bits                             |                  |                 |       |
|              | 1111 = No DI<br>1110 = Reser                                    | MA transfer ha<br>rved                                           | s occurred sir                                  | nce system Re                             | set              |                 |       |
|              | •                                                               |                                                                  |                                                 |                                           |                  |                 |       |
|              | •                                                               |                                                                  |                                                 |                                           |                  |                 |       |
|              | •                                                               |                                                                  |                                                 |                                           |                  |                 |       |
|              | 0100 = Reser<br>0011 = Last c<br>0010 = Last c<br>0001 = Last c | rved<br>Jata transfer wa<br>Jata transfer wa<br>Jata transfer wa | as handled by<br>as handled by<br>as handled by | / Channel 3<br>/ Channel 2<br>/ Channel 1 |                  |                 |       |

# REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

0000 = Last data transfer was handled by Channel 0 0000 = Last data transfer was handled by Channel 0

# 9.3 Oscillator Control Registers

# REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER<sup>(1)</sup>

| 11-0       | R-0                                                      | R-0                                | R-0                                | U-O                               | R/W-v                                      | R/W-v                                | R/W-v                         |
|------------|----------------------------------------------------------|------------------------------------|------------------------------------|-----------------------------------|--------------------------------------------|--------------------------------------|-------------------------------|
|            | COSC2                                                    | COSC1                              | COSCO                              | _                                 | NOSC2 <sup>(2)</sup>                       | NOSC1 <sup>(2)</sup>                 | NOSCO <sup>(2)</sup>          |
| bit 15     |                                                          |                                    |                                    |                                   |                                            |                                      | bit 8                         |
|            |                                                          |                                    |                                    |                                   |                                            |                                      |                               |
| R/W-0      | R/W-0                                                    | R-0                                | U-0                                | R/W-0                             | U-0                                        | U-0                                  | R/W-0                         |
| CLKLOC     | CK IOLOCK                                                | LOCK                               |                                    | CF <sup>(3)</sup>                 |                                            | —                                    | OSWEN                         |
| bit 7      |                                                          |                                    |                                    |                                   |                                            |                                      | bit 0                         |
|            |                                                          |                                    | (                                  |                                   |                                            |                                      |                               |
| Legend:    | - h l - h :4                                             | y = Value set                      | from Configur                      | ation bits on P                   | 'OR                                        | (0)                                  |                               |
|            |                                                          | vv = vvritable                     | DIL                                | 0 = 0                             | mented bit, read                           | as u                                 |                               |
| -n = value | alPOR                                                    | I = BILIS Set                      |                                    | 0 = BIUS CIE                      | ared                                       |                                      | IOWN                          |
| bit 15     | Unimplemen                                               | ted: Read as '                     | 0'                                 |                                   |                                            |                                      |                               |
| bit 14-12  | COSC<2:0>:                                               | Current Oscilla                    | ator Selection                     | bits (read-only                   | <b>'</b> )                                 |                                      |                               |
|            | 111 = Fast R(                                            | C Oscillator (F                    | RC) with Divid                     | le-by-n                           | ,                                          |                                      |                               |
|            | 110 = Fast R                                             | C Oscillator (F                    | RC) with Divid                     | le-by-16                          |                                            |                                      |                               |
|            | 101 = Low-Po                                             | ower RC Oscill                     | ator (LPRC)                        |                                   |                                            |                                      |                               |
|            | 011 = Primary                                            | v Oscillator (X                    | r, HS, EC) wit                     | h PLL                             |                                            |                                      |                               |
|            | 010 = Primary                                            | y Oscillator (X                    | ſ, HS, EC)                         |                                   |                                            |                                      |                               |
|            | 001 = Fast R<br>000 = Fast R                             | C Oscillator (F<br>C Oscillator (F | RC) with Divid<br>RC)              | le-by-N and PL                    | L (FRCPLL)                                 |                                      |                               |
| bit 11     | Unimplemen                                               | ted: Read as '                     | 0'                                 |                                   |                                            |                                      |                               |
| bit 10-8   | NOSC<2:0>:                                               | New Oscillator                     | Selection bits                     | <sub>S</sub> (2)                  |                                            |                                      |                               |
|            | 111 = Fast R                                             | C Oscillator (F                    | RC) with Divid                     | le-by-n                           |                                            |                                      |                               |
|            | 110 = Fast R                                             | C Oscillator (F                    | RC) with Divic                     | le-by-16                          |                                            |                                      |                               |
|            | 101 - Low-PC<br>100 = Reserv                             | ed                                 |                                    |                                   |                                            |                                      |                               |
|            | 011 = Primary                                            | y Oscillator (X                    | r, HS, EC) wit                     | h PLL                             |                                            |                                      |                               |
|            | 010 = Primary                                            | y Oscillator (X                    | r, HS, EC)                         |                                   |                                            |                                      |                               |
|            | 001 = Fast R0<br>000 = Fast R0                           | C Oscillator (FI                   | RC) with Divid<br>RC)              | Ie-by-N and PL                    | L (FRCPLL)                                 |                                      |                               |
| bit 7      | CLKLOCK: C                                               | lock Lock Ena                      | ble bit                            |                                   |                                            |                                      |                               |
|            | 1 = If (FCKS                                             | M0 = 1), then c                    | lock and PLL                       | configurations                    | are locked; if (F                          | CKSM0 = 0), t                        | hen clock and                 |
|            | 0 = Clock and                                            | d PLL selection                    | ns are not lock                    | ked, configurat                   | ions may be mo                             | dified                               |                               |
| bit 6      | IOLOCK: I/O                                              | Lock Enable b                      | it                                 |                                   |                                            |                                      |                               |
|            | 1 = I/O lock is                                          | active                             |                                    |                                   |                                            |                                      |                               |
|            | 0 = I/O lock is                                          | not active                         | / I I \                            |                                   |                                            |                                      |                               |
| bit 5      | LOCK: PLL L                                              | ock Status bit                     | (read-only)                        | ant un tincaria                   | a atiafia d                                |                                      |                               |
|            | <ul> <li>1 = indicates</li> <li>0 = Indicates</li> </ul> | that PLL is in                     | t of lock, start                   | -up timer is<br>-up timer is in   | progress or PLL                            | is disabled                          |                               |
| Note 1:    | Writes to this regis                                     | ter require an e<br>erence Manual  | unlock sequer<br>" (available fro  | nce. Refer to "<br>om the Microch | <b>Oscillator"</b> (DS<br>ip web site) for | 70580) in the <i>"</i> o<br>details. | dsPIC33/                      |
| 2:         | Direct clock switch<br>This applies to cloc              | es between an<br>ck switches in o  | y primary osci<br>either direction | llator mode wit                   | h PLL and FRC<br>ances, the appli          | PLL mode are r<br>cation must sw     | not permitted.<br>itch to FRC |
|            | moue as a transitio                                      | nai Clock Sour                     |                                    | IE IWO PLL IIIO                   | u <del>c</del> s.                          |                                      |                               |

**3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

- g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

#### 11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en555464              |

#### 11.6.1 KEY RESOURCES

- "I/O Ports" (DS70598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

| HS/HC-     | 0 HS/HC-0                                                                    | HS/HC-0                                                                                | R/W-0                                    | R/W-0                                | R/W-0                        | R/W-0                | R/W-0               |
|------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|------------------------------|----------------------|---------------------|
| FLTSTAT    | -(1) CLSTAT <sup>(1)</sup>                                                   | TRGSTAT                                                                                | FLTIEN                                   | CLIEN                                | TRGIEN                       | ITB <sup>(2)</sup>   | MDCS <sup>(2)</sup> |
| bit 15     |                                                                              |                                                                                        |                                          |                                      |                              |                      | bit 8               |
|            |                                                                              |                                                                                        |                                          |                                      |                              |                      |                     |
| R/W-0      | R/W-0                                                                        | R/W-0                                                                                  | U-0                                      | R/W-0                                | R/W-0                        | R/W-0                | R/W-0               |
| DTC1       | DTC0                                                                         | DTCP <sup>(3)</sup>                                                                    | <u> </u>                                 | MTBS                                 | CAM <sup>(2,4)</sup>         | XPRES <sup>(5)</sup> | IUE <sup>(2)</sup>  |
| bit 7      |                                                                              |                                                                                        |                                          |                                      |                              |                      | bit 0               |
|            |                                                                              |                                                                                        |                                          |                                      |                              |                      |                     |
| Legend:    |                                                                              | HC = Hardware                                                                          | Clearable bit                            | HS = Hardwa                          | are Settable bit             |                      |                     |
| R = Reada  | able bit                                                                     | W = Writable bi                                                                        | t                                        | U = Unimplei                         | mented bit, rea              | d as '0'             |                     |
| -n = Value | at POR                                                                       | '1' = Bit is set                                                                       |                                          | '0' = Bit is cle                     | eared                        | x = Bit is unk       | nown                |
| bit 15     | <b>FLTSTAT:</b> Fai<br>1 = Fault inter<br>0 = No Fault i<br>This bit is clea | ult Interrupt Statu<br>rrupt is pending<br>interrupt is pendi                          | us bit <sup>(1)</sup><br>ng<br>LTIEN = 0 |                                      |                              |                      |                     |
| hit 14     | CI STAT. Cur                                                                 | rent-l imit Interru                                                                    | nt Status hit(1)                         |                                      |                              |                      |                     |
|            | 1 = Current-lin<br>0 = No curren<br>This bit is clea                         | mit interrupt is pentitienter interrupt is pentitienter interrupt is ared by setting C | ending<br>s pending<br>CLIEN = 0.        |                                      |                              |                      |                     |
| bit 13     | TRGSTAT: Tr                                                                  | igger Interrupt S                                                                      | tatus bit                                |                                      |                              |                      |                     |
|            | 1 = Trigger in<br>0 = No trigger<br>This bit is clea                         | terrupt is pending<br>r interrupt is pend<br>ared by setting T                         | g<br>ding<br>RGIEN = 0.                  |                                      |                              |                      |                     |
| bit 12     | FLTIEN: Faul                                                                 | t Interrupt Enabl                                                                      | e bit                                    |                                      |                              |                      |                     |
|            | 1 = Fault inter<br>0 = Fault inter                                           | rrupt is enabled rrupt is disabled                                                     | and the FLTST                            | AT bit is cleare                     | ed                           |                      |                     |
| bit 11     | CLIEN: Curre                                                                 | ent-Limit Interrup                                                                     | t Enable bit                             |                                      |                              |                      |                     |
|            | 1 = Current-lii<br>0 = Current-lii                                           | mit interrupt is er<br>mit interrupt is di                                             | nabled<br>sabled and the                 | CLSTAT bit is                        | cleared                      |                      |                     |
| bit 10     | TRGIEN: Trig                                                                 | ger Interrupt Ena                                                                      | able bit                                 |                                      |                              |                      |                     |
|            | 1 = A trigger e<br>0 = Trigger ev                                            | event generates<br>/ent interrupts ar                                                  | an interrupt rec                         | quest<br>the TRGSTAT                 | bit is cleared               |                      |                     |
| bit 9      | ITB: Independ                                                                | dent Time Base                                                                         | Mode bit <sup>(2)</sup>                  |                                      |                              |                      |                     |
|            | 1 = PHASEx (<br>0 = PTPER re                                                 | register provides<br>egister provides f                                                | time base peri<br>timing for this F      | iod for this PW<br>WM generato       | /M generator<br>r            |                      |                     |
| bit 8      | MDCS: Maste                                                                  | er Duty Cycle Re                                                                       | gister Select bi                         | it(2)                                |                              |                      |                     |
|            | 1 = MDC regi<br>0 = PDCx reg                                                 | ster provides du<br>ister provides du                                                  | ty cycle informa<br>ity cycle inform     | ation for this P<br>ation for this F | WM generator<br>WM generator |                      |                     |
| Note 1:    | Software must clea                                                           | ar the interrupt st                                                                    | atus here and                            | in the correspo                      | onding IFSx bit              | in the interrup      | ot controller.      |
| 2:         | These bits should                                                            | not be changed                                                                         | after the PWM                            | ,<br>is enabled (P                   | PTEN = 1).                   | •                    |                     |
| 3:         | DTC<1:0> = 11 for                                                            | r DTCP to be effe                                                                      | ective; otherwis                         | se, DTCP is ig                       | nored.                       |                      |                     |
| 4:         | The Independent T<br>CAM bit is ignored                                      | Time Base (ITB =                                                                       | 1) mode must                             | be enabled to                        | use Center-Ali               | igned mode. If       | TTB = 0, the        |
| -          | <b>T</b>                                                                     |                                                                                        | · · · · · · · · · · · · · · · · · · ·    |                                      |                              |                      |                     |

# REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

#### 17.2 QEI Control Registers

|--|

| R/W-0           | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W-0                            | R/W-0                             | R/W-0                 | R/W-0                 | R/W-0               | R/W-0               |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|-----------------------|-----------------------|---------------------|---------------------|
| QEIEN           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QEISIDL                          | PIMOD2 <sup>(1)</sup>             | PIMOD1 <sup>(1)</sup> | PIMOD0 <sup>(1)</sup> | IMV1 <sup>(2)</sup> | IMV0 <sup>(2)</sup> |
| bit 15          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                   |                       |                       |                     | bit 8               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                   |                       |                       |                     |                     |
| U-0             | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W-0                            | R/W-0                             | R/W-0                 | R/W-0                 | R/W-0               | R/W-0               |
| _               | INTDIV2 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INTDIV1 <sup>(3)</sup>           | INTDIV0 <sup>(3)</sup>            | CNTPOL                | GATEN                 | CCM1                | CCM0                |
| bit 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                   |                       |                       |                     | bit 0               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                   |                       |                       |                     |                     |
| Legend:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                   |                       |                       |                     |                     |
| R = Readable    | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W = Writable                     | bit                               | U = Unimpler          | nented bit, read      | l as '0'            |                     |
| -n = Value at I | POR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | '1' = Bit is set                 |                                   | '0' = Bit is cle      | ared                  | x = Bit is unkr     | Iown                |
| bit 15          | bit 15 <b>QEIEN:</b> Quadrature Encoder Interface Module Counter Enable bit<br>1 = Module counters are enabled<br>0 = Module counters are disabled, but SERs can be read or written to                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                   |                       |                       |                     |                     |
| bit 14          | Unimplemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ted: Read as 'o                  | )'                                |                       |                       |                     |                     |
| bit 13          | QEISIDL: QE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I Stop in Idle M                 | ode bit                           |                       |                       |                     |                     |
|                 | 1 = Discontinues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ues module opera module opera    | eration when c<br>tion in Idle mo | levice enters I<br>de | dle mode              |                     |                     |
| bit 12-10       | PIMOD<2:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : Position Coun                  | iter Initializatio                | n Mode Selec          | t bits <sup>(1)</sup> |                     |                     |
|                 | <ul> <li>111 = Reserved</li> <li>110 = Modulo Count mode for position counter</li> <li>101 = Resets the position counter when the position counter equals QEI1GEC register</li> <li>100 = Second index event after home event initializes position counter with contents of QEI1IC register</li> <li>011 = First index event after home event initializes position counter with contents of QEI1IC register</li> <li>010 = Next index input event initializes the position counter with contents of QEI1IC register</li> <li>001 = Every index input event resets the position counter</li> <li>000 = Index input event does not affect position counter</li> </ul> |                                  |                                   |                       |                       |                     |                     |
| bit 9           | IMV1: Index N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match Value for                  | Phase B bit <sup>(2</sup>         | )                     |                       |                     |                     |
|                 | 1 = Phase B match occurs when QEB = 1<br>0 = Phase B match occurs when QEB = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                   |                       |                       |                     |                     |
| bit 8           | IMV0: Index N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match Value for                  | Phase A bit <sup>(2)</sup>        | )                     |                       |                     |                     |
|                 | 1 = Phase A r<br>0 = Phase A r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | match occurs w<br>match occurs w | /hen QEA = 1<br>/hen QEA = 0      |                       |                       |                     |                     |
| bit 7           | Unimplemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ted: Read as 'o                  | י)                                |                       |                       |                     |                     |
|                 | 0014.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | (II) OF                           |                       |                       |                     |                     |

**Note 1:** When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.

3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

| U-0                   | U-0                                                      | HS, R/C-0          | R/W-0                  | HS, R/C-0        | R/W-0           | HS, R/C-0             | R/W-0    |  |
|-----------------------|----------------------------------------------------------|--------------------|------------------------|------------------|-----------------|-----------------------|----------|--|
|                       | —                                                        | PCHEQIRQ           | PCHEQIEN               | PCLEQIRQ         | PCLEQIEN        | POSOVIRQ              | POSOVIEN |  |
| bit 15                |                                                          |                    |                        |                  |                 |                       | bit 8    |  |
|                       |                                                          |                    |                        |                  |                 |                       |          |  |
| HS, R/C-0             | R/W-0                                                    | HS, R/C-0          | R/W-0                  | HS, R/C-0        | R/W-0           | HS, R/C-0             | R/W-0    |  |
| PCIIRQ <sup>(1)</sup> | PCIIEN                                                   | VELOVIRQ           | VELOVIEN               | HOMIRQ           | HOMIEN          | IDXIRQ                | IDXIEN   |  |
| bit 7                 |                                                          |                    |                        |                  |                 |                       | bit 0    |  |
|                       |                                                          |                    |                        |                  |                 |                       |          |  |
| Legend:               |                                                          | HS = Hardware      | e Settable bit         | C = Clearable    | e bit           |                       |          |  |
| R = Readable          | bit                                                      | W = Writable b     | bit                    | U = Unimpler     | nented bit, rea | d as '0'              |          |  |
| -n = Value at P       | POR                                                      | '1' = Bit is set   |                        | '0' = Bit is cle | ared            | x = Bit is unkn       | IOWN     |  |
|                       |                                                          |                    |                        |                  |                 |                       |          |  |
| bit 15-14             | Unimplemen                                               | ted: Read as '0    |                        |                  | 01.1            | .,                    |          |  |
| DIT 13                |                                                          |                    | er Greater Tha         | n or Equal Con   | npare Status b  | It                    |          |  |
|                       | 0 = POS1CN                                               | T < QEI1GEC        |                        |                  |                 |                       |          |  |
| bit 12                | PCHEQIEN:                                                | Position Counte    | r Greater Tha          | n or Equal Con   | npare Interrupt | Enable bit            |          |  |
|                       | 1 = Interrupt i                                          | s enabled          |                        |                  |                 |                       |          |  |
|                       | 0 = Interrupt i                                          | s disabled         |                        |                  |                 |                       |          |  |
| bit 11                | PCLEQIRQ:                                                | Position Counte    | r Less Than o          | r Equal Compa    | are Status bit  |                       |          |  |
|                       | $1 = POS1CN^{-1}$                                        | $T \leq QEI1LEC$   |                        |                  |                 |                       |          |  |
| bit 10                |                                                          | Position Counte    | r Less Than or         | r Equal Compa    | re Interrupt En | able bit              |          |  |
|                       | 1 = Interrupt i                                          | s enabled          |                        |                  |                 |                       |          |  |
|                       | 0 = Interrupt is disabled                                |                    |                        |                  |                 |                       |          |  |
| bit 9                 | POSOVIRQ:                                                | Position Counte    | er Overflow Sta        | atus bit         |                 |                       |          |  |
|                       | 1 = Overflow                                             | has occurred       |                        |                  |                 |                       |          |  |
| <b>h</b> it 0         |                                                          | ow has occurred    | )<br>n Overflevv linte | ann at Eachlach  | .:.             |                       |          |  |
| DIL 8                 | 1 = Interrupt i                                          | Position Counte    | r Overnow Inte         | errupt Enable b  | nt              |                       |          |  |
|                       | 0 = Interrupt i                                          | s disabled         |                        |                  |                 |                       |          |  |
| bit 7                 | PCIIRQ: Posi                                             | ition Counter (H   | oming) Initializ       | ation Process    | Complete Stat   | us bit <sup>(1)</sup> |          |  |
|                       | 1 = POS1CN                                               | T was reinitialize | ed                     |                  |                 |                       |          |  |
|                       | $0 = POS1CN^{-1}$                                        | T was not reiniti  | alized                 |                  |                 |                       |          |  |
| bit 6                 | PCIIEN: Posit                                            | tion Counter (He   | oming) Initializ       | ation Process    | Complete inter  | rupt Enable bit       |          |  |
|                       | 1 = Interrupt i                                          | s enabled          |                        |                  |                 |                       |          |  |
| bit 5                 |                                                          | Velocity Counte    | r Overflow Sta         | tus bit          |                 |                       |          |  |
| Sit O                 | 1 = Overflow                                             | has occurred       |                        |                  |                 |                       |          |  |
|                       | 0 = No overflo                                           | ow has not occu    | irred                  |                  |                 |                       |          |  |
| bit 4                 | VELOVIEN: Velocity Counter Overflow Interrupt Enable bit |                    |                        |                  |                 |                       |          |  |
|                       | 1 = Interrupt i                                          | s enabled          |                        |                  |                 |                       |          |  |
| <b>L</b> # 0          |                                                          | s disabled         |                        | ua hit           |                 |                       |          |  |
| DIL 3                 |                                                          | at has occurred    | me ⊨vent Stati         | us dil           |                 |                       |          |  |
|                       | 0 = No Home                                              | event has occure   | irred                  |                  |                 |                       |          |  |
|                       |                                                          |                    |                        |                  |                 |                       |          |  |

#### REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER

**Note 1:** This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

# REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

| bit 2 | <b>HOMIEN:</b> Home Input Event Interrupt Enable bit<br>1 = Interrupt is enabled<br>0 = Interrupt is disabled            |
|-------|--------------------------------------------------------------------------------------------------------------------------|
| bit 1 | <b>IDXIRQ:</b> Status Flag for Index Event Status bit<br>1 = Index event has occurred<br>0 = No Index event has occurred |
| bit 0 | <b>IDXIEN:</b> Index Input Event Interrupt Enable bit<br>1 = Interrupt is enabled<br>0 = Interrupt is disabled           |

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

#### REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

| bit 5   | ABAUD: Auto-Baud Enable bit                                                                                                                                                                                                               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion</li> <li>0 = Baud rate measurement is disabled or completed</li> </ul> |
| bit 4   | URXINV: UARTx Receive Polarity Inversion bit                                                                                                                                                                                              |
|         | 1 = UxRX Idle state is '0'<br>0 = UxRX Idle state is '1'                                                                                                                                                                                  |
| bit 3   | BRGH: High Baud Rate Enable bit                                                                                                                                                                                                           |
|         | <ul> <li>1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)</li> <li>0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)</li> </ul>                                                        |
| bit 2-1 | PDSEL<1:0>: Parity and Data Selection bits                                                                                                                                                                                                |
|         | <ul> <li>11 = 9-bit data, no parity</li> <li>10 = 8-bit data, odd parity</li> <li>01 = 8-bit data, even parity</li> <li>00 = 8-bit data, no parity</li> </ul>                                                                             |
| bit 0   | STSEL: Stop Bit Selection bit                                                                                                                                                                                                             |
|         | 1 = Two Stop bits<br>0 = One Stop bit                                                                                                                                                                                                     |
| Note 1: | Refer to the " <b>UART</b> " (DS70582) section in the <i>"dsPIC33/PIC24 Family Reference Manual"</i> for information on enabling the UARTx module for receive or transmit operation.                                                      |

- 2: This feature is only available for the 16x BRG mode (BRGH = 0).
- 3: This feature is only available on 44-pin and 64-pin devices.
- 4: This feature is only available on 64-pin devices.

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

#### REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

| R/W-x  | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
|--------|-------|-------|-------|-------|-------|-------|-------|
| EID15  | EID14 | EID13 | EID12 | EID11 | EID10 | EID9  | EID8  |
| bit 15 |       |       |       |       |       |       | bit 8 |
|        |       |       |       |       |       |       |       |

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7  | EID6  | EID5  | EID4  | EID3  | EID2  | EID1  | EID0  |
| bit 7 |       |       |       |       |       |       | bit 0 |

# Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

#### REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

| R/W-0         | R/W-0                                                                                                                                                                                                                      | R/W-0                                                                  | R/W-0                                                      | R/W-0                | R/W-0           | R/W-0              | R/W-0  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|----------------------|-----------------|--------------------|--------|--|
| F7MSK<1:0>    |                                                                                                                                                                                                                            | F6MSI                                                                  | F6MSK<1:0>                                                 |                      | K<1:0>          | F4MS               | K<1:0> |  |
| bit 15        |                                                                                                                                                                                                                            |                                                                        |                                                            |                      |                 |                    | bit 8  |  |
|               |                                                                                                                                                                                                                            |                                                                        |                                                            |                      |                 |                    |        |  |
| R/W-0         | R/W-0                                                                                                                                                                                                                      | R/W-0                                                                  | R/W-0                                                      | R/W-0                | R/W-0           | R/W-0              | R/W-0  |  |
| F3M           | SK<1:0>                                                                                                                                                                                                                    | F2MSI                                                                  | K<1:0>                                                     | F1MS                 | K<1:0>          | F0MS               | K<1:0> |  |
| bit 7         |                                                                                                                                                                                                                            |                                                                        |                                                            |                      |                 |                    | bit 0  |  |
|               |                                                                                                                                                                                                                            |                                                                        |                                                            |                      |                 |                    |        |  |
| Legend:       |                                                                                                                                                                                                                            |                                                                        |                                                            |                      |                 |                    |        |  |
| R = Readabl   | le bit                                                                                                                                                                                                                     | W = Writable                                                           | bit                                                        | U = Unimplen         | nented bit, rea | d as '0'           |        |  |
| -n = Value at | t POR                                                                                                                                                                                                                      | '1' = Bit is set                                                       | :                                                          | '0' = Bit is cleared |                 | x = Bit is unknown |        |  |
| bit 15-14     | <b>F7MSK&lt;1:0&gt;:</b> Mask Source for Filter 7 bits<br>11 = Reserved<br>10 = Acceptance Mask 2 registers contain mask<br>01 = Acceptance Mask 1 registers contain mask<br>00 = Acceptance Mask 0 registers contain mask |                                                                        |                                                            |                      |                 |                    |        |  |
| bit 13-12     | F6MSK<1:0                                                                                                                                                                                                                  | >: Mask Source                                                         | for Filter 6 bi                                            | ts (same values      | as bits<15:14   | <b>!</b> >)        |        |  |
| bit 11-10     | F5MSK<1:0                                                                                                                                                                                                                  | >: Mask Source                                                         | for Filter 5 bi                                            | ts (same values      | as bits<15:14   | <b>!</b> >)        |        |  |
| bit 9-8       | F4MSK<1:0                                                                                                                                                                                                                  | F4MSK<1:0>: Mask Source for Filter 4 bits (same values as bits<15:14>) |                                                            |                      |                 |                    |        |  |
| bit 7-6       | F3MSK<1:0:                                                                                                                                                                                                                 | F3MSK<1:0>: Mask Source for Filter 3 bits (same values as bits<15:14>) |                                                            |                      |                 |                    |        |  |
| bit 5-4       | F2MSK<1:0                                                                                                                                                                                                                  | >: Mask Source                                                         | for Filter 2 bi                                            | ts (same values      | s as bits<15:14 | <b>!</b> >)        |        |  |
| bit 3-2       | F1MSK<1:0                                                                                                                                                                                                                  | >: Mask Source                                                         | for Filter 1 bi                                            | ts (same values      | s as bits<15:14 | ł>)                |        |  |
| bit 1-0       | F0MSK<1:0                                                                                                                                                                                                                  | Hask Source                                                            | Mask Source for Filter 0 bits (same values as bits<15:14>) |                      |                 |                    |        |  |
|               |                                                                                                                                                                                                                            |                                                                        |                                                            |                      |                 |                    |        |  |

# 24.3 PTG Control Registers

#### REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

| R/W-0   | U-0     | R/W-0   | R/W-0   | U-0 | R/W-0                 | R/W-0                  | R/W-0                  |
|---------|---------|---------|---------|-----|-----------------------|------------------------|------------------------|
| PTGEN   | —       | PTGSIDL | PTGTOGL | —   | PTGSWT <sup>(2)</sup> | PTGSSEN <sup>(3)</sup> | PTGIVIS                |
| bit 15  |         |         |         |     |                       |                        | bit 8                  |
|         |         |         |         |     |                       |                        |                        |
| R/W-0   | HS-0    | U-0     | U-0     | U-0 | U-0                   | R/V                    | V-0                    |
| PTGSTRT | PTGWDTO | _       | _       | _   | _                     | PTGITM1 <sup>(1)</sup> | PTGITM0 <sup>(1)</sup> |

| h | it | 7 |
|---|----|---|
| υ | π. | 1 |

| Legend:           | HS = Hardware Settable bit |                                    |                    |  |
|-------------------|----------------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit           | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set           | '0' = Bit is cleared               | x = Bit is unknown |  |

| bit 15  |    | PTGEN: Module Enable bit                                                                                                                                                                                                      |
|---------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |    | 1 = PTG module is enabled                                                                                                                                                                                                     |
|         |    | 0 = PTG module is disabled                                                                                                                                                                                                    |
| bit 14  |    | Unimplemented: Read as '0'                                                                                                                                                                                                    |
| bit 13  |    | PTGSIDL: PTG Stop in Idle Mode bit                                                                                                                                                                                            |
|         |    | <ul> <li>1 = Discontinues module operation when device enters Idle mode</li> <li>0 = Continues module operation in Idle mode</li> </ul>                                                                                       |
| bit 12  |    | PTGTOGL: PTG TRIG Output Toggle Mode bit                                                                                                                                                                                      |
|         |    | <ul> <li>1 = Toggle state of the PTGOx for each execution of the PTGTRIG command</li> <li>0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGPWDx bits</li> </ul> |
| bit 11  |    | Unimplemented: Read as '0'                                                                                                                                                                                                    |
| bit 10  |    | PTGSWT: PTG Software Trigger bit <sup>(2)</sup>                                                                                                                                                                               |
|         |    | 1 = Triggers the PTG module                                                                                                                                                                                                   |
|         |    | 0 = No action (clearing this bit will have no effect)                                                                                                                                                                         |
| bit 9   |    | PTGSSEN: PTG Enable Single-Step bit <sup>(3)</sup>                                                                                                                                                                            |
|         |    | 1 = Enables Single-Step mode                                                                                                                                                                                                  |
|         |    | 0 = Disables Single-Step mode                                                                                                                                                                                                 |
| bit 8   |    | PTGIVIS: PTG Counter/Timer Visibility Control bit                                                                                                                                                                             |
|         |    | 1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their<br>corresponding counter/timer registers (PTGSD, PTGCx, PTGTx)                                                                   |
|         |    | <ul> <li>Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written<br/>to those limit registers</li> </ul>                                                                                    |
| bit 7   |    | PTGSTRT: PTG Start Sequencer bit                                                                                                                                                                                              |
|         |    | <ul><li>1 = Starts to sequentially execute commands (Continuous mode)</li><li>0 = Stops executing commands</li></ul>                                                                                                          |
| bit 6   |    | PTGWDTO: PTG Watchdog Timer Time-out Status bit                                                                                                                                                                               |
|         |    | 1 = PTG Watchdog Timer has timed out                                                                                                                                                                                          |
|         |    | 0 = PTG watchdog Timer has not timed out.                                                                                                                                                                                     |
| bit 5-2 |    | Unimplemented: Read as '0'                                                                                                                                                                                                    |
| Note    | 1: | These bits apply to the PTGWHI and PTGWLO commands only.                                                                                                                                                                      |
|         | 2: | This bit is only used with the PTGCTRL step command software trigger option.                                                                                                                                                  |

3: Use of the PTG Single-Step mode is reserved for debugging tools only.

bit 0

# 29.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM<sup>™</sup> and dsPICDEM<sup>™</sup> demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ<sup>®</sup> security ICs, CAN, IrDA<sup>®</sup>, PowerSmart battery management, SEEVAL<sup>®</sup> evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

# 29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent<sup>®</sup> and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika<sup>®</sup>

| AC CHARACTERISTICS |        |                                                                                                           | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |         |       |       |                                         |
|--------------------|--------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|-----------------------------------------|
| Param<br>No.       | Symbol | Characteristic                                                                                            | Min.                                                                                                                                                                                                                                                                                        | Тур.    | Max.  | Units | Conditions                              |
| Clock Parameters   |        |                                                                                                           |                                                                                                                                                                                                                                                                                             |         |       |       |                                         |
| AD50               | TAD    | ADC Clock Period                                                                                          | 117.6                                                                                                                                                                                                                                                                                       | _       | _     | ns    |                                         |
| AD51               | tRC    | ADC Internal RC Oscillator Period <sup>(2)</sup>                                                          |                                                                                                                                                                                                                                                                                             | 250     |       | ns    |                                         |
| Conversion Rate    |        |                                                                                                           |                                                                                                                                                                                                                                                                                             |         |       |       |                                         |
| AD55               | tCONV  | Conversion Time                                                                                           |                                                                                                                                                                                                                                                                                             | 14 Tad  |       | ns    |                                         |
| AD56               | FCNV   | Throughput Rate                                                                                           | _                                                                                                                                                                                                                                                                                           |         | 500   | ksps  |                                         |
| AD57a              | TSAMP  | Sample Time when Sampling any ANx Input                                                                   | 3 Tad                                                                                                                                                                                                                                                                                       | _       | —     | _     |                                         |
| AD57b              | TSAMP  | Sample Time when Sampling the Op<br>Amp Outputs (Configuration A and<br>Configuration B) <sup>(4,5)</sup> | 3 Tad                                                                                                                                                                                                                                                                                       | —       | _     |       |                                         |
|                    |        | Timin                                                                                                     | g Parame                                                                                                                                                                                                                                                                                    | ters    |       |       |                                         |
| AD60               | tPCS   | Conversion Start from Sample<br>Trigger <sup>(2,3)</sup>                                                  | 2 Tad                                                                                                                                                                                                                                                                                       |         | 3 Tad | _     | Auto-convert trigger is<br>not selected |
| AD61               | tpss   | Sample Start from Setting<br>Sample (SAMP) bit <sup>(2,3)</sup>                                           | 2 Tad                                                                                                                                                                                                                                                                                       | —       | 3 Tad | _     |                                         |
| AD62               | tcss   | Conversion Completion to<br>Sample Start (ASAM = 1) <sup>(2,3)</sup>                                      |                                                                                                                                                                                                                                                                                             | 0.5 TAD | 1     | _     |                                         |
| AD63               | tdpu   | Time to Stabilize Analog Stage from ADC Off to ADC On <sup>(2,3)</sup>                                    |                                                                                                                                                                                                                                                                                             |         | 20    | μs    | (Note 6)                                |

#### TABLE 30-60: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- **6:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADC result is indeterminate.

# APPENDIX A: REVISION HISTORY

# **Revision A (April 2011)**

This is the initial released version of the document.

# Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

#### TABLE A-1: MAJOR SECTION UPDATES

| Section Name                                                                     | Update Description                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "High-Performance, 16-bit<br>Digital Signal Controllers<br>and Microcontrollers" | Changed all pin diagrams references of VLAP to TLA.                                                                                                                                                                                                                                                                     |
| Section 4.0 "Memory<br>Organization"                                             | Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).                                                                                                                                                                                                                |
| Section 5.0 "Flash Program<br>Memory"                                            | Updated "one word" to "two words" in the first paragraph of <b>Section 5.2 "RTSP Operation"</b> .                                                                                                                                                                                                                       |
| Section 9.0 "Oscillator<br>Configuration"                                        | Updated the PLL Block Diagram (see Figure 9-2).<br>Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL<br>(FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).                                                                                                                                 |
|                                                                                  | Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and<br>NOSC<2:0> = 001 in the Oscillator Control Register (see Register 9-1).                                                                                                                                                                                   |
|                                                                                  | Changed the POR value from 0 to 1 for the DOZE<1:0> bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE<2:0> and FRCDIV<2:0> bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2). |
|                                                                                  | Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).                                                                                                                                       |
| Section 22.0 "Charge Time<br>Measurement Unit (CTMU)"                            | Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3).                                                                                                                                                                                                            |
| Section 25.0 "Op amp/<br>Comparator Module"                                      | Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).                                                                                                                                                                                                                                         |