


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

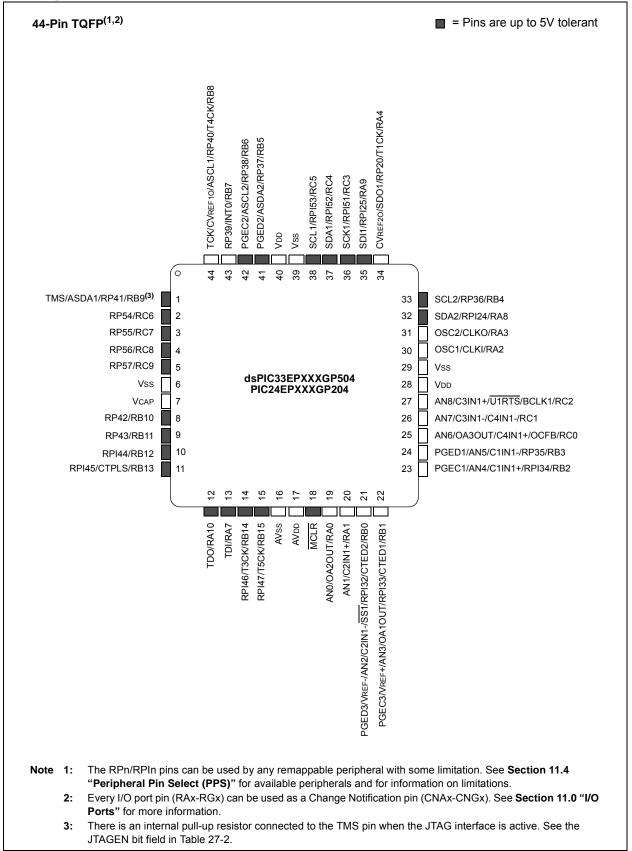
| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | dsPIC                                                                           |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 60 MIPs                                                                         |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                    |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT                   |
| Number of I/O              | 35                                                                              |
| Program Memory Size        | 32KB (10.7K x 24)                                                               |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 2K x 16                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 9x10b/12b                                                                   |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 48-UFQFN Exposed Pad                                                            |
| Supplier Device Package    | 48-UQFN (6x6)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32mc504-e-mv |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### TABLE 2: dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X MOTOR CONTROL FAMILIES

| FA                | MIL                            | ES                            |              |                      |               |                |                                                |                              |        |                    |                  |                                    | _    | _                    | _                            | _                   |      |     | _        | _         |                                |
|-------------------|--------------------------------|-------------------------------|--------------|----------------------|---------------|----------------|------------------------------------------------|------------------------------|--------|--------------------|------------------|------------------------------------|------|----------------------|------------------------------|---------------------|------|-----|----------|-----------|--------------------------------|
|                   | ()                             | es)                           |              |                      |               | Rei            | mappa                                          | ble P                        | eriphe | erals              |                  |                                    |      |                      | -                            |                     |      |     |          |           |                                |
| Device            | Page Erase Size (Instructions) | Program Flash Memory (Kbytes) | RAM (Kbytes) | 16-Bit/32-Bit Timers | Input Capture | Output Compare | Motor Control PWM <sup>(4)</sup><br>(Channels) | Quadrature Encoder Interface | UART   | SPI <sup>(2)</sup> | ECAN™ Technology | External Interrupts <sup>(3)</sup> | I²C™ | <b>CRC Generator</b> | 10-Bit/12-Bit ADC (Channels) | Op Amps/Comparators | CTMU | PTG | I/O Pins | Pins      | Packages                       |
| PIC24EP32MC202    | 512                            | 32                            | 4            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| PIC24EP64MC202    | 1024                           | 64                            | 8            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           | SPDIP,                         |
| PIC24EP128MC202   | 1024                           | 128                           | 16           | 5                    | 4             | 4              | 6                                              | 1                            | 2      | 2                  | _                | 3                                  | 2    | 1                    | 6                            | 2/3(1)              | Yes  | Yes | 21       | 28        | SOIC,<br>SSOP <sup>(5)</sup> , |
| PIC24EP256MC202   | 1024                           | 256                           | 32           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           | QFN-S                          |
| PIC24EP512MC202   | 1024                           | 512                           | 48           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| PIC24EP32MC203    | 512                            | 32                            | 4            | -                    |               |                | <u> </u>                                       | ,                            | 6      | 6                  |                  | <u> </u>                           | 6    |                      | _                            |                     | v    | ~   | 0-       |           | ) (T) A                        |
| PIC24EP64MC203    | 1024                           | 64                            | 8            | 5                    | 4             | 4              | 6                                              | 1                            | 2      | 2                  | _                | 3                                  | 2    | 1                    | 8                            | 3/4                 | Yes  | Yes | 25       | 36        | VTLA                           |
| PIC24EP32MC204    | 512                            | 32                            | 4            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      | 1   |          |           |                                |
| PIC24EP64MC204    | 1024                           | 64                            | 8            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           | VTLA <sup>(5)</sup> ,          |
| PIC24EP128MC204   | 1024                           | 128                           | 16           | 5                    | 4             | 4              | 6                                              | 1                            | 2      | 2                  | _                | 3                                  | 2    | 1                    | 9                            | 3/4                 | Yes  | Yes | 35       | 44/<br>48 | TQFP,<br>QFN,                  |
| PIC24EP256MC204   | 1024                           | 256                           | 32           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          | 40        | UQFN                           |
| PIC24EP512MC204   | 1024                           | 512                           | 48           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| PIC24EP64MC206    | 1024                           | 64                            | 8            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| PIC24EP128MC206   | 1024                           | 128                           | 16           | F                    | 4             | 4              | 6                                              | 4                            | 2      | 2                  |                  | 2                                  | 2    | 1                    | 10                           | 2/4                 | Vaa  | Vaa | 50       | 64        | TQFP,                          |
| PIC24EP256MC206   | 1024                           | 256                           | 32           | 5                    | 4             | 4              | 6                                              | 1                            | 2      | 2                  | _                | 3                                  | 2    | 1                    | 16                           | 3/4                 | Yes  | Yes | 53       | 64        | QFN                            |
| PIC24EP512MC206   | 1024                           | 512                           | 48           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| dsPIC33EP32MC202  | 512                            | 32                            | 4            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| dsPIC33EP64MC202  | 1024                           | 64                            | 8            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           | SPDIP,                         |
| dsPIC33EP128MC202 | 1024                           | 128                           | 16           | 5                    | 4             | 4              | 6                                              | 1                            | 2      | 2                  | _                | 3                                  | 2    | 1                    | 6                            | 2/3 <b>(1)</b>      | Yes  | Yes | 21       | 28        | SOIC,<br>SSOP <sup>(5)</sup> , |
| dsPIC33EP256MC202 | 1024                           | 256                           | 32           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           | QFN-S                          |
| dsPIC33EP512MC202 | 1024                           | 512                           | 48           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| dsPIC33EP32MC203  | 512                            | 32                            | 4            | 5                    | 4             | 4              | 6                                              | 1                            | 2      | 2                  |                  | 3                                  | 2    | 1                    | 8                            | 3/4                 | Yes  | Yes | 25       | 36        | VTLA                           |
| dsPIC33EP64MC203  | 1024                           | 64                            | 8            | э                    | 4             | 4              | 0                                              | -                            | 2      | 2                  |                  | ა                                  | 2    | I                    | 0                            | 3/4                 | res  | tes | 25       | 30        | VILA                           |
| dsPIC33EP32MC204  | 512                            | 32                            | 4            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| dsPIC33EP64MC204  | 1024                           | 64                            | 8            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           | VTLA <sup>(5)</sup> ,          |
| dsPIC33EP128MC204 | 1024                           | 128                           | 16           | 5                    | 4             | 4              | 6                                              | 1                            | 2      | 2                  | —                | 3                                  | 2    | 1                    | 9                            | 3/4                 | Yes  | Yes | 35       | 44/<br>48 | TQFP,<br>QFN,                  |
| dsPIC33EP256MC204 | 1024                           | 256                           | 32           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           | UQFN                           |
| dsPIC33EP512MC204 | 1024                           | 512                           | 48           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| dsPIC33EP64MC206  | 1024                           | 64                            | 8            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| dsPIC33EP128MC206 | 1024                           | 128                           | 16           | 5                    | 4             | 4              | 6                                              | 1                            | 2      | 2                  | _                | 3                                  | 2    | 1                    | 16                           | 3/4                 | Yes  | Yes | 53       | 64        | TQFP,                          |
| dsPIC33EP256MC206 | 1024                           | 256                           | 32           | 5                    | +             | 1              | 0                                              | 1                            | 2      | 2                  |                  | 5                                  | 2    | · ·                  | 10                           | 5/4                 | 165  | 163 | 55       | 04        | QFN                            |
| dsPIC33EP512MC206 | 1024                           | 512                           | 48           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| dsPIC33EP32MC502  | 512                            | 32                            | 4            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| dsPIC33EP64MC502  | 1024                           | 64                            | 8            |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           | SPDIP,<br>SOIC,                |
| dsPIC33EP128MC502 | 1024                           | 128                           | 16           | 5                    | 4             | 4              | 6                                              | 1                            | 2      | 2                  | 1                | 3                                  | 2    | 1                    | 6                            | 2/3(1)              | Yes  | Yes | 21       | 28        | SOIC,<br>SSOP <sup>(5)</sup> , |
| dsPIC33EP256MC502 | 1024                           | 256                           | 32           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           | QFN-S                          |
| dsPIC33EP512MC502 | 1024                           | 512                           | 48           |                      |               |                |                                                |                              |        |                    |                  |                                    |      |                      |                              |                     |      |     |          |           |                                |
| dsPIC33EP32MC503  | 512                            | 32                            | 4            | 5                    | 4             | 4              | 6                                              | 1                            | 2      | 2                  | 1                | 3                                  | 2    | 1                    | 8                            | 3/4                 | Yes  | Yes | 25       | 36        | VTLA                           |
| dsPIC33EP64MC503  | 1024                           | 64                            | 8            | ~                    |               |                |                                                |                              | _      | _                  |                  |                                    | _    |                      | Ĵ                            | <i></i>             |      |     |          |           |                                |


Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details. 2: Only SPI2 is remappable.

3: INTO is not remappable.

4: Only the PWM Faults are remappable.

5: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

# **Pin Diagrams (Continued)**



# 4.2 Data Address Space

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a separate 16-bit-wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps, which are presented by device family and memory size, are shown in Figure 4-7 through Figure 4-16.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes (32K words).

The base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 Mbytes.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement up to 52 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers and up to 48 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all-zero word or byte is returned.

# 4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit-wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

# 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC<sup>®</sup> MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

# 4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

**Note:** The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

# 4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

|                 |       |                         |                                                                                    |         |        |         |        |        |             |             |          |       |       |        |          |        |        | All    |
|-----------------|-------|-------------------------|------------------------------------------------------------------------------------|---------|--------|---------|--------|--------|-------------|-------------|----------|-------|-------|--------|----------|--------|--------|--------|
| File Name       | Addr. | Bit 15                  | Bit 14                                                                             | Bit 13  | Bit 12 | Bit 11  | Bit 10 | Bit 9  | Bit 8       | Bit 7       | Bit 6    | Bit 5 | Bit 4 | Bit 3  | Bit 2    | Bit 1  | Bit 0  | Resets |
| PTGCST          | 0AC0  | PTGEN                   | TGEN – PTGSIDL PTGTOGL – PTGSWT PTGSSEN PTGIVIS PTGSTRT PTGWTO – – – – PTGITM<1:0> |         |        |         |        |        |             |             | 0000     |       |       |        |          |        |        |        |
| PTGCON          | 0AC2  | F                       | PTGCLK<2:0> PTGDIV<4:0> PTGPWD<3:0> — PTGWDT<2                                     |         |        |         |        |        |             |             | TGWDT<2: | 0>    | 0000  |        |          |        |        |        |
| PTGBTE          | 0AC4  |                         | ADC                                                                                | TS<4:1> |        | IC4TSS  | IC3TSS | IC2TSS | IC1TSS      | OC4CS       | OC3CS    | OC2CS | OC1CS | OC4TSS | OC3TSS   | OC2TSS | OC1TSS | 0000   |
| PTGHOLD         | 0AC6  |                         |                                                                                    |         |        |         |        |        | PTGHOLD     | <15:0>      |          |       |       |        |          |        |        | 0000   |
| <b>PTGT0LIM</b> | 0AC8  |                         |                                                                                    |         |        |         |        |        | PTGT0LIM    | <15:0>      |          |       |       |        |          |        |        | 0000   |
| PTGT1LIM        | 0ACA  |                         |                                                                                    |         |        |         |        |        | PTGT1LIM    | <15:0>      |          |       |       |        |          |        |        | 0000   |
| PTGSDLIM        | 0ACC  |                         |                                                                                    |         |        |         |        |        | PTGSDLIN    | l<15:0>     |          |       |       |        |          |        |        | 0000   |
| <b>PTGC0LIM</b> | 0ACE  | PTGC0LIM<15:0>          |                                                                                    |         |        |         |        |        |             |             | 0000     |       |       |        |          |        |        |        |
| PTGC1LIM        | 0AD0  | PTGC1LIM<15:0>          |                                                                                    |         |        |         |        |        |             |             | 0000     |       |       |        |          |        |        |        |
| PTGADJ          | 0AD2  |                         |                                                                                    |         |        |         |        |        | PTGADJ<     | :15:0>      |          |       |       |        |          |        |        | 0000   |
| PTGL0           | 0AD4  |                         |                                                                                    |         |        |         |        |        | PTGL0<      | 15:0>       |          |       |       |        |          |        |        | 0000   |
| PTGQPTR         | 0AD6  | —                       | —                                                                                  | —       | —      | _       | —      | —      | _           | —           | —        | -     |       | P      | TGQPTR<4 | 4:0>   |        | 0000   |
| PTGQUE0         | 0AD8  |                         |                                                                                    |         | STEP   | 1<7:0>  |        |        |             |             |          |       | STEPO | )<7:0> |          |        |        | 0000   |
| PTGQUE1         | 0ADA  |                         |                                                                                    |         | STEP   | '3<7:0> |        |        |             |             |          |       | STEP2 | 2<7:0> |          |        |        | 0000   |
| PTGQUE2         | 0ADC  |                         |                                                                                    |         | STEP   | 25<7:0> |        |        |             | STEP4<7:0>  |          |       |       |        |          |        | 0000   |        |
| PTGQUE3         | 0ADE  | STEP7<7:0>              |                                                                                    |         |        |         |        |        | STEP6<7:0>  |             |          |       |       |        |          | 0000   |        |        |
| PTGQUE4         | 0AE0  | STEP9<7:0>              |                                                                                    |         |        |         |        |        |             | STEP8<7:0>  |          |       |       |        |          |        | 0000   |        |
| PTGQUE5         | 0AE2  | STEP11<7:0>             |                                                                                    |         |        |         |        |        |             | STEP10<7:0> |          |       |       |        |          | 0000   |        |        |
| PTGQUE6         | 0AE4  | STEP13<7:0>             |                                                                                    |         |        |         |        |        | STEP12<7:0> |             |          |       |       |        | 0000     |        |        |        |
| PTGQUE7         | 0AE6  | STEP15<7:0> STEP14<7:0> |                                                                                    |         |        |         |        |        |             | 0000        |          |       |       |        |          |        |        |        |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 78

# TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

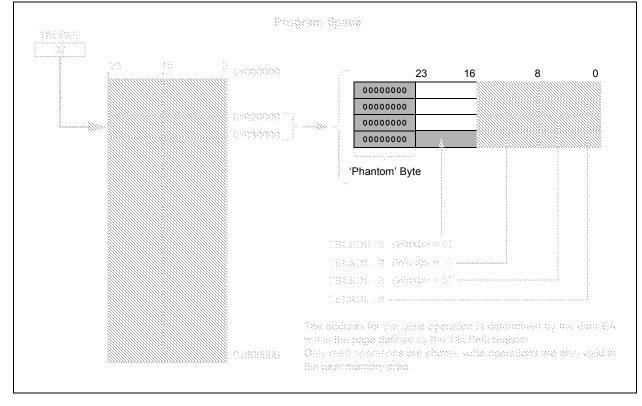
| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0 | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|-------|---------------|
| PMD1         | 0760  | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  | —      | I2C1MD | U2MD  | U1MD  | SPI2MD | SPI1MD | _      | _      | AD1MD | 0000          |
| PMD2         | 0762  | _      | _      | _      | _      | IC4MD  | IC3MD  | IC2MD  | IC1MD  | _      | _     | _     | _      | OC4MD  | OC3MD  | OC2MD  | OC1MD | 0000          |
| PMD3         | 0764  | _      | _      | —      | —      | _      | CMPMD  | _      | _      | CRCMD  | _     | —     | _      | —      | —      | I2C2MD | _     | 0000          |
| PMD4         | 0766  | _      |        | _      | _      | _      | _      | _      | _      | _      | _     | _     | _      | REFOMD | CTMUMD | _      | _     | 0000          |
| PMD6         | 076A  | _      |        | _      | _      | _      | PWM3MD | PWM2MD | PWM1MD | _      | _     | _     | _      | _      | _      | _      | _     | 0000          |
|              |       |        |        |        |        |        |        |        |        |        |       |       | DMA0MD |        |        |        |       |               |
| PMD7         | 076C  |        |        |        |        |        |        |        |        |        |       |       | DMA1MD | PTGMD  |        |        |       | 0000          |
| PIVID7       | 0760  | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     | _     | DMA2MD | FIGMD  | _      | _      | _     | 0000          |
|              |       |        |        |        |        |        |        |        |        |        |       |       | DMA3MD |        |        |        |       |               |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### 4.8.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
  - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
  - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
  - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.



# FIGURE 4-23: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

| -n = Value at POR '1' = Bit is set |       |       |       | '0' = Bit is cleared x = Bit is unknown |       |       |       |  |  |
|------------------------------------|-------|-------|-------|-----------------------------------------|-------|-------|-------|--|--|
| R = Readable bit W = Writable bit  |       |       |       | U = Unimplemented bit, read as '0'      |       |       |       |  |  |
| Legend:                            |       |       |       |                                         |       |       |       |  |  |
|                                    |       |       |       |                                         |       |       |       |  |  |
| bit 7                              |       |       |       |                                         |       |       | bit C |  |  |
|                                    |       |       | NVMAD | )R<23:16>                               |       |       |       |  |  |
| R/W-x                              | R/W-x | R/W-x | R/W-x | R/W-x                                   | R/W-x | R/W-x | R/W-x |  |  |
| bit 15                             |       |       |       |                                         |       |       | bit 8 |  |  |
| _                                  | —     | —     | —     | —                                       | _     | —     | —     |  |  |
| U-0                                | U-0   | U-0   | U-0   | U-0                                     | U-0   | U-0   | U-0   |  |  |

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADR<23:16>:** Nonvolatile Memory Write Address High bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

### REGISTER 5-3: NVMADRL: NONVOLATILE MEMORY ADDRESS REGISTER LOW

| R/W-x                              | R/W-x | R/W-x | R/W-x | R/W-x                                   | R/W-x | R/W-x | R/W-x |  |  |
|------------------------------------|-------|-------|-------|-----------------------------------------|-------|-------|-------|--|--|
|                                    |       |       | NVMA  | DR<15:8>                                |       |       |       |  |  |
| bit 15                             |       |       |       |                                         |       |       | bit 8 |  |  |
| R/W-x                              | R/W-x | R/W-x | R/W-x | R/W-x                                   | R/W-x | R/W-x | R/W-x |  |  |
|                                    |       |       | NVMA  | DR<7:0>                                 |       |       |       |  |  |
| bit 7                              |       |       |       |                                         |       |       | bit 0 |  |  |
| Legend:                            |       |       |       |                                         |       |       |       |  |  |
| R = Readable bit W = Writable bit  |       |       | it    | U = Unimplemented bit, read as '0'      |       |       |       |  |  |
| -n = Value at POR (1' = Bit is set |       |       |       | '0' = Bit is cleared x = Bit is unknown |       |       |       |  |  |

bit 15-0 NVMADR<15:0>: Nonvolatile Memory Write Address Low bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

### REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY

| U-0             | U-0 | U-0              | U-0  | U-0              | U-0             | U-0             | U-0   |
|-----------------|-----|------------------|------|------------------|-----------------|-----------------|-------|
| —               | —   | —                | —    | —                | —               | —               | —     |
| bit 15          |     |                  |      |                  |                 |                 | bit 8 |
|                 |     |                  |      |                  |                 |                 |       |
| W-0             | W-0 | W-0              | W-0  | W-0              | W-0             | W-0             | W-0   |
|                 |     |                  | NVMK | EY<7:0>          |                 |                 |       |
| bit 7           |     |                  |      |                  |                 |                 | bit 0 |
|                 |     |                  |      |                  |                 |                 |       |
| Legend:         |     |                  |      |                  |                 |                 |       |
| R = Readable I  | bit | W = Writable     | bit  | U = Unimple      | mented bit, rea | d as '0'        |       |
| -n = Value at P | OR  | '1' = Bit is set |      | '0' = Bit is cle | eared           | x = Bit is unkr | nown  |

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| R/W-0                              | R/W-0                                                                                                                                                                  | R/W-0                                                                                                                                                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W-0                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | IC2R<6:0>                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| ·                                  |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bit 8                                                                                                                                                                                                                                                                                                                                                                                               |
| R/W-0                              | R/W-0                                                                                                                                                                  | R/W-0                                                                                                                                                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W-0                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | IC1R<6:0>                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bit C                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| e bit                              | W = Writable b                                                                                                                                                         | it                                                                                                                                                                                                                                                                                                                                       | U = Unimplem                                                                                                                                                                                             | nented bit, rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     |
| -n = Value at POR '1' = Bit is set |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          | ared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x = Bit is unkr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nown                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                  |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | nbers)                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    |                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unimplemer                         | nted: Read as '0                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| (see Table 11<br>1111001 = I       | I-2 for input pin's nput tied to RPI1                                                                                                                                  | election num<br>21                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                          | onding RPn Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | e bit<br>POR<br>Unimplemen<br>IC2R<6:0>: /<br>(see Table 11<br>1111001 = I<br>0000001 = I<br>0000000 = I<br>Unimplemen<br>IC1R<6:0>: /<br>(see Table 11<br>1111001 = I | e bit W = Writable b<br>POR '1' = Bit is set<br>Unimplemented: Read as '0<br>IC2R<6:0>: Assign Input Cap<br>(see Table 11-2 for input pin s<br>1111001 = Input tied to RPI1<br>0000001 = Input tied to CMP<br>0000000 = Input tied to Vss<br>Unimplemented: Read as '0<br>IC1R<6:0>: Assign Input Cap<br>(see Table 11-2 for input pin s | e bit W = Writable bit<br>POR '1' = Bit is set<br>Unimplemented: Read as '0'<br>IC2R<6:0>: Assign Input Capture 2 (IC2)<br>(see Table 11-2 for input pin selection num<br>1111001 = Input tied to RPI121 | R/W-0       R/W-0       R/W-0       R/W-0         IC1R<6:0>       IC1R<6:0>         e bit       W = Writable bit       U = Unimplem         POR       '1' = Bit is set       '0' = Bit is clear         Unimplemented:       Read as '0'         IC2R<6:0>:       Assign Input Capture 2 (IC2) to the Correspond (see Table 11-2 for input pin selection numbers)         1111001 = Input tied to RPI121         .         .         0000001 = Input tied to CMP1         0000000 = Input tied to Vss         Unimplemented:         Read as '0'         IC1R<6:0>:         Assign Input Capture 1 (IC1) to the Correspond (see Table 11-2 for input pin selection numbers)         1111001 = Input tied to RPI121         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . | R/W-0       R/W-0       R/W-0       R/W-0         IC1R<6:0>         e bit       W = Writable bit       U = Unimplemented bit, real         POR       '1' = Bit is set       '0' = Bit is cleared         Unimplemented:       Read as '0'         IC2R<6:0>:       Assign Input Capture 2 (IC2) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers)         1111001 = Input tied to RPI121       .         .       .         0000001 = Input tied to CMP1         0000000 = Input tied to Vss         Unimplemented:         Read as '0'         IC1R<6:0>:         Assign Input Capture 1 (IC1) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers)         1111001 = Input tied to RPI121         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . | R/W-0       R/W-0       R/W-0       R/W-0       R/W-0         IC1R<6:0>    e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 <p< td=""></p<> |

### REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

### REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER (CONTINUED)

- bit 2 INDEX: Status of INDXx Input Pin After Polarity Control
  - 1 = Pin is at logic '1'
  - 0 = Pin is at logic '0'
- bit 1 QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1' 0 = Pin is at logic '0'
- bit 0 **QEA:** Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1'
  - 0 = Pin is at logic '0'

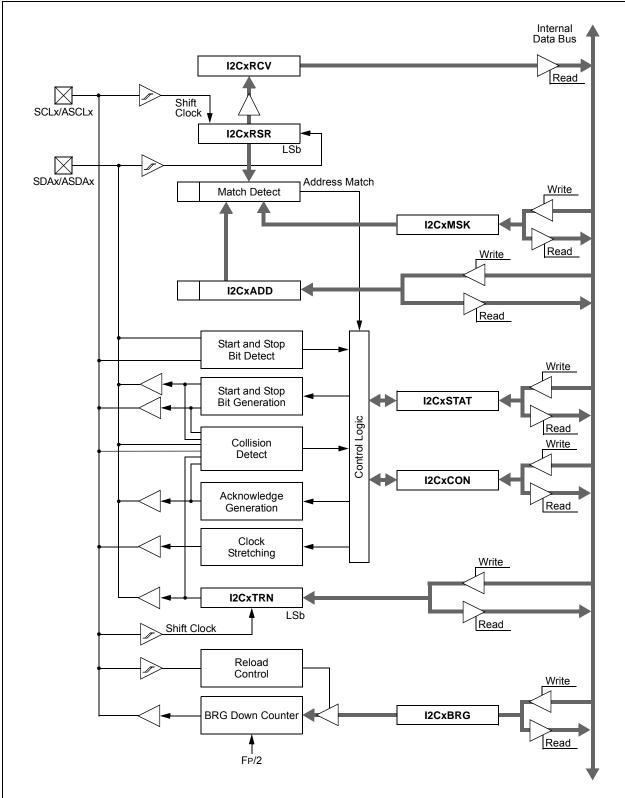



FIGURE 19-1: I2Cx BLOCK DIAGRAM (X = 1 OR 2)

|                                                                                                                                                                                        | D MALO                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                        | 1                                                                                                                                                                                             | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| DMABS1                                                                                                                                                                                 | DMABS0                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bit 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DAMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 0-0                                                                                                                                                                                    | 0-0                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| —                                                                                                                                                                                      | —                                                                                                                                                                                             | FSA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FSA3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FSA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FSA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FSA0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| bit                                                                                                                                                                                    | W = Writable b                                                                                                                                                                                | U = Unimplen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nented bit, rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| POR                                                                                                                                                                                    | '1' = Bit is set                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | '0' = Bit is clea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x = Bit is unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | own                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 110 = 32 buffers in RAM<br>101 = 24 buffers in RAM<br>100 = 16 buffers in RAM<br>011 = 12 buffers in RAM<br>010 = 8 buffers in RAM<br>001 = 6 buffers in RAM<br>000 = 4 buffers in RAM |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| -                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 11111 <b>= Rea</b>                                                                                                                                                                     | d Buffer RB31                                                                                                                                                                                 | with Buffer b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                                                                                                                        | DMABS<2:0<br>111 = Reserv<br>110 = 32 buff<br>101 = 24 buff<br>100 = 16 buff<br>011 = 12 buff<br>010 = 8 buffe<br>001 = 6 buffe<br>000 = 4 buffe<br>Unimplement<br>FSA<4:0>: F<br>11111 = Rea | DMABS1       DMABS0         U-0       U-0         —       —         bit       W = Writable to the second seco | DMABS1       DMABS0       —         U-0       U-0       R/W-0         —       —       FSA4         bit       W = Writable bit         POR       '1' = Bit is set         DMABS       2:0>: DMA Buffer Size bits         111 = Reserved         110 = 32 buffers in RAM         101 = 24 buffers in RAM         100 = 16 buffers in RAM         011 = 12 buffers in RAM         010 = 8 buffers in RAM         010 = 6 buffers in RAM         000 = 4 buffers in RAM         000 = 4 buffers in RAM         000 = 4 buffers in RAM         011 = 6 buffers in RAM         001 = 6 buffers in RAM         001 = 8 buffers in RAM         001 = 8 buffers in RAM         000 = 4 buffers in RAM         111 = Read Buffer RB31 | DMABS1       DMABS0       —       —         U-0       U-0       R/W-0       R/W-0         —       —       FSA4       FSA3         bit       W = Writable bit       U = Unimplen         POR       '1' = Bit is set       '0' = Bit is clear         DMABS       -:       :0' = Bit is clear         DMABS       :0' = Bit is clear       :0' = Bit is clear         DMABS       :0' = Bit is clear       :0' = Bit is clear         DMABS       :0' = Bit is clear       :0' = Bit is clear         DMABS       :0' = Bit is clear       :0' = Bit is clear         DMABS       :0' = Bit is clear       :0' = Bit is clear         DMABS       :0' = Bit is clear       :0' = Bit is clear         DMABS       :0' = Bit is clear       :0' = Bit is clear         DMABS       :0' = Bit is clear       :0' = Bit is clear         DMABS       : DMA Buffers in RAM       :0' = Bit is clear         100 = 16 buffers in RAM       :01 = 12 buffers in RAM       :01 = 8 buffers in RAM         001 = 6 buffers in RAM       :00 = 4 buffers in RAM       :00 = 4 buffers in RAM         000 = 4 buffers in RAM       :0' = FIFO Area Starts with Buffer bits       :1111 = Read Buffer RB31 | DMABS1       DMABS0       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       — <th< td=""><td>DMABS1       DMABS0            U-0       U-0       R/W-0       R/W-0       R/W-0       R/W-0           FSA4       FSA3       FSA2       FSA1         bit       W = Writable bit       U = Unimplemented bit, read as '0'         POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unkn         DMABS       2:0&gt;: DMA Buffer Size bits         111 = Reserved       10 = 32 buffers in RAM       101 = 24 buffers in RAM         100 = 16 buffers in RAM       011 = 12 buffers in RAM       011 = 12 buffers in RAM         010 = 8 buffers in RAM       001 = 6 buffers in RAM       001 = 6 buffers in RAM         000 = 4 buffers in RAM       Unimplemented: Read as '0'       FSA         FSA       FSA       FSA       FSA         U111 = Read Buffer RB31       East with Buffer bits       1111 = Read Buffer RB31</td></th<> | DMABS1       DMABS0            U-0       U-0       R/W-0       R/W-0       R/W-0       R/W-0           FSA4       FSA3       FSA2       FSA1         bit       W = Writable bit       U = Unimplemented bit, read as '0'         POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unkn         DMABS       2:0>: DMA Buffer Size bits         111 = Reserved       10 = 32 buffers in RAM       101 = 24 buffers in RAM         100 = 16 buffers in RAM       011 = 12 buffers in RAM       011 = 12 buffers in RAM         010 = 8 buffers in RAM       001 = 6 buffers in RAM       001 = 6 buffers in RAM         000 = 4 buffers in RAM       Unimplemented: Read as '0'       FSA         FSA       FSA       FSA       FSA         U111 = Read Buffer RB31       East with Buffer bits       1111 = Read Buffer RB31 |  |  |  |

# REGISTER 21-4: CxFCTRL: ECANx FIFO CONTROL REGISTER

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| R/W-0      | R/W-0                                 | R/W-0                              | R/W-0          | R/W-0            | R/W-0                        | R/W-0           | R/W-0  |
|------------|---------------------------------------|------------------------------------|----------------|------------------|------------------------------|-----------------|--------|
| ADCTS4     | ADCTS3                                | ADCTS2                             | ADCTS1         | IC4TSS           | IC3TSS                       | IC2TSS          | IC1TSS |
| bit 15     |                                       |                                    |                |                  |                              |                 | bit 8  |
| R/W-0      | R/W-0                                 | R/W-0                              | R/W-0          | R/W-0            | R/W-0                        | R/W-0           | R/W-0  |
| OC4CS      |                                       | OC2CS                              | OC1CS          | OC4TSS           | OC3TSS                       | OC2TSS          | OC1TSS |
| bit 7      |                                       |                                    |                |                  |                              |                 | bit (  |
| Legend:    |                                       |                                    |                |                  |                              |                 |        |
| R = Reada  | ble bit                               | W = Writable                       | bit            | U = Unimplei     | mented bit, read             | l as '0'        |        |
| -n = Value | at POR                                | '1' = Bit is set                   |                | '0' = Bit is cle |                              | x = Bit is unkr | nown   |
|            |                                       |                                    |                |                  |                              |                 |        |
| bit 15     | ADCTS4: Sa                            | mple Trigger P                     | TGO15 for AE   | OC bit           |                              |                 |        |
|            | 1 = Generate                          | es Trigger wher                    | the broadcas   | t command is     | executed                     |                 |        |
|            | 0 = Does not                          | generate Trigg                     | er when the b  | roadcast com     | mand is execute              | ed              |        |
| bit 14     |                                       | mple Trigger P                     |                |                  |                              |                 |        |
|            |                                       | es Trigger wher                    |                |                  |                              | al              |        |
| bit 13     |                                       |                                    |                |                  | mand is execute              | a               |        |
| DIE 13     |                                       | mple Trigger P<br>es Trigger wher  |                |                  | evecuted                     |                 |        |
|            |                                       |                                    |                |                  | mand is execute              | ed              |        |
| bit 12     |                                       | mple Trigger P                     |                |                  |                              |                 |        |
|            | 1 = Generate                          | es Trigger wher                    | the broadcas   | t command is     | executed                     |                 |        |
|            |                                       |                                    |                |                  | mand is execute              | ed              |        |
| bit 11     | -                                     | ger/Synchroniz                     |                |                  |                              |                 |        |
|            |                                       |                                    |                |                  | ast command is broadcast con |                 | ited   |
| bit 10     | IC3TSS: Trig                          | ger/Synchroniz                     | ation Source f | for IC3 bit      |                              |                 |        |
|            |                                       |                                    |                |                  | ast command is broadcast con |                 | ited   |
| bit 9      | IC2TSS: Trig                          | ger/Synchroniz                     | ation Source f | for IC2 bit      |                              |                 |        |
|            |                                       |                                    |                |                  | ast command is broadcast con |                 | ited   |
| bit 8      |                                       | ger/Synchroniz                     |                |                  |                              |                 |        |
|            |                                       |                                    |                |                  | ast command is broadcast con |                 | ited   |
| bit 7      |                                       | ck Source for C                    | -              |                  |                              |                 |        |
|            |                                       | es clock pulse v<br>generate clock |                |                  | d is executed command is exe | cuted           |        |
| bit 6      |                                       | ck Source for C                    | -              |                  |                              |                 |        |
|            |                                       | es clock pulse v<br>aenerate clock |                |                  | d is executed command is exe | cuted           |        |
| bit 5      |                                       | ck Source for C                    | -              |                  |                              |                 |        |
|            | 1 = Generate                          | es clock pulse v                   | when the broad |                  | d is executed command is exe | cuted           |        |
|            | This register is rea<br>PTGSTRT = 1). | -                                  |                |                  |                              |                 | and    |
|            | This register is on                   | lv used with the                   | PTGCTRI. OI    | PTION = 1111     | Step command                 | L               |        |
|            |                                       | .,                                 |                |                  | c.op commune                 | •               |        |

# **REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER**<sup>(1,2)</sup>

# 24.4 Step Commands and Format

### TABLE 24-1: PTG STEP COMMAND FORMAT

| Step Command Byte: |             |             |
|--------------------|-------------|-------------|
|                    | STEPx<7:0>  |             |
| CMD<3:0>           |             | OPTION<3:0> |
| bit 7              | bit 4 bit 3 | bit 0       |

| bit 7-4 | CMD<3:0> | Step<br>Command | Command Description                                                                                                                                                                      |
|---------|----------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 0000     | PTGCTRL         | Execute control command as described by OPTION<3:0>.                                                                                                                                     |
|         | 0001     | PTGADD          | Add contents of PTGADJ register to target register as described by<br>OPTION<3:0>.                                                                                                       |
|         |          | PTGCOPY         | Copy contents of PTGHOLD register to target register as described by<br>OPTION<3:0>.                                                                                                     |
|         | 001x     | PTGSTRB         | Copy the value contained in CMD<0>:OPTION<3:0> to the CH0SA<4:0> bits (AD1CHS0<4:0>).                                                                                                    |
|         | 0100     | PTGWHI          | Wait for a low-to-high edge input from the selected PTG trigger input as described by OPTION<3:0>.                                                                                       |
|         | 0101     | PTGWLO          | Wait for a high-to-low edge input from the selected PTG trigger input as described by OPTION<3:0>.                                                                                       |
|         | 0110     | Reserved        | Reserved.                                                                                                                                                                                |
|         | 0111     | PTGIRQ          | Generate individual interrupt request as described by OPTION3<:0>.                                                                                                                       |
|         | 100x     | PTGTRIG         | Generate individual trigger output as described by < <cmd<0>:OPTION&lt;3:0&gt;&gt;.</cmd<0>                                                                                              |
|         | 101x     | PTGJMP          | Copy the value indicated in < <cmd<0>:OPTION&lt;3:0&gt;&gt; to the Queue Pointer (PTGQPTR) and jump to that Step queue.</cmd<0>                                                          |
|         | 110x     | PTGJMPC0        | PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR).                                                                                                                                 |
|         |          |                 | $PTGC0 \neq PTGC0LIM$ : Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd<0>:OPTION&lt;3:0&gt;&gt; to the Queue Pointer (PTGQPTR), and jump to that Step queue</cmd<0>  |
|         | 111x     | PTGJMPC1        | PTGC1 = PTGC1LIM: Increment the Queue Pointer (PTGQPTR).                                                                                                                                 |
|         |          |                 | $PTGC1 \neq PTGC1LIM$ : Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd<0>:OPTION&lt;3:0&gt;&gt; to the Queue Pointer (PTGQPTR), and jump to that Step queue.</cmd<0> |

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

| Base<br>Instr<br># | Assembly<br>Mnemonic |        | Assembly Syntax                            | Description                                 | # of<br>Words | # of<br>Cycles <sup>(2)</sup> | Status Flags<br>Affected |
|--------------------|----------------------|--------|--------------------------------------------|---------------------------------------------|---------------|-------------------------------|--------------------------|
| 25                 | DAW                  | DAW    | Wn                                         | Wn = decimal adjust Wn                      | 1             | 1                             | С                        |
| 26                 | DEC                  | DEC    | f                                          | f = f - 1                                   | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | DEC    | f,WREG                                     | WREG = f – 1                                | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | DEC    | Ws,Wd                                      | Wd = Ws - 1                                 | 1             | 1                             | C,DC,N,OV,Z              |
| 27                 | DEC2                 | DEC2   | f                                          | f = f - 2                                   | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | DEC2   | f,WREG                                     | WREG = f – 2                                | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | DEC2   | Ws,Wd                                      | Wd = Ws - 2                                 | 1             | 1                             | C,DC,N,OV,Z              |
| 28                 | DISI                 | DISI   | #lit14                                     | Disable Interrupts for k instruction cycles | 1             | 1                             | None                     |
| 29                 | DIV                  | DIV.S  | Wm,Wn                                      | Signed 16/16-bit Integer Divide             | 1             | 18                            | N,Z,C,OV                 |
|                    |                      | DIV.SD | Wm,Wn                                      | Signed 32/16-bit Integer Divide             | 1             | 18                            | N,Z,C,OV                 |
|                    |                      | DIV.U  | Wm,Wn                                      | Unsigned 16/16-bit Integer Divide           | 1             | 18                            | N,Z,C,OV                 |
|                    |                      | DIV.UD | Wm,Wn                                      | Unsigned 32/16-bit Integer Divide           | 1             | 18                            | N,Z,C,OV                 |
| 30                 | DIVF                 | DIVF   | Wm , Wn <sup>(1)</sup>                     | Signed 16/16-bit Fractional Divide          | 1             | 18                            | N,Z,C,OV                 |
| 31                 | DO                   | DO     | #lit15,Expr <sup>(1)</sup>                 | Do code to PC + Expr, lit15 + 1 times       | 2             | 2                             | None                     |
|                    |                      | DO     | Wn, Expr(1)                                | Do code to PC + Expr, (Wn) + 1 times        | 2             | 2                             | None                     |
| 32                 | ED                   | ED     | Wm*Wm,Acc,Wx,Wy,Wxd <sup>(1)</sup>         | Euclidean Distance (no accumulate)          | 1             | 1                             | OA,OB,OAB,<br>SA,SB,SAB  |
| 33                 | EDAC                 | EDAC   | Wm*Wm,Acc,Wx,Wy,Wxd <sup>(1)</sup>         | Euclidean Distance                          | 1             | 1                             | OA,OB,OAB,<br>SA,SB,SAB  |
| 34                 | EXCH                 | EXCH   | Wns,Wnd                                    | Swap Wns with Wnd                           | 1             | 1                             | None                     |
| 35                 | FBCL                 | FBCL   | Ws,Wnd                                     | Find Bit Change from Left (MSb) Side        | 1             | 1                             | С                        |
| 36                 | FF1L                 | FF1L   | Ws,Wnd                                     | Find First One from Left (MSb) Side         | 1             | 1                             | С                        |
| 37                 | FF1R                 | FF1R   | Ws,Wnd                                     | Find First One from Right (LSb) Side        | 1             | 1                             | С                        |
| 38                 | GOTO                 | GOTO   | Expr                                       | Go to address                               | 2             | 4                             | None                     |
|                    |                      | GOTO   | Wn                                         | Go to indirect                              | 1             | 4                             | None                     |
|                    |                      | GOTO.L | Wn                                         | Go to indirect (long address)               | 1             | 4                             | None                     |
| 39                 | INC                  | INC    | f                                          | f = f + 1                                   | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | INC    | f,WREG                                     | WREG = f + 1                                | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | INC    | Ws,Wd                                      | Wd = Ws + 1                                 | 1             | 1                             | C,DC,N,OV,Z              |
| 40                 | INC2                 | INC2   | f                                          | f = f + 2                                   | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | INC2   | f,WREG                                     | WREG = f + 2                                | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | INC2   | Ws,Wd                                      | Wd = Ws + 2                                 | 1             | 1                             | C,DC,N,OV,Z              |
| 41                 | IOR                  | IOR    | f                                          | f = f .IOR. WREG                            | 1             | 1                             | N,Z                      |
|                    |                      | IOR    | f,WREG                                     | WREG = f .IOR. WREG                         | 1             | 1                             | N,Z                      |
|                    |                      | IOR    | #lit10,Wn                                  | Wd = lit10 .IOR. Wd                         | 1             | 1                             | N,Z                      |
|                    |                      | IOR    | Wb,Ws,Wd                                   | Wd = Wb .IOR. Ws                            | 1             | 1                             | N,Z                      |
|                    |                      | IOR    | Wb,#lit5,Wd                                | Wd = Wb .IOR. lit5                          | 1             | 1                             | N,Z                      |
| 42                 | LAC                  | LAC    | Wso,#Slit4,Acc                             | Load Accumulator                            | 1             | 1                             | OA,OB,OAB,<br>SA,SB,SAB  |
| 43                 | LNK                  | LNK    | #lit14                                     | Link Frame Pointer                          | 1             | 1                             | SFA                      |
| 44                 | LSR                  | LSR    | f                                          | f = Logical Right Shift f                   | 1             | 1                             | C,N,OV,Z                 |
|                    |                      | LSR    | f,WREG                                     | WREG = Logical Right Shift f                | 1             | 1                             | C,N,OV,Z                 |
|                    |                      | LSR    | Ws,Wd                                      | Wd = Logical Right Shift Ws                 | 1             | 1                             | C,N,OV,Z                 |
|                    |                      | LSR    | Wb,Wns,Wnd                                 | Wnd = Logical Right Shift Wb by Wns         | 1             | 1                             | N,Z                      |
|                    |                      | LSR    | Wb,#lit5,Wnd                               | Wnd = Logical Right Shift Wb by lit5        | 1             | 1                             | N,Z                      |
| 45                 | MAC                  | MAC    | Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB <sup>(1)</sup> | Multiply and Accumulate                     | 1             | 1                             | OA,OB,OAB,<br>SA,SB,SAB  |
|                    |                      | MAC    | Wm*Wm,Acc,Wx,Wxd,Wy,Wyd <sup>(1)</sup>     | Square and Accumulate                       | 1             | 1                             | OA,OB,OAB,<br>SA,SB,SAB  |

# TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

### TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

| АС СНА       | RACTERI                                | STICS                                                            | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |     |     |     |                    |
|--------------|----------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|--------------------|
| Param<br>No. | Symbol                                 | Characteristic                                                   | Min. Typ. <sup>(1)</sup> Max. Units Conditions                                                                                                                                                                                                                                          |     |     |     |                    |
| OS50         | Fplli                                  | PLL Voltage Controlled Oscillator<br>(VCO) Input Frequency Range | 0.8                                                                                                                                                                                                                                                                                     | _   | 8.0 | MHz | ECPLL, XTPLL modes |
| OS51         | Fvco                                   | On-Chip VCO System Frequency                                     | 120                                                                                                                                                                                                                                                                                     | —   | 340 | MHz |                    |
| OS52         | 52 TLOCK PLL Start-up Time (Lock Time) |                                                                  | 0.9                                                                                                                                                                                                                                                                                     | 1.5 | 3.1 | ms  |                    |
| OS53         |                                        |                                                                  |                                                                                                                                                                                                                                                                                         | 0.5 | 3   | %   |                    |

**Note 1:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter = 
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

### TABLE 30-19: INTERNAL FRC ACCURACY

| AC CHA                      | RACTERISTICS                            | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |            |             |                |                                                                     |                |  |
|-----------------------------|-----------------------------------------|------------------------------------------------------|------------|-------------|----------------|---------------------------------------------------------------------|----------------|--|
| Param<br>No. Characteristic |                                         | Min.                                                 | Тур.       | Max.        | Units          | Conditio                                                            | ons            |  |
| Internal                    | FRC Accuracy @ FRC Fre                  | equency =                                            | : 7.37 MHz | <u>,(1)</u> |                |                                                                     |                |  |
| F20a                        | FRC                                     | -1.5                                                 | 0.5        | +1.5        | %              | $-40^{\circ}C \le TA \le -10^{\circ}C$                              | VDD = 3.0-3.6V |  |
|                             |                                         | -1                                                   | 0.5        | +1          | %              | $-10^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 3.0-3.6^{\circ}$ |                |  |
| F20b                        | FRC -2 1 +2 % +85°C ≤ TA ≤ +125°C VDD = |                                                      |            |             | VDD = 3.0-3.6V |                                                                     |                |  |

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

### TABLE 30-20: INTERNAL LPRC ACCURACY

| AC CH                       | ARACTERISTICS               | $\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |      |      |       |                                           |                |  |
|-----------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------------------------------------------|----------------|--|
| Param<br>No. Characteristic |                             | Min.                                                                                                                                                                                                                                                                         | Тур. | Max. | Units | Conditions                                |                |  |
| LPRC (                      | @ 32.768 kHz <sup>(1)</sup> |                                                                                                                                                                                                                                                                              |      |      |       |                                           |                |  |
| F21a                        | LPRC                        | -30                                                                                                                                                                                                                                                                          | —    | +30  | %     | $-40^{\circ}C \le TA \le -10^{\circ}C$    | VDD = 3.0-3.6V |  |
|                             |                             | -20                                                                                                                                                                                                                                                                          | _    | +20  | %     | $-10^{\circ}C \leq TA \leq +85^{\circ}C$  | VDD = 3.0-3.6V |  |
| F21b LPRC                   |                             | -30                                                                                                                                                                                                                                                                          | _    | +30  | %     | $+85^{\circ}C \leq TA \leq +125^{\circ}C$ | VDD = 3.0-3.6V |  |

**Note 1:** The change of LPRC frequency as VDD changes.

|               | RACTERI                 | STICS             |                           | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |       |            |                                             |  |
|---------------|-------------------------|-------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|---------------------------------------------|--|
| Param.<br>No. | Symbol                  | Characte          | Min.                      | Max.                                                                                                                                                                                                 | Units | Conditions |                                             |  |
| IS10          | TLO:SCL                 | Clock Low Time    | 100 kHz mode              | 4.7                                                                                                                                                                                                  | _     | μS         |                                             |  |
|               |                         |                   | 400 kHz mode              | 1.3                                                                                                                                                                                                  | —     | μS         |                                             |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | 0.5                                                                                                                                                                                                  | —     | μS         |                                             |  |
| IS11          | THI:SCL Clock High Time |                   | 100 kHz mode              | 4.0                                                                                                                                                                                                  | —     | μS         | Device must operate at a minimum of 1.5 MHz |  |
|               |                         |                   | 400 kHz mode              | 0.6                                                                                                                                                                                                  | —     | μS         | Device must operate at a minimum of 10 MHz  |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | 0.5                                                                                                                                                                                                  | —     | μS         |                                             |  |
| IS20          | TF:SCL                  | SDAx and SCLx     | 100 kHz mode              |                                                                                                                                                                                                      | 300   | ns         | CB is specified to be from                  |  |
|               |                         | Fall Time         | 400 kHz mode              | 20 + 0.1 Св                                                                                                                                                                                          | 300   | ns         | 10 to 400 pF                                |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | —                                                                                                                                                                                                    | 100   | ns         |                                             |  |
| IS21          | TR:SCL                  | SDAx and SCLx     | 100 kHz mode              |                                                                                                                                                                                                      | 1000  | ns         | CB is specified to be from                  |  |
|               |                         | Rise Time         | 400 kHz mode              | 20 + 0.1 Св                                                                                                                                                                                          | 300   | ns         | 10 to 400 pF                                |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> |                                                                                                                                                                                                      | 300   | ns         |                                             |  |
| IS25          | TSU:DAT                 | Data Input        | 100 kHz mode              | 250                                                                                                                                                                                                  | —     | ns         |                                             |  |
|               |                         | Setup Time        | 400 kHz mode              | 100                                                                                                                                                                                                  | —     | ns         |                                             |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | 100                                                                                                                                                                                                  | _     | ns         |                                             |  |
| IS26 THD:DAT  | THD:DAT                 | Data Input        | 100 kHz mode              | 0                                                                                                                                                                                                    | —     | μS         |                                             |  |
|               |                         | Hold Time         | 400 kHz mode              | 0                                                                                                                                                                                                    | 0.9   | μS         |                                             |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | 0                                                                                                                                                                                                    | 0.3   | μS         |                                             |  |
| IS30          | TSU:STA                 | Start Condition   | 100 kHz mode              | 4.7                                                                                                                                                                                                  | —     | μS         | Only relevant for Repeated                  |  |
|               |                         | Setup Time        | 400 kHz mode              | 0.6                                                                                                                                                                                                  | —     | μS         | Start condition                             |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | 0.25                                                                                                                                                                                                 | —     | μS         |                                             |  |
| IS31          | THD:STA                 | Start Condition   | 100 kHz mode              | 4.0                                                                                                                                                                                                  | —     | μS         | After this period, the first                |  |
|               |                         | Hold Time         | 400 kHz mode              | 0.6                                                                                                                                                                                                  | —     | μS         | clock pulse is generated                    |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | 0.25                                                                                                                                                                                                 | —     | μS         |                                             |  |
| IS33          | Tsu:sto                 | Stop Condition    | 100 kHz mode              | 4.7                                                                                                                                                                                                  | —     | μS         |                                             |  |
|               |                         | Setup Time        | 400 kHz mode              | 0.6                                                                                                                                                                                                  | —     | μS         |                                             |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | 0.6                                                                                                                                                                                                  | _     | μS         |                                             |  |
| IS34          | THD:STO                 | Stop Condition    | 100 kHz mode              | 4                                                                                                                                                                                                    | —     | μS         |                                             |  |
|               |                         | Hold Time         | 400 kHz mode              | 0.6                                                                                                                                                                                                  | —     | μS         |                                             |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | 0.25                                                                                                                                                                                                 |       | μS         |                                             |  |
| IS40          | TAA:SCL                 | Output Valid      | 100 kHz mode              | 0                                                                                                                                                                                                    | 3500  | ns         |                                             |  |
|               |                         | From Clock        | 400 kHz mode              | 0                                                                                                                                                                                                    | 1000  | ns         |                                             |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | 0                                                                                                                                                                                                    | 350   | ns         |                                             |  |
| IS45          | TBF:SDA                 | Bus Free Time     | 100 kHz mode              | 4.7                                                                                                                                                                                                  | —     | μS         | Time the bus must be free                   |  |
|               |                         |                   | 400 kHz mode              | 1.3                                                                                                                                                                                                  | —     | μS         | before a new transmission                   |  |
|               |                         |                   | 1 MHz mode <sup>(1)</sup> | 0.5                                                                                                                                                                                                  |       | μs         | can start                                   |  |
| IS50          | Св                      | Bus Capacitive Lo | ading                     | —                                                                                                                                                                                                    | 400   | pF         |                                             |  |
| S51           | TPGD                    | Pulse Gobbler De  | lay                       | 65                                                                                                                                                                                                   | 390   | ns         | (Note 2)                                    |  |

# TABLE 30-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

**2:** Typical value for this parameter is 130 ns.

**3:** These parameters are characterized, but not tested in manufacturing.

| DC CH                         | ARACTERIS             | STICS                                                | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated) <sup>(1)</sup> Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |                     |      |        |                                                   |  |  |  |  |
|-------------------------------|-----------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|--------|---------------------------------------------------|--|--|--|--|
| Param<br>No.                  | Symbol Characteristic |                                                      | Min.                                                                                                                                                                                                                 | Тур. <sup>(2)</sup> | Max. | Units  | Conditions                                        |  |  |  |  |
| Comparator AC Characteristics |                       |                                                      |                                                                                                                                                                                                                      |                     |      |        |                                                   |  |  |  |  |
| CM10                          | TRESP                 | Response Time <sup>(3)</sup>                         | —                                                                                                                                                                                                                    | 19                  | —    | ns     | V+ input step of 100 mV<br>V- input held at VDD/2 |  |  |  |  |
| CM11                          | Тмс2о∨                | Comparator Mode<br>Change to Output Valid            | —                                                                                                                                                                                                                    | -                   | 10   | μs     |                                                   |  |  |  |  |
| Compa                         | rator DC Ch           | naracteristics                                       |                                                                                                                                                                                                                      |                     |      |        |                                                   |  |  |  |  |
| CM30                          | VOFFSET               | Comparator Offset<br>Voltage                         | —                                                                                                                                                                                                                    | ±10                 | 40   | mV     |                                                   |  |  |  |  |
| CM31                          | VHYST                 | Input Hysteresis<br>Voltage <sup>(3)</sup>           | _                                                                                                                                                                                                                    | 30                  | —    | mV     |                                                   |  |  |  |  |
| CM32                          | Trise/<br>Tfall       | Comparator Output Rise/<br>Fall Time <sup>(3)</sup>  | —                                                                                                                                                                                                                    | 20                  | —    | ns     | 1 pF load capacitance<br>on input                 |  |  |  |  |
| CM33                          | Vgain                 | Open-Loop Voltage<br>Gain <sup>(3)</sup>             | —                                                                                                                                                                                                                    | 90                  | —    | db     |                                                   |  |  |  |  |
| CM34                          | VICM                  | Input Common-Mode<br>Voltage                         | AVss                                                                                                                                                                                                                 | -                   | AVDD | V      |                                                   |  |  |  |  |
| Op Am                         | p AC Chara            | cteristics                                           |                                                                                                                                                                                                                      |                     |      |        |                                                   |  |  |  |  |
| CM20                          | SR                    | Slew Rate <sup>(3)</sup>                             |                                                                                                                                                                                                                      | 9                   | _    | V/µs   | 10 pF load                                        |  |  |  |  |
| CM21a                         | Рм                    | Phase Margin<br>(Configuration A) <sup>(3,4)</sup>   | _                                                                                                                                                                                                                    | 55                  | —    | Degree | G = 100V/V; 10 pF load                            |  |  |  |  |
| CM21b                         | Рм                    | Phase Margin<br>(Configuration B) <sup>(3,5)</sup>   | _                                                                                                                                                                                                                    | 40                  | _    | Degree | G = 100V/V; 10 pF load                            |  |  |  |  |
| CM22                          | Gм                    | Gain Margin <sup>(3)</sup>                           | —                                                                                                                                                                                                                    | 20                  | _    | db     | G = 100V/V; 10 pF load                            |  |  |  |  |
| CM23a                         | Gвw                   | Gain Bandwidth<br>(Configuration A) <sup>(3,4)</sup> | _                                                                                                                                                                                                                    | 10                  | —    | MHz    | 10 pF load                                        |  |  |  |  |
| CM23b                         | GBW                   | Gain Bandwidth<br>(Configuration B) <sup>(3,5)</sup> | —                                                                                                                                                                                                                    | 6                   | —    | MHz    | 10 pF load                                        |  |  |  |  |

# TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.

NOTES:

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| DC CHARACT       | ERISTICS      |      | (unless oth | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ |                                               |                                      |  |  |
|------------------|---------------|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|--|--|
| Parameter<br>No. | Typical       | Мах  | Units       | Conditions                                                                                                                          |                                               |                                      |  |  |
| Power-Down       | Current (IPD) |      |             |                                                                                                                                     |                                               |                                      |  |  |
| HDC60e           | 1400          | 2500 | μA          | +150°C                                                                                                                              | 3.3V                                          | Base Power-Down Current (Notes 1, 3) |  |  |
| HDC61c           | 15            | —    | μA          | +150°C                                                                                                                              | Watchdog Timer Current: ∆IwDT<br>(Notes 2, 4) |                                      |  |  |

### TABLE 31-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

**Note 1:** Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

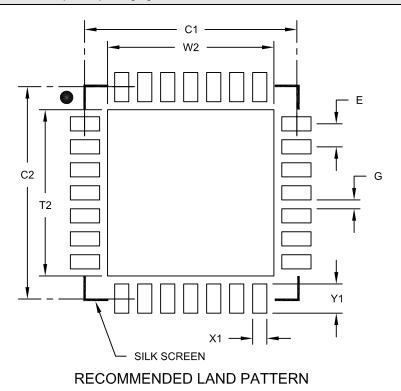
4: These parameters are characterized, but are not tested in manufacturing.

### TABLE 31-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

| DC CHARAG        | CTERISTICS |     | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ |                     |  |  |  |
|------------------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| Parameter<br>No. | Typical    | Мах | Units                                                                                                                               | Conditions          |  |  |  |
| HDC44e           | 12         | 30  | mA                                                                                                                                  | +150°C 3.3V 40 MIPS |  |  |  |

### TABLE 31-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

| DC CHARAC        | CTERISTICS |     | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ |            |      |         |  |
|------------------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|------------|------|---------|--|
| Parameter<br>No. | Typical    | Max | Units                                                                                                                               | Conditions |      |         |  |
| HDC20            | 9          | 15  | mA                                                                                                                                  | +150°C     | 3.3V | 10 MIPS |  |
| HDC22            | 16         | 25  | mA                                                                                                                                  | +150°C     | 3.3V | 20 MIPS |  |
| HDC23            | 30         | 50  | mA                                                                                                                                  | +150°C     | 3.3V | 40 MIPS |  |


### TABLE 31-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

| DC CHARA              | CTERISTICS | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ |               |       |            |      |         |
|-----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|------------|------|---------|
| Parameter<br>No.      | Typical    | Мах                                                                                                                                 | Doze<br>Ratio | Units | Conditions |      |         |
| HDC72a                | 24         | 35                                                                                                                                  | 1:2           | mA    |            |      |         |
| HDC72f <sup>(1)</sup> | 14         | —                                                                                                                                   | 1:64          | mA    | +150°C     | 3.3V | 40 MIPS |
| HDC72g <sup>(1)</sup> | 12         |                                                                                                                                     | 1:128         | mA    |            |      |         |

Note 1: Parameters with Doze ratios of 1:64 and 1:128 are characterized, but are not tested in manufacturing.

# 28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | Units            |      |          |      |  |  |
|----------------------------|------------------|------|----------|------|--|--|
| Dimensior                  | Dimension Limits |      |          | MAX  |  |  |
| Contact Pitch              | E                |      | 0.65 BSC |      |  |  |
| Optional Center Pad Width  | W2               |      |          | 4.70 |  |  |
| Optional Center Pad Length | T2               |      |          | 4.70 |  |  |
| Contact Pad Spacing        | C1               |      | 6.00     |      |  |  |
| Contact Pad Spacing        | C2               |      | 6.00     |      |  |  |
| Contact Pad Width (X28)    | X1               |      |          | 0.40 |  |  |
| Contact Pad Length (X28) Y |                  |      |          | 0.85 |  |  |
| Distance Between Pads G    |                  | 0.25 |          |      |  |  |

#### Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A