

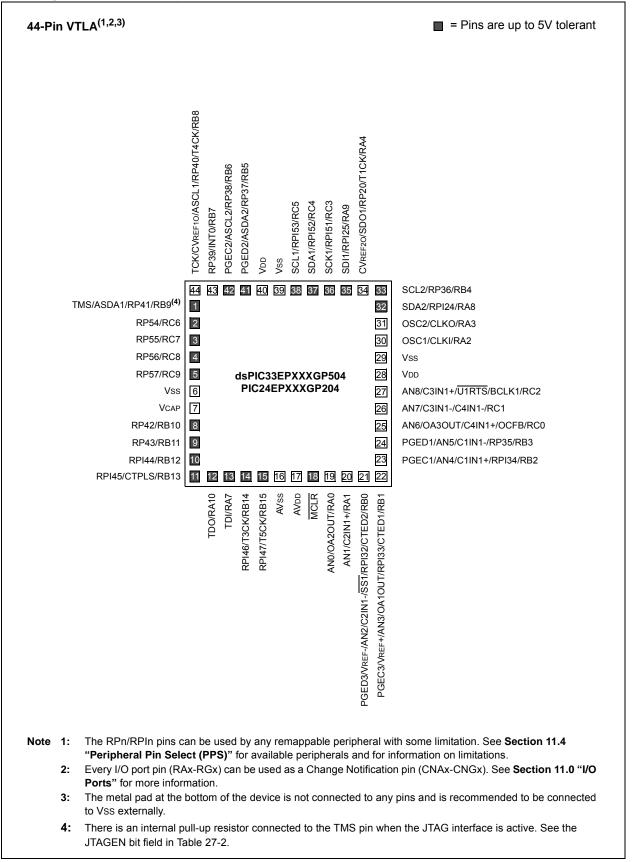
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32mc504-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description
AN0-AN15	I	Analog	No	Analog input channels.
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function
CLKO	0	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
REFCLKO	0		Yes	Reference clock output.
IC1-IC4	Ι	ST	Yes	Capture Inputs 1 through 4.
OCFA OCFB OC1-OC4	 0	ST ST	Yes No Yes	Compare Fault A input (for Compare channels). Compare Fault B input (for Compare channels). Compare Outputs 1 through 4.
INT0	I	ST	No	External Interrupt 0.
INT1 INT2		ST ST	Yes Yes	External Interrupt 1. External Interrupt 2.
RA0-RA4, RA7-RA12	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
RC0-RC13, RC15	I/O	ST	No	PORTC is a bidirectional I/O port.
RD5, RD6, RD8	I/O	ST	No	PORTD is a bidirectional I/O port.
RE12-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.
RF0, RF1	I/O	ST	No	PORTF is a bidirectional I/O port.
RG6-RG9	I/O	ST	No	PORTG is a bidirectional I/O port.
T1CK	Ι	ST	No	Timer1 external clock input.
T2CK T3CK		ST ST	Yes	Timer2 external clock input.
T4CK		ST	No No	Timer3 external clock input. Timer4 external clock input.
T5CK	i	ST	No	Timer5 external clock input.
CTPLS	0	ST	No	CTMU pulse output.
CTED1	Ι	ST	No	CTMU External Edge Input 1.
CTED2	Ι	ST	No	CTMU External Edge Input 2.
U1CTS	Ι	ST	No	UART1 Clear-To-Send.
U1RTS	0		No	UART1 Ready-To-Send.
U1RX		ST	Yes	UART1 receive. UART1 transmit.
U1TX BCLK1	0	ST	Yes No	UART1 Iransmit. UART1 IrDA [®] baud clock output.
Legend: CMOS = CM ST = Schmi PPS = Perip	MOS co itt Trigg	ompatible er input v	input with CN	or output Analog = Analog input P = Power

TABLE 1-1:PINOUT I/O DESCRIPTIONS

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

TABLE 4-17: I2C1 AND I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—	—	—	—	—	—	_				I2C1 Recei	ve Register				0000
I2C1TRN	0202	_	_	_	_	—	_	—	_				I2C1 Transi	mit Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_	Baud Rate Generator							0000		
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addr	ess Register	r				0000
I2C1MSK	020C	_	_	_	_	_	_					I2C1 Add	dress Mask					0000
I2C2RCV	0210	_	_	_	_	_	_	_	_				I2C2 Recei	ve Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	_				I2C2 Transi	mit Register				OOFF
I2C2BRG	0214	_	_	_	_	_	_	_				Bau	d Rate Gene	erator				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	—	_					I2C2 Addr	ess Register	r				0000
I2C2MSK	021C	_	_	_	_	_	_					I2C2 Add	dress Mask					0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_	UART1 Transmit Register					xxxx				
U1RXREG	0226	_	_	_	_	_	_	_	UART1 Receive Register					0000				
U1BRG	0228							Baud	Rate Gen	erator Pre	scaler							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Transmit F	Register				xxxx
U2RXREG	0236	_	_	_	_	—	_	_	UART2 Receive Register					0000				
U2BRG	0238	Baud Rate Generator Prescaler									0000							

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address prior to modification addresses an EDS or PSV page
- The EA calculation uses Pre-Modified or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-61 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

	-	SV SI ACE BOON					
0/11			Before			After	
O/U, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1
U, Read	[//11 -]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page

TABLE 4-61: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and PSV SPACE BOUNDARIES^(2,3,4)

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudo-Linear Addressing is not supported for large offsets.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

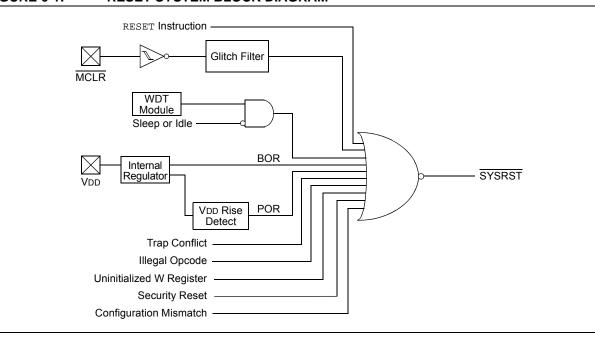
- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.


All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSC<2:0> bits is loaded into NOSC<2:0> (OSCCON<10:8>) on Reset, which in turn, initializes the system clock.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your brouger.
	this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

9.2.1 KEY RESOURCES

- "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

16.3 PWMx Control Registers

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7	•						bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	t
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PTEN: PWMx Module Enable bit
	 1 = PWMx module is enabled 0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	 1 = Special event interrupt is pending 0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
	0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled
L:1 7	0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled
Note 1:	These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user
	application must program the period register with a value that is slightly larger than the expected period of

the external synchronization input signal.

2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

17.1 QEI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this UDL increases
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

17.1.1 KEY RESOURCES

- "Quadrature Encoder Interface" (DS70601) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾			
bit 15		•		•	•	•	bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾			
bit 7	CKF	WIGTEN	SFREZ 7	SFREI?	SFREU 7	FFREN	bit			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-13	Unimplemen	ted: Read as	0'							
bit 12			bit (SPIx Mas	-	()					
		PIx clock is di	sabled, pin fun	ctions as I/O						
oit 11		able SDOx Pir								
1 = SDOx pin is not used by the module; pin functions as I/O										
	0 = SDOx pin is controlled by the module									
bit 10	MODE16: Wo	MODE16: Word/Byte Communication Select bit								
		1 = Communication is word-wide (16 bits)								
		ication is byte-	. ,							
bit 9		SMP: SPIx Data Input Sample Phase bit								
	Master mode	-	end of data o	utout time						
			middle of data							
	Slave mode:									
			SPIx is used i	n Slave mode.						
bit 8		lock Edge Sele								
						lle clock state (r				
bit 7						ve clock state (i				
	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾ 1 = SSx pin is used for Slave mode									
				is controlled b	by port function					
bit 6	CKP: Clock F	Polarity Select	bit							
			nigh level; activ ow level; active							
bit 5	MSTEN: Mas	ter Mode Enat	ole bit							
	1 = Master m 0 = Slave mo									
Note 1: T	he CKE bit is not	used in Frame	d SPI modes. I	Program this bi	it to '0' for Fram	ed SPI modes (FRMEN = 1			
	his bit must be cl									
0										

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

21.4 ECAN Control Registers

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0
bit 15							bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE2	OPMODE1	OPMODE0	_	CANCAP			WIN
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	OR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as 'o)'				
bit 13	CSIDL: ECAN	Nx Stop in Idle I	Node bit				
		ues module opera module opera		device enters I ode	dle mode		
bit 12	ABAT: Abort	All Pending Tra	nsmissions b	bit			
		I transmit buffe ill clear this bit		ansmission smissions are a	aborted		
bit 11	CANCKS: EC	ANx Module C	lock (FCAN)	Source Select b	bit		
	1 = FCAN is equal to 2 * FP 0 = FCAN is equal to FP						
bit 10-8	111 = Set Lis 110 = Reserv 101 = Reserv 100 = Set Co 011 = Set Lis 010 = Set Loc 001 = Set Dis	ed nfiguration moo ten Only mode opback mode	es mode le	bits			
bit 7-5	111 = Module 110 = Reserv 101 = Reserv 100 = Module		Messages n ation mode	node			
	010 = Module 001 = Module 000 = Module	e is in Loopback e is in Disable n e is in Normal C	mode node operation mod	de			
bit 4	-	ted: Read as '					
bit 3		nput capture ba		Capture Event message recei			
bit 2-1		ted: Read as '(ı'				
bit 0	-	ap Window Sele					
UIL U	1 = Uses filter	-	יטו טונ				

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
_		FBP5	FBP4	FBP3	FBP2	FBP1	FBP0			
bit 15							bit 8			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
		FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0			
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown			
bit 15-14	Unimpleme	ented: Read as '	0'							
bit 13-8	FBP<5:0>: FIFO Buffer Pointer bits									
	011111 = RB31 buffer									
	011110 = F	RB30 buffer								
	•									
	•									
	• 000001 = TRB1 buffer									
	000000 = TRB1 buller 000000 = TRB0 buller									
bit 7-6	Unimpleme	ented: Read as '	0'							
bit 5-0	FNRB<5:0	FNRB<5:0>: FIFO Next Read Buffer Pointer bits								
	011111 = RB31 buffer									
	011110 = F	RB30 buffer								
	•									
	•									
	•									
		FRB1 buffer FRB0 buffer								

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-20:	CxRXMnSID: ECANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER
	REGISTER (n = 0-2)

		-	-							
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3			
bit 15							bit 8			
R/W-x	R/W-x	R/W-x R/W-x U-0 R/W-x U-0				R/W-x	R/W-x			
SID2	SID1	SID0	-	MIDE	_	EID17	EID16			
bit 7							bit C			
<u> </u>										
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	x = Bit is unkr	iown				
bit 15-5	SID<10:0>: S	Standard Identii	fier bits							
		bit, SIDx, in filte is a don't care i								
bit 4	Unimplemer	nted: Read as '	0'							
bit 3	MIDE: Identif	fier Receive Mo	de bit							
	0 = Matches		or extended a	d or extended ac address messag SID/EID))		•				
bit 2	Unimplemented: Read as '0'									
bit 1-0	EID<17:16>:	Extended Iden	tifier bits							
	 1 = Includes bit, EIDx, in filter comparison 0 = EIDx bit is a don't care in filter comparison 									

REGISTER 21-21: CxRXMnEID: ECANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

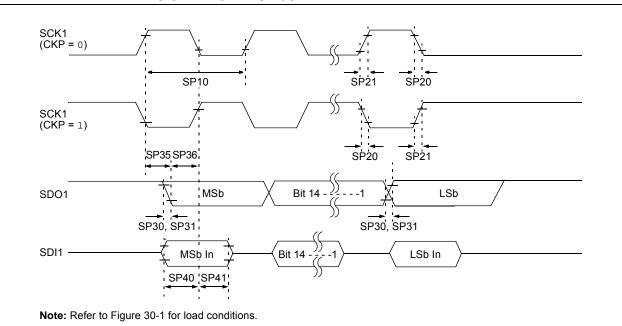
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15				·			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

0 = EIDx bit is a don't care in filter comparison


23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
ADON	—	ADSIDL	ADDMABM		AD12B	FORM1	FORM0	
bit 15	•						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0. HC. HS	
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾	
bit 7							bit (
Legend:		HC - Hardwar	e Clearable bit	HS - Hardwa	re Settable bit	C = Clearable bi	+	
R = Readable	a hit	W = Writable b			nented bit, read		L	
-n = Value at		'1' = Bit is set	nt -	'0' = Bit is clea		x = Bit is unknov	vp.	
	FUR	I - DILIS SEL						
bit 15	ADON: ADO	C1 Operating M	ode bit					
	1 = ADC mo 0 = ADC is 0	odule is operatir off	ng					
bit 14	Unimpleme	nted: Read as	' 0 '					
bit 13	ADSIDL: ADC1 Stop in Idle Mode bit							
	1 = Disconti	nues module oj	peration when o	device enters	ldle mode			
	0 = Continu	es module oper	ation in Idle mo	ode				
bit 12		: DMA Buffer B						
						rovides an addre	ess to the DM	
						nd-alone buffer des a Scatter/Ga	ther address t	
						size of the DMA b		
bit 11		nted: Read as						
bit 10	AD12B: AD	C1 10-Bit or 12	-Bit Operation I	Mode bit				
		-channel ADC	-					
	0 = 10-bit, 4	-channel ADC	operation					
bit 9-8	FORM<1:0>	Data Output I	Format bits					
	For 10-Bit C							
		l fractional (Dou nal (Dou⊤ = dd			0, where s = .I	NOT.d<9>)		
		l integer (DOUT			where $s = .NC$	(<9>)		
		r (Dout = 0000						
	For 12-Bit C	peration:						
	•	fractional (Dou			0, where s = .I	NOT.d<11>)		
		nal (Dout = dd I integer (Dout				(<11>)		

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

TABLE 30-44:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	_	—	10	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCK1 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	-	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI1 pins.

TABLE 30-54: OP AMP/COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. Symbol Characteristic Min. Typ. Max. Units Cond					Conditions			
VR310	TSET	Settling Time	—	1	10	μS	(Note 1)	

Note 1: Settling time is measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-55: OP AMP/COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions (see Note 1): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristics	Min. Typ. Max. Units Condition					
VRD310	CVRES	Resolution	CVRSRC/24	_	CVRSRC/32	LSb		
VRD311	CVRAA	Absolute Accuracy ⁽²⁾	—	±25	_	mV	CVRSRC = 3.3V	
VRD313	CVRSRC	Input Reference Voltage	0	_	AVDD + 0.3	V		
VRD314	CVRout	Buffer Output Resistance ⁽²⁾	_	1.5k	_	Ω		

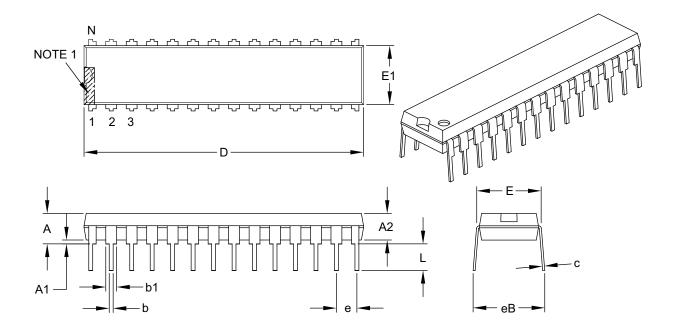
Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: Parameter is characterized but not tested in manufacturing.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TABLE 31-11: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Characteristic	Min	Тур	Max	Units	Conditio	ons
	LPRC @ 32.768 kHz ^(1,2)						
HF21	LPRC	-30	_	+30	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C$	VDD = 3.0-3.6V


Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TwDT). See Section 27.5 "Watchdog Timer (WDT)" for more information.

33.2 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

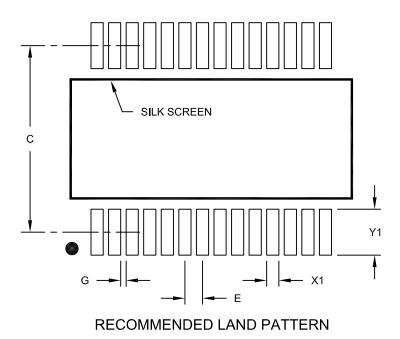
	Units		INCHES		
Dimension	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch e		.100 BSC			
Top to Seating Plane	Α	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

Revision D (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 512-Kbyte Flash and 48-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	Removed the Analog Comparators column and updated the Op amps/Comparators column in Table 1 and Table 2.
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 30.0 "Electrical Characteristics"	Updated the VBOR specifications and/or its related note in the following electrical characteristics tables: • Table 30-1 • Table 30-4 • Table 30-12 • Table 30-14 • Table 30-15 • Table 30-16 • Table 30-56 • Table 30-57 • Table 30-58 • Table 30-59 • Table 30-60

Revision H (August 2013)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-6.

Section Name	Update Description
Cover Section	 Adds Peripheral Pin Select (PPS) to allow Digital Function Remapping and Change Notification Interrupts to Input/Output section
	Adds heading information to 64-Pin TQFP
Section 4.0 "Memory	Corrects Reset values for ANSELE, TRISF, TRISC, ANSELC and TRISA
Organization"	 Corrects address range from 0x2FFF to 0x7FFF
	Corrects DSRPAG and DSWPAG (now 3 hex digits)
	Changes Call Stack Frame from <15:1> to PC<15:0>
	Word length in Figure 4-20 is changed to 50 words for clarity
Section 5.0 "Flash Program	Corrects descriptions of NVM registers
Memory"	
Section 9.0 "Oscillator	Removes resistor from Figure 9-1
Configuration"	Adds Fast RC Oscillator with Divide-by-16 (FRCDIV16) row to Table 9-1
	Removes incorrect information from ROI bit in Register 9-2
Section 14.0 "Input Capture"	 Changes 31 user-selectable Trigger/Sync interrupts to 19 user-selectable Trigger/ Sync interrupts
	 Corrects ICTSEL<12:10> bits (now ICTSEL<2:0>)
Section 17.0 "Quadrature Encoder Interface (QEI)	Corrects QCAPEN bit description
Module	
(dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X	
Devices Only)"	
Section 19.0 "Inter- Integrated Circuit™ (I ² C™)"	 Adds note to clarify that 100kbit/sec operation of I²C is not possible at high processor speeds
Section 22.0 "Charge Time	Clarifies Figure 22-1 to accurately reflect peripheral behavior
Measurement Unit (CTMU)"	
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Correct Figure 23-1 (changes CH123x to CH123Sx)
Section 24.0 "Peripheral Trigger Generator (PTG) Module"	 Adds footnote to Register 24-1 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled.
Section 25.0 "Op Amp/ Comparator Module"	 Adds note to Figure 25-3 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled)
	 Adds footnote to Register 25-2 (COE is not available when OPMODE (CMxCON<10>) = 1)
Section 27.0 "Special Features"	Corrects the bit description for FNOSC<2:0>
Section 30.0 "Electrical	Corrects 512K part power-down currents based on test data
Characteristics"	Corrects WDT timing limits based on LPRC oscillator tolerance
Section 31.0 "High- Temperature Electrical Characteristics"	Adds Table 31-5 (DC Characteristics: Idle Current (IIDLE)