

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gp502-h-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33EP64MC506 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "Program Memory" (DS70613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70598)
- "Timers" (DS70362)
- "Input Capture" (DS70352)
- "Output Compare" (DS70358)
- "High-Speed PWM" (DS70645)
- "Quadrature Encoder Interface (QEI)" (DS70601)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70582)
- "Serial Peripheral Interface (SPI)" (DS70569)
- "Inter-Integrated Circuit (I²C[™])" (DS70330)
- "Enhanced Controller Area Network (ECAN™)" (DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "CodeGuard™ Security" (DS70634)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70357)
- "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- "Device Configuration" (DS70618)
- "Peripheral Trigger Generator (PTG)" (DS70669)
- "Charge Time Measurement Unit (CTMU)" (DS70661)

TABLE 1-1: PINC											
Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description							
U2CTS	Ι	ST	No	UART2 Clear-To-Send.							
U2RTS	0	—	No	UART2 Ready-To-Send.							
U2RX	Ι	ST	Yes	UART2 receive.							
U2TX	0	—	Yes	UART2 transmit.							
BCLK2	0	ST	No	UART2 IrDA [®] baud clock output.							
SCK1	I/O	ST	No	Synchronous serial clock input/output for SPI1.							
SDI1	I	ST	No	SPI1 data in.							
SDO1	0	—	No	SPI1 data out.							
SS1	I/O	ST	No	SPI1 slave synchronization or frame pulse I/O.							
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.							
SDI2	I	ST	Yes	SPI2 data in.							
SDO2	0	_	Yes	SPI2 data out.							
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.							
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.							
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.							
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.							
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.							
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.							
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.							
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.							
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.							
TMS ⁽⁵⁾	Ι	ST	No	JTAG Test mode select pin.							
TCK	Ι	ST	No	JTAG test clock input pin.							
TDI	I	ST	No	JTAG test data input pin.							
TDO	0	_	No	JTAG test data output pin.							
C1RX ⁽²⁾	Ι	ST	Yes	ECAN1 bus receive pin.							
C1TX ⁽²⁾	0	_	Yes	ECAN1 bus transmit pin.							
FLT1 ⁽¹⁾ , FLT2 ⁽¹⁾	Ι	ST	Yes	PWM Fault Inputs 1 and 2.							
FLT3 ⁽¹⁾ , FLT4 ⁽¹⁾	Ι	ST	No	PWM Fault Inputs 3 and 4.							
FLT32 ^(1,3)	Ι	ST	No	PWM Fault Input 32 (Class B Fault).							
DTCMP1-DTCMP3 ⁽¹⁾	Ι	ST	Yes	PWM Dead-Time Compensation Inputs 1 through 3.							
PWM1L-PWM3L ⁽¹⁾	0	—	No	PWM Low Outputs 1 through 3.							
PWM1H-PWM3H ⁽¹⁾	0	—	No	PWM High Outputs 1 through 3.							
SYNCI1 ⁽¹⁾	Ι	ST		PWM Synchronization Input 1.							
SYNCO1 ⁽¹⁾	0		Yes	PWM Synchronization Output 1.							
INDX1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Index1 pulse input.							
HOME1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Home1 pulse input.							
QEA1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer							
QEB1 ⁽¹⁾	,	ст	Vee	external clock/gate input in Timer mode.							
	Ι	ST	Yes	Quadrature Encoder Phase B input in QEI1 mode. Auxiliary timer							
CNTCMP1 ⁽¹⁾	0		Yes	external clock/gate input in Timer mode. Quadrature Encoder Compare Output 1.							
	0	 ompatible	162								

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

P = Power I = Input

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

								•										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102		Period Register 1 F											FFFF				
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	—	TSYNC	TCS		0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Time	er3 Holding	Register (fo	r 32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	—	—	—	_	—	—	TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T3CON	0112	TON	-	TSIDL	_	_	_	_	-	_	TGATE	TCKP	S<1:0>	_	_	TCS		0000
TMR4	0114			•	•	•	•	•	Timer4	Register				•		•		xxxx
TMR5HLD	0116						Т	imer5 Holdir	ng Register	(for 32-bit o	perations on	ly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000

TABLE 4-8: TIMER1 THROUGH TIMER5 REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-45: DMAC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW		_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA0REQ	0B02	FORCE	_	_		_	_	_	_			•	IRQSE	_<7:0>	•			00FF
DMA0STAL	0B04								STA<15	5:0>								0000
DMA0STAH	0B06	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA0STBL	0B08								STB<1	5:0>								0000
DMA0STBH	0B0A	_	—	_	_	_	—	—	—				STB<2	3:16>				0000
DMA0PAD	0B0C								PAD<1	5:0>								0000
DMA0CNT	0B0E	_	_							CNT<1	3:0>							0000
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	_	—	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA1REQ	0B12	FORCE	_	_		_	_	_	_				IRQSE	_<7:0>	•			00FF
DMA1STAL	0B14								STA<15	5:0>								0000
DMA1STAH	0B16	_	—	—	_	_	_	—	—				STA<2	3:16>				0000
DMA1STBL	0B18								STB<1	5:0>								0000
DMA1STBH	0B1A	_	_	_	_		_	_	_				STB<2	3:16>				0000
DMA1PAD	0B1C								PAD<1	5:0>								0000
DMA1CNT	0B1E	_	—							CNT<1	3:0>							0000
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	—	_	_	_	_	AMOD	E<1:0>		—	MODE	<1:0>	0000
DMA2REQ	0B22	FORCE	_	_		_	_	_	_			•	IRQSE	_<7:0>	•			00FF
DMA2STAL	0B24								STA<18	5:0>								0000
DMA2STAH	0B26	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA2STBL	0B28								STB<1	5:0>								0000
DMA2STBH	0B2A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA2PAD	0B2C								PAD<1	5:0>								0000
DMA2CNT	0B2E	_	_							CNT<1	3:0>							0000
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	-	—	MODE	<1:0>	0000
DMA3REQ	0B32	FORCE	_	_	_	_	_	_	_				IRQSE	L<7:0>				00FF
DMA3STAL	0B34								STA<18	5:0>								0000
DMA3STAH	0B36	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA3STBL	0B38								STB<1	5:0>								0000
DMA3STBH	0B3A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA3PAD	0B3C								PAD<1	5:0>								0000
DMA3CNT	0B3E	_	_							CNT<1	3:0>							0000
DMAPWC	0BF0	_	—	—	—	—	—		_	—	—		—	PWCOL3	PWCOL2	PWCOL1	PWCOL0	0000
DMARQC	0BF2	_	—	_	_	_	_	_	_	_	_	_	_	RQCOL3	RQCOL2	RQCOL1	RQCOL0	0000
DMAPPS	0BF4	_	—	_	_	_	_	_	_	_	_	_	_	PPST3	PPST2	PPST1	PPST0	0000
DMALCA	0BF6	_	_	_	_	_	_	_	_	_	_	_	_		LSTCH	1<3:0>		000F
DSADRL	0BF8								DSADR<	15:0>								0000
DSADRH	0BFA	_	—	—	—	—	—	—	—				DSADR•	<23:16>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2011-2013 Microchip Technology Inc.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 8-9: DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	-	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bi	t	U = Unimpler	nented bit, read	as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimplemen	ted bit, re	ad as '0'	
-n = Value at PC	OR	'1' = Bit is set		'0' = Bit is cleared	d	x = Bit is unkn	own

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾				
bit 15						•	bit				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	_	_		_		_					
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown				
bit 14	 ROON: Reference Oscillator Output Enable bit 1 = Reference oscillator output is enabled on the REFCLK pin⁽²⁾ 0 = Reference oscillator output is disabled Unimplemented: Read as '0' 										
bit 13	-	ference Oscilla		en hit							
	1 = Reference	e oscillator out e oscillator out	out continues	to run in Sleep							
bit 12	1 = Oscillator	-	as the refere	nce clock							
bit 11-8	1 = Oscillator crystal is used as the reference clock 0 = System clock is used as the reference clock RODIV<3:0>: Reference Oscillator Divider bits ⁽¹⁾ 1111 = Reference clock divided by 32,768 1110 = Reference clock divided by 16,384 1101 = Reference clock divided by 8,192 1100 = Reference clock divided by 4,096 1011 = Reference clock divided by 2,048 1010 = Reference clock divided by 1,024 1001 = Reference clock divided by 512 1000 = Reference clock divided by 256 0111 = Reference clock divided by 128 0110 = Reference clock divided by 40 010 = Reference clock divided by 32 0100 = Reference clock divided by 32 0100 = Reference clock divided by 40 001 = Reference clock divided by 16 0011 = Reference clock divided by 8 0010 = Reference clock divided by 4 0011 = Reference clock divided by 4										
	0000 = Refer	ence clock	-								

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SCK2INR<6:0	>		
bit 15							bit 8
					5444.6	D 444 A	5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SDI2R<6:0>			
bit 7							bit 0
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		nput tied to RPI nput tied to CMI nput tied to Vss	P1				
bit 7	Unimpleme	nted: Read as 'o	כי				
bit 6-0	(see Table 1 [^] 1111001 = I	: Assign SPI2 D 1-2 for input pin nput tied to RPI nput tied to CMI	selection num	,	esponding RPi	ר Pin bits	

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
	11111 = OCxRS compare event is used for synchronization
	11110 = INT2 pin synchronizes or triggers OCx
	11101 = INT1 pin synchronizes or triggers OCx
	11100 = CTMU module synchronizes or triggers OCx
	11011 = ADC1 module synchronizes or triggers OCx
	11010 = CMP3 module synchronizes or triggers OCx
	11001 = CMP2 module synchronizes or triggers OCx
	11000 = CMP1 module synchronizes or triggers OCx
	10111 = Reserved
	10110 = Reserved
	10101 = Reserved
	10100 = Reserved
	10011 = IC4 input capture event synchronizes or triggers OCx
	10010 = IC3 input capture event synchronizes or triggers OCx
	10001 = IC2 input capture event synchronizes or triggers OCx
	10000 = IC1 input capture event synchronizes or triggers OCx
	01111 = Timer5 synchronizes or triggers OCx
	01110 = Timer4 synchronizes or triggers OCx
	01101 = Timer3 synchronizes or triggers OCx
	01100 = Timer2 synchronizes or triggers OCx (default)
	01011 = Timer1 synchronizes or triggers OCx (2)
	01010 = PTGOx synchronizes or triggers $OCx^{(3)}$
	01001 = Reserved
	01000 = Reserved
	00111 = Reserved
	00110 = Reserved
	00101 = Reserved
	00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$
	00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$
	00010 = OC2 module synchronizes or triggers $OCx^{(1,2)}$
	00001 = OC1 module synchronizes or triggers $OCx^{(1,2)}$
	00000 = No Sync or Trigger source for OCx

- **Note 1:** Do not use the OCx module as its own Synchronization or Trigger source.
 - 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.
 - Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO0 = OC1

PTGO0 = OC1 PTGO1 = OC2 PTGO2 = OC3PTGO3 = OC4

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to 6 outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and frequency resolution of Tcy/2 (7.14 ns at Fcy = 70MHz)
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 8.32 ns.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the high-speed PWMx module with an external signal. The SYNC01 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs to include FLT1 and FLT2 which are remappable using the PPS feature, FLT3 and FLT4 which are available only on the larger 44-pin and 64-pin packages, and FLT32 which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCON<1:0>), regardless of the state of FLT32.

REGISTE	R 16-7: PWMC	CONX: PWMX (CONTROL R	EGISTER			
HS/HC-	0 HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT	-(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15	·	•		÷			bit
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
DTC1		DTCP ⁽³⁾	0-0	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾
bit 7	DICO	DICE	_	INT DO	CAIM	AFRES'	bit
							<u> </u>
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit		
R = Reada	able bit	W = Writable bi	t	U = Unimple	mented bit, rea	ıd as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	ELTSTAT: ES	ult Interrupt Statu	is hit(1)				
DIL 15		rrupt is pending					
		interrupt is pendi	ng				
		ared by setting F					
bit 14		rent-Limit Interru	•				
		mit interrupt is pe					
		nt-limit interrupt is ared by setting C					
bit 13		igger Interrupt S					
		terrupt is pendin					
		r interrupt is pen					
		ared by setting T					
bit 12		t Interrupt Enable	e bit				
		rrupt is enabled rrupt is disabled	and the FLTS	TAT bit is clear	ed		
bit 11		ent-Limit Interrup			cu .		
		mit interrupt is er					
		mit interrupt is di		e CLSTAT bit is	s cleared		
bit 10	TRGIEN: Trig	ger Interrupt En	able bit				
		event generates			T hit is cleared		
bit 9		vent interrupts ar dent Time Base I			i bit is cleared		
DIL 9		register provides		riad for this PM	VM generator		
		egister provides f	•		•		
bit 8		er Duty Cycle Re					
		ister provides du jister provides du				r	
Note 1:	Software must clea				-		t controller
Note 1. 2:	These bits should	-		-	-	the interrup	
3:	DTC<1:0> = 11 fo	-		-	-		
4:	The Independent T CAM bit is ignored	Time Base (ITB =		•		igned mode. If	TTB = 0, the
5:	To operate in Exter		t mode, the IT	B bit must be '	1' and the CLM	10D bit in the I	FCLCONx

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

R-0	R-0	R-0	R-0	R-0	R-0	R-0
		TERR	CNT<7:0>			
						bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0
		RERR	CNT<7:0>			
						bit 0
oit	W = Writable b	it	U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
	R-0	R-0 R-0 it W = Writable b	TERR R-0 R-0 R-0 RERR it W = Writable bit	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0>	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT	TERRCNT<7:0> R-0 R-0 R-0 R-0 RERRCNT<7:0> U = Unimplemented bit, read as '0'

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	$10 = \text{Length is } 3 \times \text{Tq}$
	$01 = \text{Length is } 2 \times \text{T} Q$
	$00 = \text{Length is } 1 \times \text{Tq}$

```
bit 5-0 BRP<5:0>: Baud Rate Prescaler bits
```

```
11 1111 = TQ = 2 x 64 x 1/FCAN
```

•

- 00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN
- 00 0000 = Tq = 2 x 1 x 1/FCAN

DC CHARACTI	ERISTICS		(unless oth		s: 3.0V to 3.6V ≤ TA ≤ +85°C for Indi ≤ TA ≤ +125°C for Ex	
Parameter No.	Тур.	Max.	Units		Conditions	
Idle Current (III	dle) ⁽¹⁾					
DC40d	3	8	mA	-40°C		
DC40a	3	8	mA	+25°C	- 3.3V	10 MIPS
DC40b	3	8	mA	+85°C	3.3V	10 101195
DC40c	3	8	mA	+125°C]	
DC42d	6	12	mA	-40°C		
DC42a	6	12	mA	+25°C	3.3V	20 MIPS
DC42b	6	12	mA	+85°C		20 1011-5
DC42c	6	12	mA	+125°C		
DC44d	11	18	mA	-40°C		40 MIPS
DC44a	11	18	mA	+25°C	3.3V	
DC44b	11	18	mA	+85°C	5.50	
DC44c	11	18	mA	+125°C		
DC45d	17	27	mA	-40°C		
DC45a	17	27	mA	+25°C	- 3.3V	60 MIPS
DC45b	17	27	mA	+85°C	3.3V	
DC45c	17	27	mA	+125°C]	
DC46d	20	35	mA	-40°C		
DC46a	20	35	mA	+25°C	3.3V	70 MIPS
DC46b	20	35	mA	+85°C]	

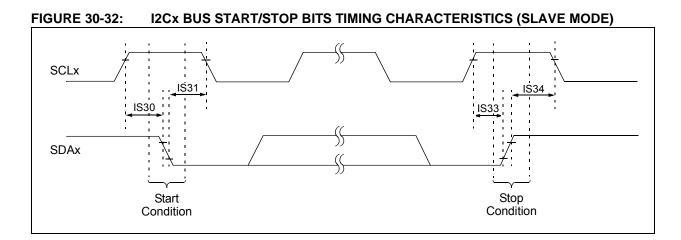
TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Note 1: Base Idle current (IIDLE) is measured as follows:

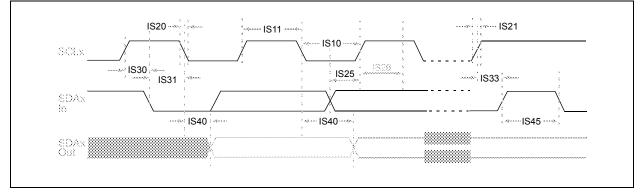
• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

TABLE 30-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS


			Standard Op (unless othe Operating te	erwise st	ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1	1.5 Tcy + 40	—		ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACTERISTICS							
Param No.	Symbol	Characteristic	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
Op Am	p DC Chara	cteristics					
CM40	VCMR	Common-Mode Input Voltage Range	AVss	_	AVDD	V	
CM41	CMRR	Common-Mode Rejection Ratio ⁽³⁾	—	40	—	db	VCM = AVDD/2
CM42	VOFFSET	Op Amp Offset Voltage ⁽³⁾	—	±5	—	mV	
CM43	Vgain	Open-Loop Voltage Gain ⁽³⁾	_	90	_	db	
CM44	los	Input Offset Current	_	-	_	_	See pad leakage currents in Table 30-11
CM45	lв	Input Bias Current	—	_	_	_	See pad leakage currents in Table 30-11
CM46	Ιουτ	Output Current	_		420	μA	With minimum value of RFEEDBACK (CM48)
CM48	RFEEDBACK	Feedback Resistance Value	8	-	_	kΩ	
CM49a	VOADC	Output Voltage	AVss + 0.077		AVDD - 0.077	V	Ιουτ = 420 μΑ
		Measured at OAx Using ADC ^(3,4)	AVss + 0.037 AVss + 0.018		AVDD – 0.037 AVDD – 0.018	V V	ΙΟυΤ = 200 μΑ Ιουτ = 100 μΑ
CM49b	Vout	Output Voltage	AVss + 0.210	_	AVDD - 0.210	V	Ιουτ = 420 μΑ
		Measured at OAxOUT Pin ^(3,4,5)	AVss + 0.100 AVss + 0.050	_	AVDD – 0.100 AVDD – 0.050	V V	Ιουτ = 200 μΑ Ιουτ = 100 μΑ
CM51	RINT1 ⁽⁶⁾	Internal Resistance 1 (Configuration A and B) ^(3,4,5)	198	264	317	Ω	Min = -40°C Typ = +25°C Max = +125°C

TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS (CONTINUED)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.

31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

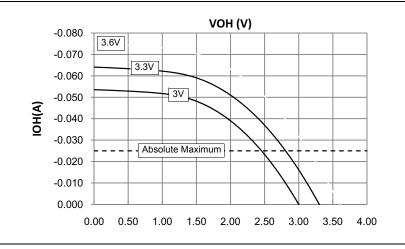
The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

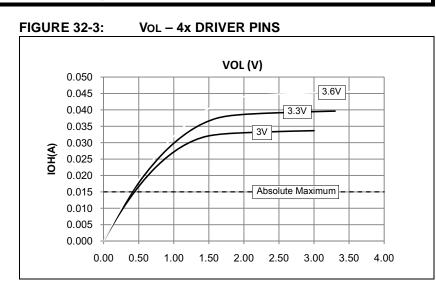
Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 30.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	0.3V to 3.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to 5.5V
Maximum current out of Vss pin	60 mA
Maximum current into Vod pin ⁽⁴⁾	60 mA
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 4x I/O pin	10 mA
Maximum current sourced/sunk by any 8x I/O pin	15 mA
Maximum current sunk by all ports combined	70 mA
Maximum current sourced by all ports combined ⁽⁴⁾	70 mA


- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Refer to the "Pin Diagrams" section for 5V tolerant pins.
 - 4: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).


32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

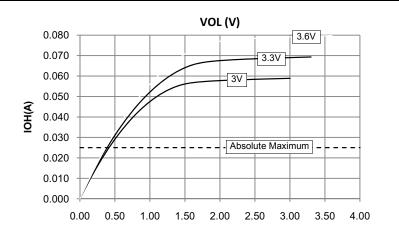

FIGURE 32-1: VOH – 4x DRIVER PINS VOH (V) -0.050 -0.045 3.6V -0.040 3.3V -0.035 3V -0.030 IOH(A) -0.025 -0.020 Absolute Maximum -0.015 -0.010 -0.005 0.000 0.50 1.00 2.00 2.50 3.00 3.50 0.00 1.50 4.00

FIGURE 32-2: VOH – 8x DRIVER PINS

FIGURE 32-4: Vol – 8x DRIVER PINS

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SPDIP

28-Lead SOIC (.300")

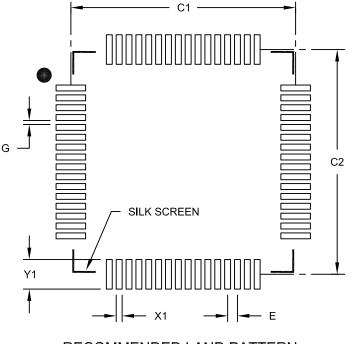
28-Lead SSOP

Example dsPIC33EP64GP 502-I/SP@3 1310017

Example

Example

28-Lead QFN-S (6x6x0.9 mm)


Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.			
	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.				

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B