

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \times FI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gp502t-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR		US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾
bit 15	·		·	·	·		bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA ⁽¹⁾) SATB ⁽¹⁾	SATDW ⁽¹⁾	ACCSAT ⁽¹⁾	IPL3 ⁽³⁾	SFA	RND ⁽¹⁾	IF ⁽¹⁾
bit 7							bit 0
		<u> </u>					
Legend:						-1 (0)	
R = Reada		VV = VVritable	DIt	U = Unimpler	mented bit, read	d as '0'	
-n = value	at POR	T = Bit is set		$0^{\circ} = Bit is cle$	ared	X = Bit is unkn	IOWN
bit 15		o Excontion Br	ococcina Lator	ov Control hit			
DIC 15	$1 = Variable \epsilon$	exception proce	essing latency	is enabled			
	0 = Fixed exc	ception process	sing latency is	enabled			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	SP Multiply Uns	igned/Signed (Control bits ⁽¹⁾			
	11 = Reserve	ed		_			
	10 = DSP en	gine multiplies	are mixed-sigr	1			
	00 = DSP en	gine multiplies	are signed				
bit 11	EDT: Early DO	o Loop Termina	ation Control bi	it(1,2)			
	1 = Terminate	es executing DO	loop at end o	f current loop	iteration		
	0 = No effect			. (1)			
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status bi	ts ⁽¹⁾			
	•	ops are active					
	•						
	•						
	001 = 1 DO lo	oop is active					
	000 = 0 DO Ic	oops are active	(1)				
bit 7	SATA: ACCA	Saturation En	able bit ⁽¹⁾				
	1 = Accumula 0 = Accumula	ator A saturatio	n is enabled				
bit 6	SATB: ACCE	3 Saturation En	able bit ⁽¹⁾				
	1 = Accumula	ator B saturatio	n is enabled				
	0 = Accumula	ator B saturatio	n is disabled				
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit ⁽¹⁾		
	1 = Data Spa	ce write satura	tion is enabled	4			
hit 4		cumulator Satu	ration Mode S	elect hit(1)			
	1 = 9.31 satu	ration (super s	aturation)				
	0 = 1.31 satu	ration (normal	saturation)				
bit 3	IPL3: CPU In	terrupt Priority	Level Status b	oit 3 ⁽³⁾			
	1 = CPU Inte	rrupt Priority Le	evel is greater	than 7			
	0 = CPU Inte	rrupt Priority Le	evel is / or less	5			
Note 1:	This bit is available	e on dsPIC33E	PXXXMC20X/	50X and dsPl	C33EPXXXGP	50X devices onl	у.
2:	This bit is always r	read as '0'.					

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

TABLE 4-34: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL		_	_	_	_	_	_			NVMC	P<3:0>		0000
NVMADRL	072A								NVMAD	R<15:0>								0000
NVMADRH	072C		_	_	_	_	-						NVMADF	₹<23:16>				0000
NVMKEY	072E	_	-	_	_	_	_	_	_				NVMKE	Y<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_		VREGSF	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	(COSC<2:0>		—		NOSC<2:0>		CLKLOCK	IOLOCK	LOCK		CF	-	_	OSWEN	Note 2
CLKDIV	0744	ROI	[DOZE<2:0>		DOZEN	F	RCDIV<2:0	>	PLLPOS	T<1:0>	_		F	LLPRE<	4:0>		0030
PLLFBD	0746	_	—	_		—	_	_				PLLDI	V<8:0>					0030
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_			TUN	<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration Fuses.

TABLE 4-36: REFERENCE CLOCK REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	—	ROSSLP	ROSEL		RODI	V<3:0>		_	—	—	—	—	—	—	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-59: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	—	—	—	_	_	-	-	-	_	—	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	0E02		_	—	_	_	_						RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04	_	_	_	_	_	_	_	_	_	_	_	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	_	-	_	_	_	_	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	_	_	_	_	-	_	_	_	_	_	_	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	_	-	_	_	_	_	_	_	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	_	_		_	_	_	_	_	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	_	_	_	_	_	_	_	_	_	ANSA4	_	_	ANSA1	ANSA0	0013

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-60: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E		—	—		—	—	—	ANSB8		_	—	-	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (DS70580) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

Note 1: See Figure 9-2 for PLL details.

2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0) U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	;	—	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾
bit 15							bit 8
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	(2) ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ADRC: ADC1 1 = ADC inter 0 = Clock der	Conversion Cl nal RC clock ived from syste	ock Source bit m clock				
bit 14-13	Unimplemen	ted: Read as '0)'				
bit 12-8	SAMC<4:0>:	Auto-Sample T	ïme bits ⁽¹⁾				
bit 7-0	11111 = 31 T • • • • • • • • • • • • • • • • • • •	AD D D ADC1 Convers	ion Clock Sele	ect bits ⁽²⁾			
	11111111 = `` • • • • • • • • • • • • • • • • • •	TP • (ADCS<7: TP • (ADCS<7: TP • (ADCS<7: TP • (ADCS<7: TP • (ADCS<7)	0> + 1) = TP • 0> + 1) = TP • 0> + 1) = TP • 0> + 1) = TP •	256 = TAD 3 = TAD 2 = TAD 1 = TAD			
Note 1: 2:	This bit is only use This bit is not used	d if SSRC<2:0> I if ADRC (AD1)	• (AD1CON1< CON3<15>) =	7:5>) = 111 ar 1.	nd SSRCG (AD	1CON1<4>) =	0.

REGISTER 23-3: AD1CON3: ADC1 CONTROL REGISTER 3

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S					
Dimension	Limits	MIN	NOM	MAX				
Number of Pins	N		64					
Pitch	е		0.50 BSC					
Overall Height	A	0.80	0.90	1.00				
Standoff	A1	0.00	0.02	0.05				
Contact Thickness	A3		0.20 REF					
Overall Width	E		9.00 BSC					
Exposed Pad Width	E2	5.30	5.40	5.50				
Overall Length	D		9.00 BSC					
Exposed Pad Length	D2	5.30	5.40	5.50				
Contact Width	b	0.20	0.25	0.30				
Contact Length	L	0.30	0.40	0.50				
Contact-to-Exposed Pad	K	0.20	-	-				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2