

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gp502t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-12: PWM REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY																		
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	PTEN – PTSIDL SESTAT SEIEN EIPU SYNCPOL SYNCOEN SYNCEN SYNCSRC<2:0> SEVTPS<3:0> 0							0000								
PTCON2	0C02	_	—	_	_	_	—	_	—	—	_	—	_	—		PCLKDIV<2:	0>	0000
PTPER	0C04	PTPER<15:0> 00F8								00F8								
SEVTCMP	0C06								SEVTCMP<	5:0>								0000
MDC	0C0A								MDC<15:)>								0000
CHOP	0C1A	CHPCLKEN	_	_	_	_	_					CHOPCI	_K<9:0>					0000
PWMKEY	0C1E	PWMKEY<15:0> 0000																
Legend: -	Legend: — = unimplemented read as '0' Reset values are shown in hexadecimal																	

TABLE 4-13: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLDA	T<1:0>	SWAP	OSYNC	C000
FCLCON1	0C24	_		(CLSRC<4:	0>		CLPOL	CLMOD		FL	TSRC<4:)>		FLTPOL	FLTMO	D<1:0>	0000
PDC1	0C26				PDC1<15:0> FFF8							FFF8						
PHASE1	0C28				PHASE1<15:0> 000								0000					
DTR1	0C2A	_	_							DTR1<13	:0>							0000
ALTDTR1	0C2C	_	_						A	LTDTR1<1	13:0>							0000
TRIG1	0C32								TRGCMP<1	5:0>								0000
TRGCON1	0C34		TRGDI	V<3:0>		_	_	_	_	_	_			TRG	STRT<5:0	>		0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	—	_	_	—	LEB<11:0> 000						0000						
AUXCON1	0C3E	_	_	_	—		BLANKS	SEL<3:0>		_	_		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0	
OA	OB	SA	SB	OAB	SAB	DA	DC	
bit 15							bit 8	
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С	
bit 7						-	bit 0	
								1

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit		-
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	างพท
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3	PWCOL3: DN	VA Channel 3 F	Peripheral Wri	te Collision Fla	ag bit		
	1 = Write col	lision is detecte	ed				
	0 = No write	collision is dete	ected				
bit 2	PWCOL2: DN	MA Channel 2 I	Peripheral Wri	te Collision Fla	ag bit		
	1 = Write col	lision is detecte	ed				
	0 = No write	collision is dete	ected				
bit 1	PWCOL1: DN	MA Channel 1 F	Peripheral Wri	te Collision Fla	ag bit		
	1 = Write col	lision is detecte	ed				
h:+ 0					h-14		
DIT U			Peripheral vvri	te Collision Fla	ag dit		
	$\perp = \text{VVrite COI}$	collision is detected	eted				

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

NOTES:

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

3: Timery is a Type C timer (y = 3 and 5).

Timerx/y Resources 13.1

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/
	wwwproducts/Devices.aspx?d
	DocName=en555464

KEY RESOURCES 13.1.1

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

HS/HC-	0 HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLTSTAT	-(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
DTC1	DTC0	DTCP ⁽³⁾	<u> </u>	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾			
bit 7							bit 0			
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit					
R = Reada	able bit	W = Writable bi	t	U = Unimplei	mented bit, rea	d as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15	FLTSTAT: Fai 1 = Fault inter 0 = No Fault i This bit is clea	ult Interrupt Statu rrupt is pending interrupt is pendi	us bit ⁽¹⁾ ng LTIEN = 0							
hit 14	CI STAT. Cur	rent-l imit Interru	nt Status hit(1)							
	Dit 14 CLSTAT: Current-Limit Interrupt Status Dit 1 1 = Current-limit interrupt is pending 0 = No current-limit interrupt is pending This bit is cleared by setting CLIEN = 0.									
bit 13	TRGSTAT: Tr	igger Interrupt S	tatus bit							
	1 = Trigger in 0 = No trigger This bit is clea	terrupt is pending r interrupt is pend ared by setting T	g ding RGIEN = 0.							
bit 12	FLTIEN: Faul	t Interrupt Enabl	e bit							
	1 = Fault inter 0 = Fault inter	rrupt is enabled rrupt is disabled	and the FLTST	AT bit is cleare	ed					
bit 11	CLIEN: Curre	ent-Limit Interrup	t Enable bit							
	1 = Current-lii 0 = Current-lii	mit interrupt is er mit interrupt is di	nabled sabled and the	CLSTAT bit is	cleared					
bit 10	TRGIEN: Trig	ger Interrupt Ena	able bit							
	1 = A trigger e 0 = Trigger ev	event generates /ent interrupts ar	an interrupt rec	quest the TRGSTAT	bit is cleared					
bit 9	ITB: Independ	dent Time Base	Mode bit ⁽²⁾							
	1 = PHASEx (0 = PTPER re	register provides egister provides f	time base peri timing for this F	iod for this PW WM generato	/M generator r					
bit 8	MDCS: Maste	er Duty Cycle Re	gister Select bi	it(2)						
	1 = MDC regi 0 = PDCx reg	ster provides du ister provides du	ty cycle informa ity cycle inform	ation for this P ation for this F	WM generator WM generator					
Note 1:	Software must clea	ar the interrupt st	atus here and	in the correspo	onding IFSx bit	in the interrup	ot controller.			
2:	These bits should	not be changed	after the PWM	, is enabled (P	PTEN = 1).	•				
3:	DTC<1:0> = 11 for	r DTCP to be effe	ective; otherwis	se, DTCP is ig	nored.					
4:	The Independent T CAM bit is ignored	Time Base (ITB =	1) mode must	be enabled to	use Center-Ali	igned mode. If	TTB = 0, the			
-	T		· · · · · · · · · · · · · · · · · · ·							

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 16-13: IOCONX: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1 SWAP: SWAP PWMxH and PWMxL Pins bit
 1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins
 0 = PWMxH and PWMxL pins are mapped to their respective pins
 bit 0 OSYNC: Output Override Synchronization bit
 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx period boundary
 - 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

18.3 SPIx Control Registers

R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 SPIEN SPISIDL SPIBEC<2:0> _____ bit 15 R/W-0 R/W-0 R/W-0 R/C-0, HS R/W-0 R/W-0 R-0, HS, HC R-0, HS, HC SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF bit 7 bit 0 Legend: C = Clearable bit HS = Hardware Settable bit HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables the module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables the module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues the module operation when device enters Idle mode 0 = Continues the module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPIx transfers that are pending. Slave mode: Number of SPIx transfers that are unread. SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) bit 7 1 = SPIx Shift register is empty and Ready-To-Send or receive the data 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register 0 = No overflow has occurred SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) bit 5 1 = RX FIFO is empty 0 = RX FIFO is not empty bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR and as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete 100 = Interrupt when one data is shifted into the SPIxSR and as a result, the TX FIFO has one open memory location 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit is set) 010 = Interrupt when the SPIx receive buffer is 3/4 or more full 001 = Interrupt when data is available in the receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer is read and as a result, the buffer is empty

bit 8

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

21.5 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x R/W-x		R/W-x	R/W-x
_	_	_	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk			
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-2	SID<10:0>: S	tandard Identif	ier bits				
bit 1	SRR: Substitu	ute Remote Re	quest bit				
	When IDE = 0	<u>):</u>					
	1 = Message	will request rea	mote transmis	ssion			
	0 = Normal m	lessage					
	When IDE = 1	L <u>:</u>					
	The SRR bit r	nust be set to '	1'.				
bit 0	IDE: Extende	d Identifier bit					
	1 = Message	will transmit Ex	ktended Ident	ifier			
	0 = Message	will transmit St	andard Identi	fier			

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	—		EID17	EID16	EID15	EID14	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_	CVR2OE ⁽¹⁾	—	—	—	VREFSEL	—	—
bit 15							bit 8
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVRE	N CVR1OE ⁽¹⁾	CVRR	CVRSS ⁽²⁾	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, read	i as '0'	
-n = Value	e at POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 15	Unimplemen	ted: Read as '	0'		(1)		
bit 14	CVR2OE: Co	mparator Volta	ige Reference	2 Output Ena	ble bit ⁽¹⁾		
	1 = (AVDD - A 0 = (AVDD - A	AVSS)/2 is conr AVSS)/2 is disce	nected to the C	VREF20 pin the CVREF20	pin		
bit 13-11	Unimplemen	ted: Read as '	0'		•		
bit 10	VREFSEL: C	omparator Voli	tage Reference	e Select bit			
	1 = CVREFIN :	= VREF+	-				
	0 = CVREFIN i	s generated by	y the resistor n	etwork			
bit 9-8	Unimplemen	ted: Read as '	0'				
bit 7	CVREN: Con	nparator Voltag	je Reference E	nable bit			
	1 = Compara	tor voltage refe	erence circuit is	s powered on	wn		
bit 6	CVR1OF: Co	mparator Volta	age Reference	1 Output Ena	ble bit(1)		
bit o	1 = Voltage le	evel is output o	n the CVRFF10				
	0 = Voltage le	evel is disconne	ected from the	n CVREF10 pi	'n		
bit 5	CVRR: Comp	arator Voltage	Reference Ra	inge Selectior	n bit		
	1 = CVRSRC/2	24 step-size					
	0 = CVRSRC/3	32 step-size					
bit 4	CVRSS: Com	parator Voltag	e Reference S	ource Selecti	on bit ⁽²⁾		
	1 = Compara 0 = Compara	tor voltage refe tor voltage refe	erence source,	CVRSRC = (V CVRSRC = A)	(REF+) – (AVSS) /DD – AVSS		
bit 3-0	CVR<3:0> Co	omparator Volt	age Reference	Value Select	ion $0 \leq CVR < 3$:	0> ≤ 15 bits	
	When CVRR	= 1:					
	CVREFIN = (C	VR<3:0>/24) •	(CVRSRC)				
	When CVRR	= 0:					
	CVREFIN = (C	VRSRC/4) + (C	VR<3:0>/32) •	(CVRSRC)			
Note 1:	CVRxOE overrides	s the TRISx an	d the ANSELx	bit settinas.			

REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

- 2: In order to operate with CVRSS = 1, at least one of the comparator modules must be enabled.

27.5 Watchdog Timer (WDT)

For dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

27.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Timeout period (TWDT), as shown in Parameter SY12 in Table 30-22.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 27-2: WDT BLOCK DIAGRAM

27.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3,2>) needs to be cleared in software after the device wakes up.

27.5.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode, enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<6>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>).

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS				d Operat otherwis g tempera	ing Cond e stated ature -40° -40°	ditions: 3) C ≤ Ta ≤ °C ≤ Ta ≤	3.0V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions				
DO31	TIOR	Port Output Rise Time	_	5	10	ns	
DO32	TIOF	Port Output Fall Time	— 5 10 ns				
DI35	TINP	INTx Pin High or Low Time (input)	20	_		ns	
DI40	TRBP	CNx High or Low Time (input)	2		_	TCY	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

АС СНА	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	n g Condit stated) ature -40 -40	tions: 3.0)°C ≤ Ta ≤)°C ≤ Ta ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characte	eristic ⁽⁴⁾	Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			400 kHz mode	TCY/2 (BRG + 2)	—	μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			400 kHz mode	Tcy/2 (BRG + 2)	_	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾		300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽²⁾	40	—	ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽²⁾	0.2	_	μS	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μS	Repeated Start
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	_	μS	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	After this period, the
		Hold Time	400 kHz mode	Tcy/2 (BRG +2)	_	μS	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	—	μs	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	
		From Clock	400 kHz mode		1000	ns	
			1 MHz mode ⁽²⁾	_	400	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be
			400 kHz mode	1.3	_	μs	free before a new
			1 MHz mode ⁽²⁾	0.5	_	μs	transmission can start
IM50	Св	Bus Capacitive L	oading	—	400	pF	
IM51	Tpgd	Pulse Gobbler De	elay	65	390	ns	(Note 3)

TABLE 30-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (l²C[™])" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** Typical value for this parameter is 130 ns.
- 4: These parameters are characterized, but not tested in manufacturing.

АС СНА	Standar (unless Operatin	d Opera otherwi g tempe	ting Con se stated rature	ditions j) ⁽¹⁾ 40°C ≤ 40°C <	: 3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended		
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC A	ccuracy (10-Bit N	lode)		
AD20b	Nr	Resolution	10) Data B	its	bits	
AD21b	INL	Integral Nonlinearity	-0.625		0.625	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-1.5		1.5	LSb	+85°C < TA ≤ +125°C (Note 2)
AD22b	DNL	Differential Nonlinearity	-0.25	_	0.25	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-0.25	_	0.25	LSb	$+85^{\circ}C < TA \le +125^{\circ}C$ (Note 2)
AD23b	Gerr	Gain Error	-2.5		2.5	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-2.5		2.5	LSb	+85°C < TA \leq +125°C (Note 2)
AD24b	EOFF	Offset Error	-1.25		1.25	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-1.25		1.25	LSb	+85°C < TA \leq +125°C (Note 2)
AD25b	—	Monotonicity	_	_	_		Guaranteed
		Dynamic P	erforman	ce (10-E	Bit Mode)		
AD30b	THD	Total Harmonic Distortion ⁽³⁾	—	64	—	dB	
AD31b	SINAD	Signal to Noise and Distortion ⁽³⁾	-	57	_	dB	
AD32b	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	72	—	dB	
AD33b	Fnyq	Input Signal Bandwidth ⁽³⁾	—	550	—	kHz	
AD34b	ENOB	Effective Number of Bits ⁽³⁾	—	9.4	—	bits	

TABLE 30-59: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note:

Microchip Technology Drawing C04-103C Sheet 1 of 2

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimension	MIN	NOM	MAX		
Number of Pins	N		48		
Pitch	е		0.40 BSC		
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	4.45	4.60	4.75	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	4.45	4.60	4.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30 0.40 0.50			
Contact-to-Exposed Pad	0.20	-	_		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2