

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gp502t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64MC20X/50X AND dsPIC33EP64GP50X DEVICES

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	—		JTAGIP<2:0)>	—		ICDIP<2:0	>	—	_	—	—	_	_	—	-	4400
IPC36	0888	_		PTG0IP<2:0)>	_	PT	GWDTIP<	2:0>	_	PT	GSTEPIP<2	::0>	_	_	_	_	4440
IPC37	088A	_	_	_	_	_	F	PTG3IP<2:	0>	_		PTG2IP<2:0	>	_	I	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_	_	_	_	—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	—	—	—	_	—	_	—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	—	—	—	_	_	_	—	_	—	_	DAE	DOOVR	—	—	—		0000
INTCON4	08C6	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<	3:0>					VECN	IUM<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC204/504 AND PIC24EPXXXGP/MC204 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
RPOR0	0680					RP35	R<5:0>			_	_	RP20R<5:0>						0000	
RPOR1	0682	—	—			RP37I	R<5:0>			—		RP36R<5:0> 000							
RPOR2	0684	—	—			RP39	R<5:0>			_	_		RP38R<5:0>						
RPOR3	0686	_	_			RP41	R<5:0>			—	_			RP40	R<5:0>			0000	
RPOR4	0688	_	_			RP43	R<5:0>			—	_	RP42R<5:0>					0000		
RPOR5	068A	_	_		RP55R<5:0>						_	RP54R<5:0>						0000	
RPOR6	068C	_	_			RP57	R<5:0>			_	—			RP56	R<5:0>			0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC206/506 AND PIC24EPXXXGP/MC206 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	—			RP35	R<5:0>			_	_			RP20I	R<5:0>			0000
RPOR1	0682	—	_			RP37	R<5:0>			_	_			RP36	R<5:0>			0000
RPOR2	0684	_	_			RP39	R<5:0>			—	—			RP38	R<5:0>			0000
RPOR3	0686	_	_			RP41	R<5:0>			—	—			RP40	R<5:0>			0000
RPOR4	0688	_	_			RP43	R<5:0>			—	—			RP42I	R<5:0>			0000
RPOR5	068A	_	_			RP55I	R<5:0>			—	—			RP54I	R<5:0>			0000
RPOR6	068C	_	_			RP57	R<5:0>			—	—			RP56I	R<5:0>			0000
RPOR7	068E	_	_			RP97	R<5:0>			—	—	_	_	_	_	_	_	0000
RPOR8	0690	_	_			RP118	R<5:0>			—	—	_	_	_	_	_	_	0000
RPOR9	0692	_	_	_	_	_	_	_	_	_	_			RP120	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - $\label{eq:constraint} \textbf{2:} \quad \text{This bit is cleared when the ROI bit is set and an interrupt occurs.}$
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
Input Capture 4	IC4	RPINR8	IC4R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1 ⁽³⁾	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2 ⁽³⁾	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A ⁽³⁾	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B ⁽³⁾	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index ⁽³⁾	INDX1	RPINR15	INDX1R<6:0>
QEI1 Home ⁽³⁾	HOME1	RPINR15	HOM1R<6:0>
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
PWM Sync Input 1 ⁽³⁾	SYNCI1	RPINR37	SYNCI1R<6:0>
PWM Dead-Time Compensation 1 ⁽³⁾	DTCMP1	RPINR38	DTCMP1R<6:0>
PWM Dead-Time Compensation 2 ⁽³⁾	DTCMP2	RPINR39	DTCMP2R<6:0>
PWM Dead-Time Compensation 3(3)	DTCMP3	RPINR39	DTCMP3R<6:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input source is available on dsPIC33EPXXXGP/MC50X devices only.

3: This input source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

11.4.4.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-toone and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPxR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX ⁽²⁾	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1 ⁽¹⁾	101101	RPn tied to PWM Primary Time Base Sync Output
QEI1CCMP ⁽¹⁾	101111	RPn tied to QEI 1 Counter Comparator Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

17.1 QEI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

17.1.1 KEY RESOURCES

- "Quadrature Encoder Interface" (DS70601) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS			
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾			
bit 7						-	bit 0			
Legend:		HC = Hardwa	re Clearable bit	HS = Hardwa	re Settable bit	C = Clearable bi	t			
R = Readab	le bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	vn			
bit 15	ADON: ADO	C1 Operating N	lode bit							
	1 = ADC mo	odule is operati	ng							
	0 = ADC is	off								
bit 14	Unimpleme	ented: Read as	'0'							
bit 13	ADSIDL: ADC1 Stop in Idle Mode bit									
	1 = Disconti	inues module o	peration when	device enters	Idle mode					
	0 = Continu	es module ope	ration in Idle mo	ode						
bit 12	ADDMABM	: DMA Buffer E	Build Mode bit							
	1 = DMA b	uffers are writte	en in the order	of conversion	; the module p	provides an addre	ess to the DMA			
	0 = DMA bi	uffers are writte	en in Scatter/Ga	ther mode: the	e module prov	ides a Scatter/Ga	ther address to			
	the DM	A channel, bas	ed on the index	of the analog	input and the	size of the DMA	ouffer.			
bit 11	Unimpleme	ented: Read as	'0'							
bit 10	AD12B: AD	C1 10-Bit or 12	2-Bit Operation	Mode bit						
	1 = 12-bit, 1	-channel ADC	operation							
	0 = 10-bit, 4	-channel ADC	operation							
bit 9-8	FORM<1:0	>: Data Output	Format bits							
	For 10-Bit C	Operation:								
	11 = Signed	d fractional (Do	UT = sddd ddd	ld dd00 000	0, where $s = $.	NOT.d<9>)				
	10 = Fractions	hai (DOUT = ac	100 0000 000 = cccc cccd		where $c = N($	(<0>b T(
	00 = Intege	r (Dout = 0000	00dd dddd	dddd)		51.u (0 ²)				
	For 12-Bit C	Deration:		,						
	11 = Signed	fractional (Do	UT = sddd ddd	ld dddd 000	0, where $s = .$	NOT.d<11>)				
	10 = Fractic	onal (Dout = do	ldd dddd ddd	ld 0000)						
	00 = Intege	r (DOUT = 0.000)	- ssss sada) dddd dddd	aaaa aaad, dddd)	where $s = .NC$	JI.U<112)				
		. (2001 - 0000		adduj						
Note 1: S	See Section 24	1.0 "Peripheral	l Trigger Gene	rator (PTG) M	odule" for info	ormation on this s	election.			

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

bit 1	BUFM: Buffer Fill Mode Select bit
	 1 = Starts the buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on next interrupt 0 = Always starts filling the buffer from the start address.
bit 0	ALTS: Alternate Input Sample Mode Select bit

1 = Uses channel input selects for Sample MUXA on first sample and Sample MUXB on next sample 0 = Always uses channel input selects for Sample MUXA

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 24-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			PTGT0	LIM<15:8>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			PTGTC	LIM<7:0>							
bit 7							bit 0				
Legend:											
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits General Purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1LI	IM<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1L	_IM<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits

General Purpose Timer1 Limit register (effective only with a PTGT1 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN			
bit 7							bit 0			
Legend:										
R = Readabl	e hit	W = Writable	hit	= Inimple	mented hit read	1 as 'N'				
r = Velue et DOP (1' = Dit is set (0' = Dit is closed with the university of the set (0' = Dit is closed)							nown			
		1 - Dit 13 3C			carca					
bit 15	HLMS: High	or Low-Level	Masking Select	t bits						
	1 = The mask	king (blanking)	function will pre	event any asse	erted ('0') compa	arator signal fro	m propagating			
	0 = The masł	king (blanking)	function will pre	event any asse	erted ('1') compa	arator signal from	m propagating			
bit 14	Unimplemer	nted: Read as	'0'							
bit 13	OCEN: OR O	Gate C Input Er	nable bit							
	1 = MCI is co	onnected to OF	R gate							
	0 = MCI is no	ot connected to	OR gate							
bit 12	OCNEN: OR	Gate C Input	Inverted Enable	e bit						
	1 = Inverted	MCI is connect	ted to OR gate	ate						
hit 11		Sate B Input Fr	neelee to on g	juic						
Sit II	1 = MBI is co	onnected to OR	aate							
	0 = MBI is not connected to OR gate									
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit						
	1 = Inverted	MBI is connect	ed to OR gate							
	0 = Inverted	MBI is not con	nected to OR g	gate						
bit 9	OAEN: OR Gate A Input Enable bit									
	1 = MAI is connected to OR gate									
hit 8		0 = MAI is not connected to OR gate								
DILO	UANEN: UK GATE A INPUT INVERTED ENABLE DIT									
	0 = Inverted	0 = Inverted MAI is not connected to OR gate								
bit 7	NAGS: AND Gate Output Inverted Enable bit									
	1 = Inverted	ANDI is conne	cted to OR gat	e						
	0 = Inverted	ANDI is not co		gate						
bit 6		Gate Output E	nable bit							
	0 = ANDI is r	not connected to O	to OR gate							
bit 5	ACEN: AND	Gate C Input E	Enable bit							
	1 = MCI is co	onnected to AN	ID gate							
	0 = MCI is no	ot connected to	AND gate							
bit 4	ACNEN: AN	D Gate C Input	Inverted Enat	ole bit						
	1 = Inverted	MCI is connect	ted to AND gat	te						
	0 = Inverted	IVICI IS NOT CON	nected to AND	gate						

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-24: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	_		10	MHz	(Note 3)	
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	—		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30			ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated) ⁽¹⁾ Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC /	Accuracy	/ (12-Bit	Mode)		
AD20a Nr Resolution			12	2 Data Bi	its	bits	
AD21a	INL	Integral Nonlinearity	-2.5		2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-5.5	_	5.5	LSb	+85°C < TA \leq +125°C (Note 2)
AD22a	DNL	Differential Nonlinearity	-1		1	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-1		1	LSb	+85°C < TA \leq +125°C (Note 2)
AD23a	Gerr	Gain Error ⁽³⁾	-10		10	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-10		10	LSb	+85°C < TA \leq +125°C (Note 2)
AD24a	EOFF	Offset Error	-5		5	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C$ (Note 2)
			-5		5	LSb	+85°C < TA \leq +125°C (Note 2)
AD25a	—	Monotonicity	—			—	Guaranteed
Dynamic Performance (12-Bit Mode)							
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75		dB	
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾		68	-	dB	
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾	_	80	_	dB	
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	_	250		kHz	
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3	_	bits	

TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	N	64			
Pitch	е		0.50 BSC		
Overall Height	A	0.80	0.80 0.90 1.00		
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	5.30	5.40	5.50	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	5.30	5.40	5.50	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2