

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gp504-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

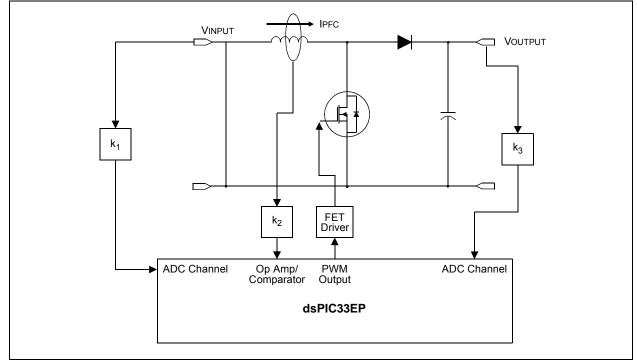
2.7 Oscillator Value Conditions on Device Start-up

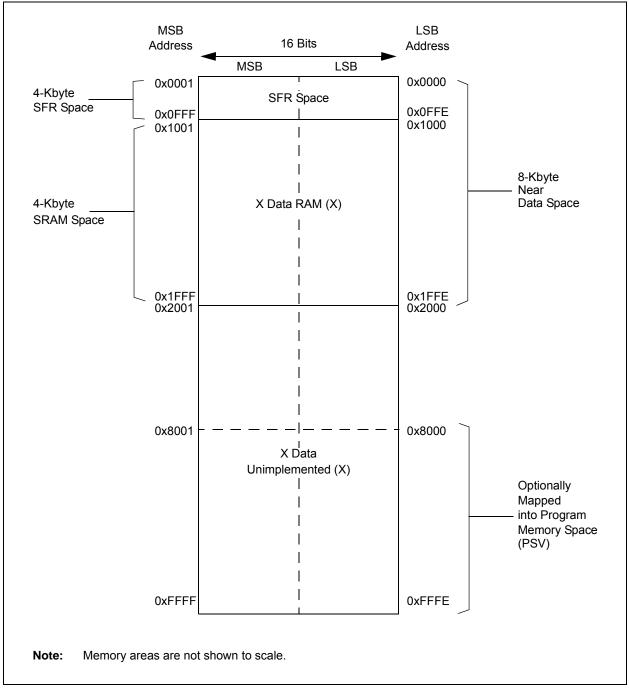
If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < F_{IN} < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.


Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.


2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

IABLE 4	-10.	001		JMPARE			OUIFU		ARE 4	REGIS		<u>٢</u>						
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	—	-	OCSIDL	C	CTSEL<2:0)>	—	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYN	NCSEL<4:0	>		000C
OC1RS	0904							Outp	out Compare	e 1 Seconda	ary Register							xxxx
OC1R	0906								Output Co	mpare 1 Re	gister							xxxx
OC1TMR	0908								Timer V	alue 1 Regi	ster							xxxx
OC2CON1	090A	_	—	OCSIDL	0	CTSEL<2:0)>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYN	NCSEL<4:0	>		000C
OC2RS	090E							Outp	out Compare	e 2 Seconda	ary Register							xxxx
OC2R	0910								Output Co	mpare 2 Re	gister							xxxx
OC2TMR	0912								Timer V	alue 2 Regi	ster							xxxx
OC3CON1	0914	_	—	OCSIDL	0	CTSEL<2:0)>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYN	NCSEL<4:0	>		000C
OC3RS	0918							Outp	out Compare	e 3 Seconda	ary Register							xxxx
OC3R	091A								Output Co	mpare 3 Re	gister							xxxx
OC3TMR	091C								Timer V	alue 3 Regi	ster							xxxx
OC4CON1	091E	_	-	OCSIDL	0	CTSEL<2:0)>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYN	NCSEL<4:0	>		000C
OC4RS	0922							Outp	out Compare	e 4 Seconda	ary Register							xxxx
OC4R	0924								Output Co	mpare 4 Re	gister							xxxx
OC4TMR	0926								Timer V	alue 4 Regi	ster							xxxx

TABLE 4-10: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 4 REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	—	—	_	CMPMD	_	_	CRCMD	_	—	_	—	—	I2C2MD	_	0000
PMD4	0766	_		_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_		_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-42: OP AMP/COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	_	-	—	C4EVT	C3EVT	C2EVT	C1EVT	_	-	—	—	C4OUT	C3OUT	C2OUT	C10UT	0000
CVRCON	0A82		CVR2OE	_	_	_	VREFSEL	_	_	CVREN	CVR10E	CVRR	CVRSS		CVR<	3:0>		0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM1MSKSRC	0A86		_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A		_	_	_	_	_	_	_	_	C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM2MSKSRC	0A8E		_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_	_	_	_	_	_	_		C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM3CON ⁽¹⁾	0A94	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM3MSKSRC(1)	0A96	_	_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM3MSKCON ⁽¹⁾	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR ⁽¹⁾	0A9A	_	_	_	_	_	_	_	_		C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM4CON	0A9C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM4MSKSRC	0A9E	_	_		_		SELSR	CC<3:0>	-		SELSRC	B<3:0>	•		SELSRC	A<3:0>		0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	_	_		_	_	_	_	_	—	C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are unavailable on dsPIC33EPXXXGP502/MC502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

TABLE 4-43: CTMU REGISTER MAP

File N	lame	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUC	CON1	033A	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	_	_	_	_	_	_	_	0000
CTMUC	CON2	033C	EDG1MOD	EDG1POL		EDG1	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2S	EL<3:0>		_	-	0000
CTMU	ICON	033E			ITRIM<5	5:0>			IRNG	<1:0>		_	_	_	_	_	-	_	0000

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: JTAG INTERFACE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	—	_	_						JDATAH	<27:16>						xxxx
JDATAL	0FF2					JDATAL<15:0> 000								0000				

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 97

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address prior to modification addresses an EDS or PSV page
- The EA calculation uses Pre-Modified or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-61 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

	-	SV SI ACE BOON					
0/11			Before			After	
O/U, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1
U, Read	[//11 -]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page

TABLE 4-61: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and PSV SPACE BOUNDARIES^(2,3,4)

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudo-Linear Addressing is not supported for large offsets.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD ⁽¹⁾	PWMMD ⁽¹⁾	_
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD ⁽²⁾	AD1MD
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	1 = Timer5 m	5 Module Disal odule is disable odule is enable	ed				
bit 14	1 = Timer4 m	4 Module Disal odule is disable odule is enable	ed				
bit 13	1 = Timer3 m	3 Module Disal odule is disable odule is enable	ed				
bit 12	1 = Timer2 m	2 Module Disal odule is disable odule is enable	ed				
bit 11	1 = Timer1 m	1 Module Disal odule is disable odule is enable	ed				
bit 10	1 = QEI1 mod	11 Module Disa Iule is disablec Iule is enabled					
bit 9	1 = PWM mod	/M Module Dis dule is disabled dule is enabled	1				
bit 8	Unimplemen	ted: Read as '	כי				
bit 7	1 = I2C1 mod	1 Module Disal ule is disabled ule is enabled	ble bit				
bit 6	1 = UART2 m	2 Module Disa odule is disabl odule is enable	ed				
bit 5	1 = UART1 m	1 Module Disa odule is disabl odule is enable	ed				
bit 4	1 = SPI2 mod	2 Module Disa lule is disabled lule is enabled	ole bit				

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

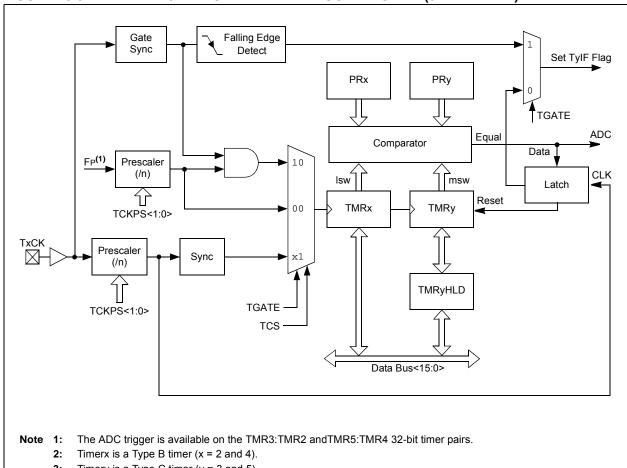
Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

REGISTER 11-16: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38 (dsPIC33EPXXXMC20X AND PIC24EPXXXMC20X DEVICES ONLY)

	-					-	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP1R<6:	0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_		_	—	—
bit 7							bit C
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-8		6:0>: Assign PV 1-2 for input pin		•	on Input 1 to the	e Corresponding	g RPn Pin bits
	1111001 =	Input tied to RP	1121				
	•						
	•						
		Input tied to CM	P1				
		Input tied to Vss					
bit 7-0		nted: Read as '					
			-				

NOTES:


12.1 Timer1 Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

12.1.1 KEY RESOURCES

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

3: Timery is a Type C timer (y = 3 and 5).

Timerx/y Resources 13.1

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/
	wwwproducts/Devices.aspx?d DocName=en555464

KEY RESOURCES 13.1.1

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: R = Readable bi	t	W = Writable bit		U = Unimpler	mented bit, read	l as '0'	
bit 7							bit 0
			PTPE	ER<7:0>			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			PTPE	R<15:8>			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

'0' = Bit is cleared

x = Bit is unknown

REGISTER 16-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

'1' = Bit is set

REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVT	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writ		W = Writable bi	t	U = Unimplem	nented bit, rea	id as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

-n = Value at POR

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾
	<pre>111 = 1:128 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value</pre>
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit 1 = Counter direction is negative unless modified by external up/down signal
	 0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected
Note 1:	When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0									
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN		
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	HLMS: High	or Low-Level N	lasking Select	bits					
	•		•		erted ('0') compa	rator signal from	m propagatin		
					erted ('1') compa				
bit 14	Unimplemen	ted: Read as	0'						
bit 13	OCEN: OR G	Sate C Input Er	able bit						
	1 = MCI is co	= MCI is connected to OR gate							
	0 = MCI is no	ot connected to	OR gate						
bit 12	OCNEN: OR Gate C Input Inverted Enable bit								
	 1 = Inverted MCI is connected to OR gate 0 = Inverted MCI is not connected to OR gate 								
			-	jate					
bit 11	OBEN: OR Gate B Input Enable bit								
	 1 = MBI is connected to OR gate 0 = MBI is not connected to OR gate 								
	OBNEN: OR Gate B Input Inverted Enable bit								
bit 10		Gate B Input I	•	≏ hit					
bit 10	OBNEN: OR	-	nverted Enable						
bit 10	OBNEN: OR 1 = Inverted I	MBI is connect	nverted Enable ed to OR gate						
bit 10 bit 9	OBNEN: OR 1 = Inverted I 0 = Inverted I	-	nverted Enable ed to OR gate nected to OR g						
	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G	MBI is connect MBI is not conr	nverted Enable ed to OR gate nected to OR g nable bit						
	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co	MBI is connect MBI is not conr Gate A Input Er	nverted Enable ed to OR gate nected to OR g nable bit gate						
	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR	MBI is connect MBI is not conr Gate A Input Er nnected to OR it connected to Gate A Input I	nverted Enable ed to OR gate nected to OR g nable bit gate OR gate nverted Enable	jate e bit					
bit 9	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I	MBI is connect MBI is not conr Gate A Input Er nnected to OR it connected to Gate A Input I MAI is connect	nverted Enable ed to OR gate nected to OR g nable bit OR gate Nverted Enable ed to OR gate	jate e bit					
bit 9 bit 8	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I	MBI is connect MBI is not conr Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not conr	nverted Enable ed to OR gate nected to OR g nable bit gate OR gate nverted Enable ed to OR gate nected to OR g	gate e bit gate					
bit 9	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND	MBI is connect MBI is not conr Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir	nverted Enable ed to OR gate nected to OR g nable bit gate OR gate nverted Enable nected to OR gate nected to OR g	gate e bit gate e bit					
bit 9 bit 8	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I	MBI is connect MBI is not conr Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect	nverted Enable ed to OR gate nected to OR g nable bit gate OR gate nverted Enable nected to OR gate nected to OR gate	gate e bit gate e bit e					
bit 9 bit 8 bit 7	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I 0 = Inverted I	MBI is connect MBI is not conr Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect ANDI is not con	nverted Enable ed to OR gate nected to OR g nable bit OR gate nverted Enable nverted Enable nverted Enable nverted Enable the to OR gate	gate e bit gate e bit e					
bit 9 bit 8 bit 7	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted A 0 = Inverted A	MBI is connect MBI is not conr Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect	nverted Enable ed to OR gate nected to OR g nable bit OR gate nverted Enable ed to OR gate nected to OR g nverted Enable cted to OR gat nnected to OR gat nnected to OR gat	gate e bit gate e bit e					
bit 9 bit 8 bit 7	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I 0 = Inverted I PAGS: AND 1 = ANDI is no	MBI is connect MBI is not conr Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is not con Gate Output E	nverted Enable ed to OR gate nected to OR g nable bit OR gate nverted Enable nverted Enable nected to OR gate nverted Enable cted to OR gat nnected to OR gat nnected to OR gat nnected to OR gat	gate e bit gate e bit e					
bit 9 bit 8	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I PAGS: AND 1 = ANDI is co 0 = ANDI is no	MBI is connect MBI is not conn Gate A Input En nnected to OR it connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connected Gate Output E connected to O not connected t Gate C Input E	nverted Enable ed to OR gate nected to OR g nable bit ogate OR gate nverted Enable nected to OR gate nected to OR gate nected to OR gate nected to OR gate nected to OR nable bit R gate o OR gate Enable bit	gate e bit gate e bit e					
bit 9 bit 8 bit 7 bit 6	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I NAGS: AND 1 = Inverted I NAGS: AND 1 = Inverted I 0 = Inverted I 0 = Inverted I 0 = Inverted I 1 = ANDI is co 0 = ANDI is co 1 = MCI is co	MBI is connect MBI is not conr Gate A Input Er nnected to OR it connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect ANDI is not cor Gate Output E connected to O to connected to Gate C Input E nnected to AN	nverted Enable ed to OR gate nected to OR g nable bit or gate or gate nverted Enable nected to OR gate nected to OR gate nected to OR gate the dto OR gate nected to OR gate cable bit R gate o OR gate Enable bit D gate	gate e bit gate e bit e					
bit 9 bit 8 bit 7 bit 6 bit 5	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I PAGS: AND 1 = ANDI is no 0 = ANDI is no 0 = MCI is no 0 = MCI is no	MBI is connect MBI is not conn Gate A Input En nnected to OR it connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connected Gate Output E connected to O not connected to Gate C Input E nnected to AN of connected to AN	nverted Enable ed to OR gate hected to OR g mable bit OR gate nverted Enable ed to OR gate hected to OR gate hected to OR gate chected to OR gate hected to OR gate nable bit R gate o OR gate finable bit D gate AND gate	gate e bit gate e gate					
bit 9 bit 8 bit 7 bit 6	OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I 0 = Inverted I PAGS: AND 1 = ANDI is co 0 = ANDI is no ACEN: AND 1 = MCI is co 0 = MCI is no ACNEN: AND	MBI is connect MBI is not conr Gate A Input Er nnected to OR it connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect ANDI is not cor Gate Output E connected to O to connected to Gate C Input E nnected to AN	nverted Enable ed to OR gate nected to OR g nable bit o gate OR gate nverted Enable ed to OR gate nected to OR gate nected to OR gate the o OR gate shable bit R gate o OR gate Enable bit D gate AND gate Inverted Enable	gate e bit gate e bit gate					

29.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

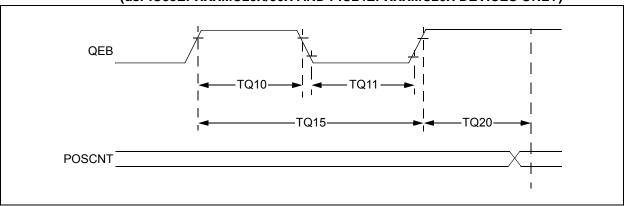
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.


Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

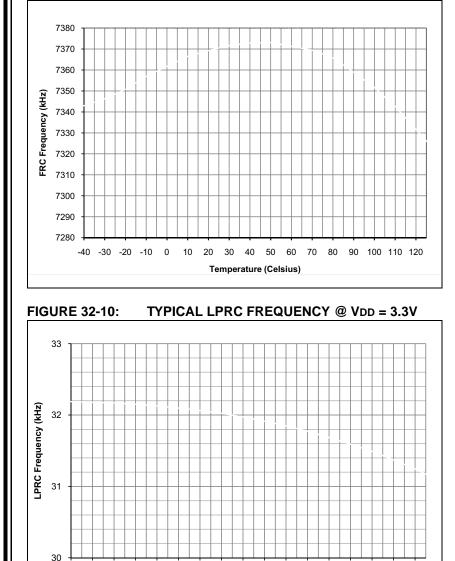

FIGURE 30-11: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-30: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

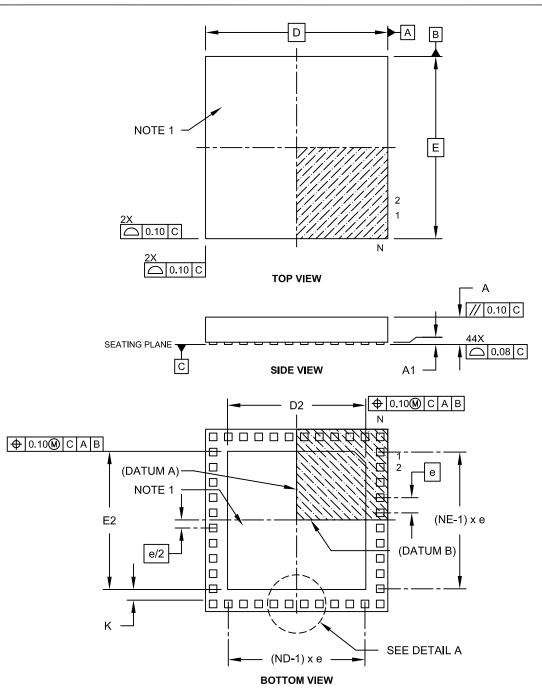
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25			ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler	Greater of 25 + 50 or (1 Tcy/N) + 50	—	_	ns	
TQ20	TCKEXTMRL	Delay from External TQCK Clock Edge to Timer Increment		_	1	Тсү	—	

Note 1: These parameters are characterized but not tested in manufacturing.

Temperature (Celsius)

70 80 90 100 110 120

TYPICAL FRC FREQUENCY @ VDD = 3.3V


-40 -30 -20 -10

0 10 20 30 40 50 60

FIGURE 32-9:

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-157C Sheet 1 of 2

Section Name	Update Description
Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)"	Updated the High-Speed PWM Module Register Interconnection Diagram (see Figure 16-2). Added the TRGCONx and TRIGx registers (see Register 16-12 and Register 16-14, respectively).
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the IRNG<1:0> bit value definitions and added Note 2 in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the Op amp/Comparator I/O Operating Modes Diagram (see Figure 25-1). Updated the User-programmable Blanking Function Block Diagram (see Figure 25-3). Updated the Digital Filter Interconnect Block Diagram (see Figure 25-4). Added Section 25.1 "Op amp Application Considerations ". Added Note 2 to the Comparator Control Register (see Register 25-2). Updated the bit definitions in the Comparator Mask Gating Control Register (see Register 25-5).
Section 27.0 "Special Features"	Updated the FICD Configuration Register, updated Note 1, and added Note 3 in the Configuration Byte Register Map (see Table 27-1). Added Section 27.2 " User ID Words ".
Section 30.0 "Electrical Characteristics"	 Updated the following Absolute Maximum Ratings: Maximum current out of Vss pin Maximum current into VDD pin Added Note 1 to the Operating MIPS vs. Voltage (see Table 30-1).
	Updated all Idle Current (IIDLE) Typical and Maximum DC Characteristics values (see Table 30-7).
	Updated all Doze Current (IDOZE) Typical and Maximum DC Characteristics values (see Table 30-9).
	Added Note 2, removed Parameter CM24, updated the Typical values Parameters CM10, CM20, CM21, CM32, CM41, CM44, and CM45, and updated the Minimum values for CM40 and CM41, and the Maximum value for CM40 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Updated Note 2 and the Typical value for Parameter VR310 in the Op amp/ Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Note 1, removed Parameter VRD312, and added Parameter VRD314 to the Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated the Minimum, Typical, and Maximum values for Internal LPRC Accuracy (see Table 30-22).
	Updated the Minimum, Typical, and Maximum values for Parameter SY37 in the Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer Timing Requirements (see Table 30-24).
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-35)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 30.0 "Electrical	These SPI2 Timing Requirements were updated:
Characteristics" (Continued)	Maximum value for Parameter SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-36, Table 30-37, and Table 30-38)
	 Maximum value for Parameter SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-40 and Table 30-42)
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-43)
	These SPI1 Timing Requirements were updated:
	Maximum value for Parameters SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-44, Table 30-45, and Table 30-46)
	Maximum value for Parameters SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-47 through Table 30-50)
	 Minimum value for Parameters SP40 and SP41 see Table 30-44 through Table 30-50)
	Updated all Typical values for the CTMU Current Source Specifications (see Table 30-55).
	Updated Note1, the Maximum value for Parameter AD06, the Minimum value for AD07, and the Typical values for AD09 in the ADC Module Specifications (see Table 30-56).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 30-57).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 30-58).
	Updated the Minimum and Maximum values for Parameter AD21b in the 10-bit Mode ADC Module Specifications (see Table 30-58).
	Updated Note 2 in the ADC Conversion (12-bit Mode) Timing Requirements (see Table 30-59).
	Updated Note 1 in the ADC Conversion (10-bit Mode) Timing Requirements (see Table 30-60).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)