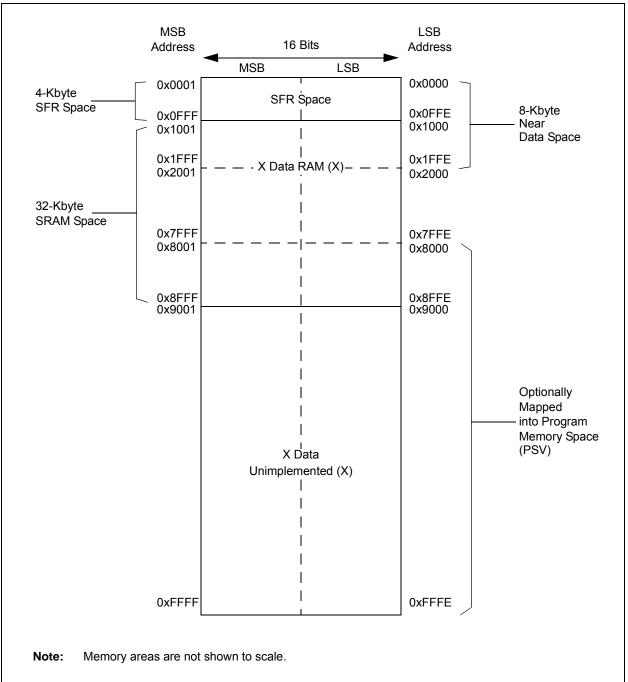


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gp504t-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

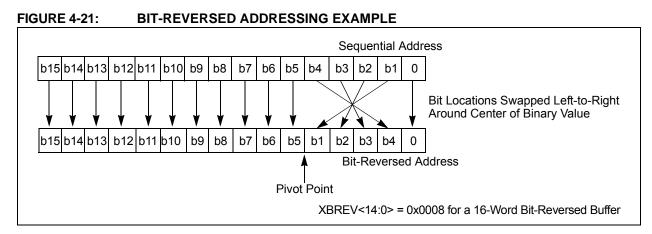


TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	—	—	_	CMPMD	_	_	CRCMD	_	—	_	—	—	I2C2MD	_	0000
PMD4	0766	_		_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_		_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-64: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	SS	Bit-Reversed Address				
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0					
TRAPF	R IOPUWR	—	_	VREGSF	—	CM	VREGS					
bit 15							bit 8					
D 4440		DANIO	DAA/ O	DAMA	DAMO							
R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1					
EXTR bit 7	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR					
							bit (
Legend:												
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown					
bit 15	•	TRAPR: Trap Reset Flag bit										
		 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred 										
bit 14	•				et Flag bit							
		IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit 1 = An illegal opcode detection, an illegal address mode or Uninitialized W register used as an										
		Pointer caused										
	-	l opcode or Uni		egister Reset h	as not occurred	d						
bit 13-12	-	ted: Read as '			. 1.9							
bit 11		ash Voltage Reg			p bit							
		 1 = Flash voltage regulator is active during Sleep 0 = Flash voltage regulator goes into Standby mode during Sleep 										
bit 10		ted: Read as '	-	,,	5							
bit 9	CM: Configur	ation Mismatch	Flag bit									
	1 = A Configu	uration Mismatc uration Mismatc	h Reset has									
bit 8	VREGS: Volta	VREGS: Voltage Regulator Standby During Sleep bit										
	•	egulator is active egulator goes in	•	•	еер							
bit 7	EXTR: Extern	EXTR: External Reset (MCLR) Pin bit										
		1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred										
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit								
		instruction has instruction has										
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾								
	1 = WDT is e 0 = WDT is di											
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag bi	it								
		e-out has occur e-out has not oc										
Note 1:	All of the Reset sta cause a device Re		set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not					
2:	If the FWDTEN Co SWDTEN bit settir	onfiguration bit i	s '1' (unprog	rammed), the V	VDT is always e	enabled, regard	lless of the					

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

REGISTER 8-7: DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			PAD	<15:8>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PAD<7:0>										
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn				nown							

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL X TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				CNT<	13:8> (2)			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CNT<	<7:0> (2)				
bit 7							bit 0	
Legend:								
-		W = Writable b	= Writable bit U = Unimplemented bit			id as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - $\label{eq:constraint} \textbf{2:} \quad \text{This bit is cleared when the ROI bit is set and an interrupt occurs.}$
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

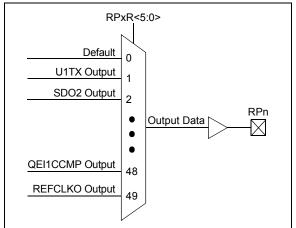
The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS


Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

11.4.4.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-toone and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPxR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX ⁽²⁾	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1 ⁽¹⁾	101101	RPn tied to PWM Primary Time Base Sync Output
QEI1CCMP ⁽¹⁾	101111	RPn tied to QEI 1 Counter Comparator Output
REFCLKO 110001 RPn tied to Reference Clock Output		RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_				HOME1R<6:0	>						
bit 15							bit 8				
		D # 4 4 0	54446	5444.0	5444.0		5444.6				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				INDX1R<6:0>	>						
bit 7							bit C				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown				
		nput tied to RPI									
		0000001 = Input tied to CMP1 0000000 = Input tied to Vss									
bit 7		nted: Read as '									
bit 6-0	(see Table 1	: Assign QEI1 1-2 for input pin nput tied to RPI	selection nun	,	responding RI	Pn Pin bits					
		nput tied to CM									

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0		
	0-0	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		ENFLTB		
 bit 15		COOIDE		OUTOLLI	OUTOLLU		bit 8		
Sit 10							bit 0		
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0		
ENFLT		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0		
bit 7							bit 0		
Legend:		HSC = Hardw	are Settable/Cl	earable bit					
R = Read	able bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'			
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15-14	Unimplemen	ted: Read as 'o)'						
bit 13	OCSIDL: Out	tput Compare x	Stop in Idle Mo	de Control bit					
		ompare x Halts							
	•	compare x conti	•		ode				
bit 12-10)>: Output Com	pare x Clock S	elect bits					
	111 = Periph 110 = Reserv	eral clock (FP)							
	101 = PTGO								
		is the clock so			hronous clock	is supported)			
		is the clock so							
		(is the clock so (is the clock so							
		is the clock so							
bit 9	Unimplemen	ted: Read as '0)'						
bit 8	ENFLTB: Fau	ult B Input Enab	le bit						
		compare Fault B compare Fault B							
bit 7	-	ult A Input Enab							
	1 = Output C	ompare Fault A compare Fault A	input (OCFA)						
bit 6	•	ted: Read as '0	• • •						
bit 5	OCFLTB: PW	M Fault B Con	dition Status bit						
		ult B condition of Fault B condition							
bit 4		FLTA: PWM Fault A Condition Status bit							
		ult A condition o							
Note 1:	OCxR and OCxF	29 are double h	uffered in D\\//	/ mode only					
Note 1. 2:				-	irce. See Secti	on 24.0 "Perin	heral Trigger		
2.	 Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. 								
	PTGO4 = OC1	-							
	PTG05 = 0C2								
	PTGO6 = OC3 PTGO7 = OC4								

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

	; FLT32 pin must be pulled low externally in order to clear and disable the fault ; Writing to FCLCON1 register requires unlock sequence								
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>								
-	d polarity using the IOCON1 register gister requires unlock sequence								
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0xF000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>								

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾ 111 = Reserved 100 = Reserved
bit 3-0	100 = Reserved 011 = PTGO17 ⁽²⁾ 010 = PTGO16 ⁽²⁾ 001 = Reserved 000 = SYNCI1 input from PPS SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits ⁽¹⁾
	 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event . <l< td=""></l<>
	0000 = 1:1 Postscaler generates Special Event Trigger on every second compare match event

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			DTR)	<13:8>				
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DTR	x<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

REGISTER 16-10: DTRx: PWMx DEAD-TIME REGISTER

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_		ALTDTRx<13:8>								
bit 15 b											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			ALTDT	Rx<7:0>							
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXF	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 17-10: INDX1HLD: INDEX COUNTER 1 HOLD REGISTER

bit 15-0 INDXHLD<15:0>: Hold Register for Reading and Writing INDX1CNTH bits

REGISTER 17-11: QEI1ICH: QEI1 INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIIC	<31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIIC	<23:16>			
						bit 0
it	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			
	R/W-0	R/W-0 R/W-0 it W = Writable I	QEIIC R/W-0 R/W-0 QEIIC QEIIC	QEIIC<31:24> R/W-0 R/W-0 R/W-0 QEIIC<23:16> it W = Writable bit U = Unimplem	QEIIC<31:24> R/W-0 R/W-0 R/W-0 QEIIC<23:16> it W = Writable bit U = Unimplemented bit, real	QEIIC<31:24> R/W-0 R/W-0 R/W-0 R/W-0 QEIIC<23:16>

bit 15-0 **QEIIC<31:16>:** High Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-12: QEI1ICL: QEI1 INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEI	C<7:0>			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **QEIIC<15:0>:** Low Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

21.4 ECAN Control Registers

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0
bit 15							bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE2	OPMODE1	OPMODE0	_	CANCAP			WIN
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	-	ted: Read as '					
bit 13	1 = Discontinu	Ix Stop in Idle I ues module ope module opera	eration when	device enters I	dle mode		
bit 12		All Pending Tra					
Sit 12	1 = Signals al	I transmit buffe	rs to abort tra		aborted		
bit 11	CANCKS: EC	ANx Module C	lock (FCAN)	Source Select b	bit		
	1 = FCAN is ea 0 = FCAN is ea	qual to 2 * FP					
bit 10-8	111 = Set Lis 110 = Reserv 101 = Reserv 100 = Set Co 011 = Set Lis 010 = Set Loc 001 = Set Dis	ed nfiguration moo ten Only mode opback mode	es mode de	bits			
bit 7-5	OPMODE<2:(111 = Module 110 = Reserv 101 = Reserv 100 = Module 011 = Module 010 = Module 001 = Module	0> : Operation N is in Listen All ed	Aode bits Messages n ation mode ly mode c mode node				
bit 4	Unimplemen	ted: Read as ')'				
bit 3				Capture Event message recei			
	0 = Disables (•					
bit 2-1	-	ted: Read as '0					
bit 0	WIN: SFR Ma	p Window Sele	ect bit				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
_	—	—		—	—	—	_						
bit 15							bit						
R/W-0	0 R/W-0 R/W-0 U-0 R/W-0 R/W-0				R/W-0	R/W-0							
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE						
bit 7							bit						
Lonondi													
Legend: R = Readab	la hit	W = Writable t	.it	II – Unimplor	nented bit, read								
-n = Value a		'1' = Bit is set	אנ	'0' = Bit is cle		x = Bit is unkr							
	IL FOR	I – DILIS SEL			areu								
bit 15-8	Unimplemen	ted: Read as '()'										
bit 7	-	Unimplemented: Read as '0' IVRIE: Invalid Message Interrupt Enable bit											
		1 = Interrupt request is enabled											
	0 = Interrupt request is not enabled												
bit 6	WAKIE: Bus Wake-up Activity Interrupt Enable bit												
	1 = Interrupt request is enabled												
		request is not e											
bit 5	ERRIE: Error Interrupt Enable bit												
	 I = Interrupt request is enabled Interrupt request is not enabled 												
L:1 4		•											
bit 4	-	ted: Read as '0		- 6:4									
bit 3		FIFOIE: FIFO Almost Full Interrupt Enable bit											
	 I = Interrupt request is enabled Interrupt request is not enabled 												
bit 2		•		nable bit									
		RBOVIE: RX Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled											
		0 = Interrupt request is not enabled											
bit 1	RBIE: RX Bu	RBIE: RX Buffer Interrupt Enable bit											
		1 = Interrupt request is enabled											
	•	request is not e											
bit 0		fer Interrupt En											
		request is enabl											
	0 = Interrupt i	0 = Interrupt request is not enabled											

REGISTER 21-7: CXINTE: ECANX INTERRUPT ENABLE REGISTER

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0
bit 15	1	1	1				bit
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGPWD3	PTGPWD2						
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	111 = Reserv 110 = Reserv 101 = PTG m 100 = PTG m 011 = PTG m 010 = PTG m 001 = PTG m		urce will be T3 urce will be T2 urce will be T1 urce will be TA urce will be Fc	BCLK PCLK ICLK D DSC			
bit 12-8	PTGDIV<4:0> 11111 = Divic 11110 = Divic	de-by-31 de-by-2	Clock Presca	ler (divider) bi	ts		
bit 7-4	PTGPWD<3:0 1111 = All trig 1110 = All trig 0001 = All trig	D>: PTG Trigge gger outputs ar gger outputs ar gger outputs ar	e 16 PTG cloc e 15 PTG cloc e 2 PTG clock	k cycles wide k cycles wide cycles wide			
bit 3	-	ted: Read as '					
bit 2-0	PTGWDT<2:0 111 = Watcho 110 = Watcho 101 = Watcho 011 = Watcho 011 = Watcho 010 = Watcho 010 = Watcho		Watchdog Tir ime-out after 5 ime-out after 2 ime-out after 1 ime-out after 3 ime-out after 3 ime-out after 3 ime-out after 8	12 PTG clock 56 PTG clock 28 PTG clock 4 PTG clocks 2 PTG clocks 6 PTG clocks 6 PTG clocks	S S	5	

REGISTER 24-2: PTGCON: PTG CONTROL REGISTER

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 30-40:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА		Standard Op (unless othe Operating te	erwise st	ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended	
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—	—	11	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—		ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.