

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gp504t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Program Memory" (DS70613) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 4.8 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space.

The program memory maps, which are presented by device family and memory size, are shown in Figure 4-1 through Figure 4-5.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP32GP50X, dsPIC33EP32MC20X/50X AND PIC24EP32GP/MC20X DEVICES

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804		_	—	_	_	—	_	_	_	IC4IF	IC3IF	DMA3IF	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	—	_	_	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808		_	CTMUIF	_	—	_	—	_	_	_	_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	—	_	—	_	_	_	_	_	_	_	_	_	—		0000
IFS6	080C	_	_	_	_	—	—	—	_	_	_	_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	—	—	—	_	_	_	_	_	_	_	_		0000
IFS9	0812		_	—	_	—	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824		_	—	_	_	—	_	_	_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826		_	_	_	_	QEI1IE	PSEMIE	_	_	_	_	_	_	MI2C2IE	SI2C2IE	—	0000
IEC4	0828		_	CTMUIE	_	_	_	_	_	_	_	_	_	CRCIE	U2EIE	U1EIE	—	0000
IEC5	082A	PWM2IE	PWM1IE	—	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
IEC6	082C		_	—	_	_	_	_	_	_	_	_	_	_	_	_	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	—	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
IEC9	0832		_	_	_	_	_	_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	—	0000
IPC0	0840			T1IP<2:0>	`	_		OC1IP<2:0)>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842			T2IP<2:0>	•	_		OC2IP<2:0)>	_		IC2IP<2:0>		_	[OMA0IP<2:0>		4444
IPC2	0844			U1RXIP<2:	0>	_		SPI1IP<2:0)>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	C	DMA1IP<2:	0>	_		AD1IP<2:0>	•	_		J1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0	>	_		CMIP<2:0	>	_		MI2C1IP<2:0	>	_	9	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_	_	_	_	_	_	_	_	_		INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>	, ,	_		OC4IP<2:0)>	_		OC3IP<2:0>	>	_	[DMA2IP<2:0>		4444
IPC7	084E	_		U2TXIP<2:0)>	_	ι	J2RXIP<2:	0>	_		INT2IP<2:0	>	_		T5IP<2:0>		4444
IPC8	0850		_	_	_	_	(C1RXIP<2:	0>	_		SPI2IP<2:0	>	_	5	SPI2EIP<2:0>		0444
IPC9	0852		_	_	_	_		IC4IP<2:0	>	_		IC3IP<2:0>		_	[DMA3IP<2:0>		0444
IPC12	0858		_	_	_	_	N	/II2C2IP<2:	:0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC14	085C		_	_	_	_		QEI1IP<2:)>	_		PSEMIP<2:0	>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0)>	_		U1EIP<2:0>	>	_	_	_	_	4440
IPC19	0866	_	_	—	_	_	_		_	_		CTMUIP<2:0	>	_	_	_		0040
IPC23	086E	_		PWM2IP<2:	0>	_	F	WM1IP<2	:0>	_	_	_	_	_	_	_	_	4400
IPC24	0870	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	F	WM3IP<2:0>		0004

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

TABLE 4	4-31:	PER	IPHERA	L PIN S	ELECT	INPUT F	REGISTI	ER MAP	FOR ds	sPIC33E	PXXXG	P50X D	EVICES	3 ONLY	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>					—	—	—	—	_			0000
RPINR1	06A2		_			_	_		—					INT2R<6:0>				0000
RPINR3	06A6		_			_	_		—				-	T2CKR<6:0>	>			0000
RPINR7	06AE					IC2R<6:0>								IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	-	_	_	_			(DCFAR<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	-	_	_	_			l	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	_	_	-	_	_	_			l	J2RXR<6:0	>			0000
RPINR22	06CC	_			S	CK2INR<6:0)>			_	SDI2R<6:0>					0000		
RPINR23	06CE	_	_	_	_	_	-	_	_	_				SS2R<6:0>				0000
RPINR26	06D4	_	_	_		_	—		_				(C1RXR<6:0	>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>	>			_	—	—	—			_	_	0000
RPINR1	06A2	_	_	_	_	_	_	_	_	_				INT2R<6:0>				0000
RPINR3	06A6	_	_	_	_	_	_	_	_	_			-	T2CKR<6:0>	>			0000
RPINR7	06AE	_				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000
RPINR12	06B8	_				FLT2R<6:0>	>			_				FLT1R<6:0>	•			0000
RPINR14	06BC	_			(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:()>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC	_			S	CK2INR<6:	0>			_				SDI2R<6:0>				0000
RPINR23	06CE	_	_	_	_	_	-	_	_	_				SS2R<6:0>				0000
RPINR26	06D4	_	_	_	_	_	_	_	_	_			(C1RXR<6:0	>			0000
RPINR37	06EA	_			S	YNCI1R<6:	0>			_	_	—			—	_	_	0000
RPINR38	06EC	—			D	CMP1R<6	:0>			—					0000			
RPINR39	06EE	_			D	FCMP3R<6:	:0>			_	DTCMP2R<6:0>				0000			

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A		_		_		PWM3MD	PWM2MD	PWM1MD			—	—	—	_	—		0000
													DMA0MD					
	0760												DMA1MD	DTOMD				0000
FINDT	0700	_	_	_	_	_	_	_	_	—	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

				(,			
R/SO-0 ⁽¹	⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾			—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
	—	—		NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)
bit 7							bit 0
						_	
Legend:		SO = Settab	le Only bit				
R = Reada	ble bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is clea	ired	x = Bit is unkn	iown
bit 15	WR: Write Co 1 = Initiates a cleared by 0 = Program	ntrol bit ⁽¹⁾ a Flash memo y hardware o or erase oper	ory program or nce the operati ation is comple	erase operation on is complete ate and inactive	on; the operatio	n is self-timed	and the bit is
bit 14	WREN: Write 1 = Enables F 0 = Inhibits Fl	Enable bit ⁽¹⁾ ⁻ lash program ash program/	n/erase operati ⁄erase operatio	ons			
bit 13	WRERR: Writ 1 = An improp on any se 0 = The progr	e Sequence E per program of t attempt of th ram or erase	Error Flag bit ⁽¹⁾ rerase sequence e WR bit) operation comp	ce attempt or ter	mination has oc	curred (bit is se	t automatically
bit 12	NVMSIDL: N\ 1 = Flash volt 0 = Flash volt	/M Stop in Idl age regulator age regulator	e Control bit ⁽²⁾ goes into Star is active durin	ndby mode duri g Idle mode	ng Idle mode		
bit 11-4	Unimplement	ted: Read as	'0'	-			
bit 3-0	NVMOP<3:0> 1111 = Reser 1110 = Reser 1101 = Reser 1000 = Reser 1011 = Reser 0011 = Memo 0010 = Reser 0001 = Memo 0000 = Reser	: NVM Opera ved ved ved ved ved ved ory page erase ved ory double-wo ved	tion Select bits e operation rd program ope	5 ^(1,3,4) eration ⁽⁵⁾			
Note 1: 2: 3: 4: 5:	These bits can only If this bit is set, the (TVREG) before Fla All other combination Execution of the PV Two adjacent word	/ be reset on a re will be mini sh memory be ons of NVMO wrsav instruc s on a 4-word	a POR. mal power sav ecomes operat P<3:0> are uni tion is ignored I boundary are	rings (IIDLE) and ional. implemented. while any of the programmed d	d upon exiting lo e NVM operatio uring execution	the mode, there ns are in progra	is a delay ess. on.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

NOTES:

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT2R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT1R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	FLT2R<6:0: (see Table 1	Assign PWM 1-2 for input pin	Fault 2 (FLT2 selection nur) to the Corresp mbers)	onding RPn F	Pin bits	
	1111001 =	Input tied to RPI	121				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	5				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0	FLT1R<6:0: (see Table 1	Second States	Fault 1 (FLT1 selection nur) to the Corresp nbers)	onding RPn F	Pin bits	
	1111001 =	Input tied to RPI	121				
	•						
	-						
		Input tied to CM	P1				
	0000000 =	Input tied to Vss	;				

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

Mode	TCS	TGATE	TSYNC
Timer	0	0	x
Gated Timer	0	1	х
Synchronous Counter	1	x	1
Asynchronous Counter	1	x	0

TABLE 12-1: TIMER MODE SETTINGS

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

3: Timery is a Type C timer (y = 3 and 5).

Timerx/y Resources 13.1

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/
	wwwproducts/Devices.aspx?d
	DocName=en555464

KEY RESOURCES 13.1.1

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	EC<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	EC<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-0 QEIGEC<15:0>: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edges
- · Precise Time Measurement Resolution of 1 ns
- Accurate Current Source Suitable for Capacitive Measurement
- On-Chip Temperature Measurement using a Built-in Diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

U-0	U-0	U-0	U-0	U-0	U-0 U-0		R/W-0			
		—	_	—	—		ADDMAEN			
bit 15							bit 8			
U-0 U-0		U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—			—	—	DMABL2	DMABL1	DMABL0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable b	pit	U = Unimple	mented bit, read	nted bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown				
L										
bit 15-9	Unimplemen	ted: Read as 'o)'							
bit 8	ADDMAEN: A	ADC1 DMA Ena	able bit							
	1 = Conversio	on results are st	ored in the Al	DC1BUF0 regi	ster for transfer	to RAM using	DMA			
	0 = Conversio	on results are st	ored in ADC1	BUF0 through	ADC1BUFF reg	gisters; DMA w	vill not be used			
bit 7-3	Unimplemen	ted: Read as '0)'							
bit 2-0	DMABL<2:0>	Selects Number Selects Number	per of DMA Bu	uffer Locations	per Analog Inp	ut bits				
	111 = Allocates 128 words of buffer to each analog input									
	110 = Allocates 64 words of buffer to each analog input									
	101 = Allocates 32 words of buffer to each analog input									
	100 = Allocates 16 words of buffer to each analog input									
	011 = Allocates 8 words of buffer to each analog input									
	0 ± 0 – Allocates 4 words of buffer to each analog input									
	000 = Allocates 1 word of buffer to each analog input									
o o o – Anocales i word of builer to each analog input										

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

bit 3-0	Step Command	OPTION<3:0>	Option Description				
	PTGWHI(1)	0000	PWM Special Event Trigger. ⁽³⁾				
	or (1)	0001	PWM master time base synchronization output. ⁽³⁾				
	PTGWLO(''	0010	PWM1 interrupt. ⁽³⁾				
		0011	PWM2 interrupt. ⁽³⁾				
		0100	PWM3 interrupt. ⁽³⁾				
		0101	Reserved.				
		0110	Reserved.				
		0111	OC1 Trigger event.				
		1000	OC2 Trigger event.				
		1001	IC1 Trigger event.				
		1010	CMP1 Trigger event.				
		1011	CMP2 Trigger event.				
		1100	CMP3 Trigger event.				
		1101	CMP4 Trigger event.				
		1110	ADC conversion done interrupt.				
		1111	INT2 external interrupt.				
	PTGIRQ(1)	0000	Generate PTG Interrupt 0.				
		0001	Generate PTG Interrupt 1.				
		0010	Generate PTG Interrupt 2.				
		0011	Generate PTG Interrupt 3.				
		0100	Reserved.				
		•	•				
		•	•				
		•	•				
	(0)	1111	Reserved.				
	PTGTRIG ⁽²⁾	00000	PTGO0.				
		00001	PTGO1.				
		•	•				
		•	•				
		•					
		11110	PTGO30.				
		11111	PTGO31.				

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

TABLE 30-46:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	varam. Symbol Characteristic ⁽¹⁾			Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	—	—	Lesserof FP or 11	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	-	—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	-	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	-	—	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	—	ns	(Note 4)	
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	—	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-34: ECAN_x MODULE I/O TIMING CHARACTERISTICS

TABLE 30-51: ECANx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol Characteristic ⁽¹⁾		Min.	Тур. ⁽²⁾	Max.	Units	Conditions
CA10	TIOF	Port Output Fall Time		_	_	ns	See Parameter DO32
CA11	TIOR	Port Output Rise Time		_	_	ns	See Parameter DO31
CA20	TCWF	Pulse Width to Trigger CAN Wake-up Filter	120			ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-35: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 30-52: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67	_	_	ns	
UA11	FBAUD	UARTx Baud Frequency	—	—	15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

Temperature (Celsius)

70 80 90 100 110 120

TYPICAL FRC FREQUENCY @ VDD = 3.3V

-40 -30 -20 -10

0 10 20 30 40 50 60

FIGURE 32-9:

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Contact Pitch	E		0.65 BSC				
Optional Center Pad Width	W2			4.70			
Optional Center Pad Length	T2			4.70			
Contact Pad Spacing	C1		6.00				
Contact Pad Spacing	C2		6.00				
Contact Pad Width (X28)	X1			0.40			
Contact Pad Length (X28)	Y1			0.85			
Distance Between Pads	G	0.25					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support