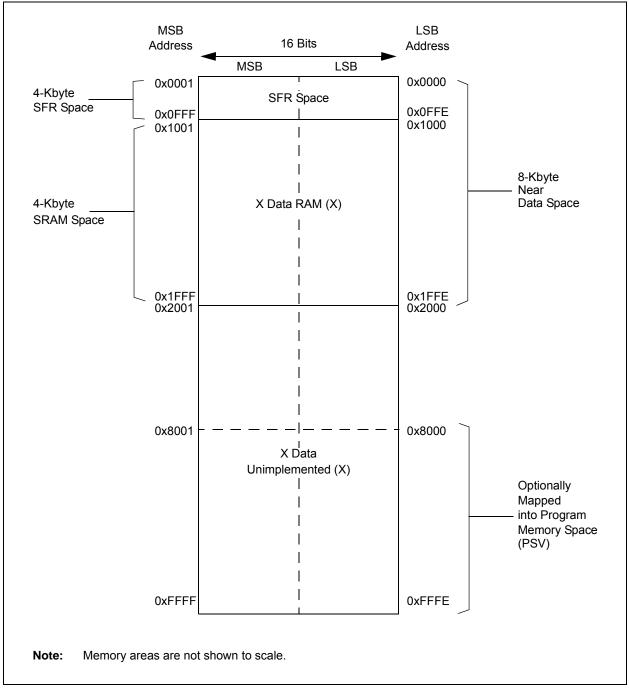


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc202-h-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	_		JTAGIP<2:0	>	_		ICDIP<2:0	>		—	_	_	—	_	—		4400
IPC36	0888	_	F	PTG0IP<2:0	>	_	PT	GWDTIP<	2:0>		PT	GSTEPIP<2	:0>	—	—	_	-	4440
IPC37	088A	_	—	—	_	_	F	PTG3IP<2:0)>			PTG2IP<2:0>	>	_		PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR				_	_	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_			—		_	—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—	—	_	_			—		_	DAE	DOOVR	_	—	—		0000
INTCON4	08C6	_	_	_	_	_	-	_	—	_	_	_	_	—	—	_	SGHT	0000
INTTREG	08C8	Ι	_	_	_		ILR<	3:0>		VECNUM<7:0> 0					0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4	-14:	PVVIVI G	ENERA	IUR Z R	EGIST		FOR as	PIC33EP		202/202		16246	PXXX			CES ONL	_ T	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC	<1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD	0<1:0>	OVRENH	OVRENL	OVRDA	\T<1:0>	FLTD	\T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	C000
FCLCON2	0C44	_		(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC2	0C46								PDC2<15:0>									0000
PHASE2	0C48				PHASE2<15:0> 00									0000				
DTR2	0C4A	_	_						[DTR2<13:0	>							0000
ALTDTR2	0C4C	_	_						AL	TDTR2<13	:0>							0000
TRIG2	0C52							TI	RGCMP<15:0)>								0000
TRGCON2	0C54		TRGDI	V<3:0>		_	—	_	_	_	-			TRO	GSTRT<5:	0>		0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	-	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	_	_	LEB<11:0> 000							0000						
AUXCON2	0C5E	_	_	—	—	- BLANKSEL<3:0> — — CHOPSEL<3:0> CHOPHEN CHOPLEN						0000						

I- DIGGOEDV/VMOGOV/EGV AND DIGGAEDV/VMOGOV DEVICED ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: PWM GENERATOR 3 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTD	AT<1:0>	CLD	AT<1:0>	SWAP	OSYNC	C000
FCLCON3	0C64			(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC3	0C66								PDC3<15:0>	•								0000
PHASE3	0C68				PHASE3<15:0> 000								0000					
DTR3	0C6A		—						[DTR3<13:0	>							0000
ALTDTR3	0C6C		—						AL	TDTR3<13	:0>							0000
TRIG3	0C72							Т	RGCMP<15:	0>								0000
TRGCON3	0C74		TRGDI	V<3:0>		_	_	_	_	_	_			TR	GSTRT<5:	0>		0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—		—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C		—	_	_	LEB<11:0> 000							0000					
AUXCON3	0C7E		—	—	—	BLANKSEL<3:0> — — CHOPSEL<3:0> CHOPHEN CHOPLEN (0000							

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

.

.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RP57	R<5:0>				
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—			RP56	R<5:0>				
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at P	OR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8	3-8 RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)								
bit 7-6	Unimplemented: Read as '0'								

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

(see Table 11-3 for peripheral function numbers)

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP97	R<5:0>		
bit 15							bit 8

RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

bit 5-0

NOTES:

14.2 Input Capture Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Stop in Idle Control bit
	1 = Input capture will Halt in CPU Idle mode
	0 = Input capture will continue to operate in CPU Idle mode
bit 12-10	ICTSEL<2:0>: Input Capture Timer Select bits
	111 = Peripheral clock (FP) is the clock source of the ICx
	110 = Reserved
	101 = Reserved
	100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the ICx
	010 = T4CLK is the clock source of the ICx
	001 = T2CLK is the clock source of the ICx
	000 = T3CLK is the clock source of the ICx
bit 9-7	Unimplemented: Read as '0'
bit 6-5	ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111)
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
bit 4	1 = Input capture buffer overflow occurred
	0 = No input capture buffer overflow occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	1 = Input capture buffer is not empty, at least one more capture value can be read
	0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	111 = Input capture functions as interrupt pin only in CPU Sleep and Idle modes (rising edge detect only, all other control bits are not applicable)
	110 = Unused (module is disabled)
	101 = Capture mode, every 16th rising edge (Prescaler Capture mode)
	 100 = Capture mode, every 4th rising edge (Prescaler Capture mode) 011 = Capture mode, every rising edge (Simple Capture mode)
	010 = Capture mode, every falling edge (Simple Capture mode)
	001 = Capture mode, every edge rising and falling (Edge Detect mode (ICI<1:0>) is not used in this mode)
	000 = Input capture module is turned off

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
CHPCLKEN	—	—	—	—	—	CHOPC	LK<9:8>			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CHOPCLK<7:0>										
bit 7							bit 0			
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimplei	mented bit, read	ad as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown				

REGISTER 16-5: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

REGISTER 16-6: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			MDC	<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			MD	C<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High register
- 32-Bit Position Compare Low register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 17-17: INT1TMRH: INTERVAL 1 TIMER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

REGISTER 17-18: INT1TMRL: INTERVAL 1 TIMER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	IR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	/IR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾				
bit 15		•		•	•	•	bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾				
bit 7	CKF	WIGTEN	SFREZ 7	SFREI?	SFREU 7	FFREN	bit				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	Unimplemen	ted: Read as	0'								
bit 12			bit (SPIx Mas	-	()						
		PIx clock is di	sabled, pin fun	ctions as I/O							
oit 11		able SDOx Pir									
				oin functions as	s I/O						
	 1 = SDOx pin is not used by the module; pin functions as I/O 0 = SDOx pin is controlled by the module 										
bit 10	MODE16: Wo	ord/Byte Comn	nunication Sele	ect bit							
		1 = Communication is word-wide (16 bits)									
		ication is byte-	. ,								
bit 9	SMP: SPIx Data Input Sample Phase bit										
	Master mode	-	end of data o	utout time							
	0 = Input data is sampled at middle of data output time <u>Slave mode:</u>										
	SMP must be cleared when SPIx is used in Slave mode.										
bit 8		lock Edge Sele									
		 1 = Serial output data changes on transition from active clock state to Idle clock state (refer to bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (refer to bit 6) 									
bit 7			bit (Slave mod			ve clock state (I					
		sused for Slav									
				is controlled b	by port function						
bit 6	CKP: Clock F	Polarity Select	bit								
			nigh level; activ ow level; active								
bit 5	MSTEN: Mas	ter Mode Enat	ole bit								
	1 = Master m 0 = Slave mo										
Note 1: T	he CKE bit is not	used in Frame	d SPI modes. I	Program this bi	it to '0' for Fram	ed SPI modes (FRMEN = 1				
	his bit must be cl										
0											

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

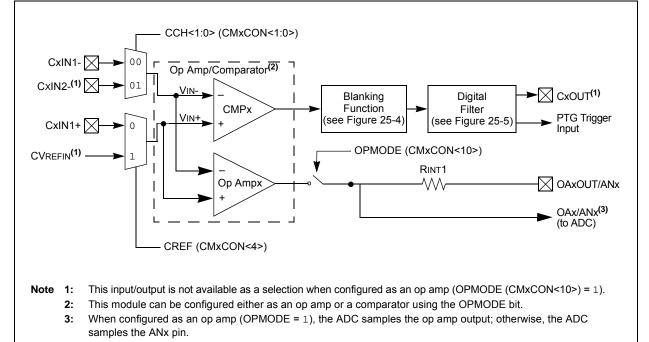
bit 7-5	SSRC<2:0>: Sample Trigger Source Select bits
	If SSRCG = 1: 111 = Reserved 110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion ⁽²⁾ 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion ⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion ⁽²⁾
	If SSRCG = 0: 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU ends sampling and starts conversion 101 = Reserved
	 101 - Reserved 100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion 010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on the INT0 pin ends sampling and starts conversion 000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC<2:0> for details.
bit 3	 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x) <u>In 12-bit mode (AD21B = 1), SIMSAM is Unimplemented and is Read as '0':</u> 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC1 Sample Auto-Start bit
	 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set
bit 1	SAMP: ADC1 Sample Enable bit
	 1 = ADC Sample-and-Hold amplifiers are sampling 0 = ADC Sample-and-Hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC1 Conversion Status bit ⁽³⁾
	 1 = ADC conversion cycle has completed 0 = ADC conversion has not started or is in progress Automatically set by hardware when the ADC conversion is complete. Software can write '0' to clear the DONE status bit (software is not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Note 1:	See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- **3:** Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

25.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain up to four comparators, which can be configured in various ways. Comparators, CMP1, CMP2 and CMP3, also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

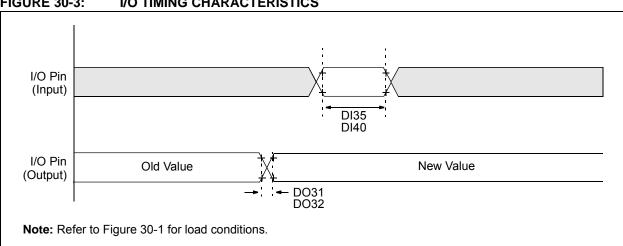

Note: Op Amp/Comparator 3 is not available on the dsPIC33EPXXXGP502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

These options allow users to:

- · Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2 and CMP3 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM (MODULES 1, 2 AND 3)



dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0			
	CVR2OE ⁽¹⁾	_	_	_	VREFSEL	_	_			
bit 15							bit			
D 444 0	DAALO	DAALO		D 444 0	DAALO	DANA	D 444 0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVR10E ⁽¹⁾	CVRR	CVRSS ⁽²⁾	CVR3	CVR2	CVR1	CVR0			
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkn	iown			
bit 15	Unimplement									
bit 14		•	ige Reference	•	ble bit ⁽¹⁾					
			nected to the C onnected from		nin					
bit 13-11	Unimplement				F					
bit 10	-		age Reference	e Select bit						
	1 = CVREFIN =	-	C							
	0 = CVREFIN is	s generated by	y the resistor ne	etwork						
bit 9-8	Unimplement	ted: Read as '	0'							
bit 7			e Reference E							
			erence circuit is erence circuit is		wn					
bit 6	CVR1OE: Co	mparator Volta	ige Reference	1 Output Ena	ble bit ⁽¹⁾					
			n the CVREF1C		n					
bit 5	CVRR: Comparator Voltage Reference Range Selection bit									
	1 = CVRSRC/2 0 = CVRSRC/3									
bit 4	CVRSS: Com	parator Voltag	e Reference S	ource Selecti	on bit ⁽²⁾					
		0	erence source, erence source,	· ·	ref+) – (AVss) /dd – AVss					
bit 3-0	CVR<3:0> Comparator Voltage Reference Value Selection $0 \le CVR<3:0 > \le 15$ bits									
	When CVRR = CVREFIN = (CV		(CVRSRC)							
	When CVRR = CVREFIN = (CV	= 0:		(\mathbf{C})						

REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

- 2: In order to operate with CVRSS = 1, at least one of the comparator modules must be enabled.

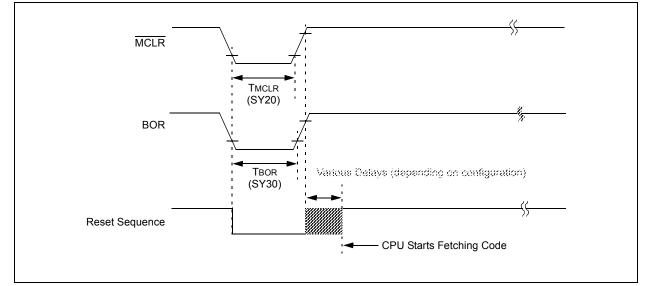

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				+85°C for Industrial
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions				
DO31	TioR	Port Output Rise Time		5	10	ns	
DO32	TIOF	Port Output Fall Time	— 5 10 ns				
DI35	TINP	INTx Pin High or Low Time (input)	20 — — ns				
DI40	Trbp	CNx High or Low Time (input)	2	_	_	Тсү	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

TABLE 30-38:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHA	RACTERIS	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 11	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time		_	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	_	_	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	_	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	—	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	—	ns	(Note 4)
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-39:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	—	—	15	MHz	(Note 3)	
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—		ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

	RACTERI	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$			
Param. No.	Symbol	Characte	Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	
			400 kHz mode	1.3	—	μS	
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	100	_	ns	
IS26	S26 THD:DAT	Data Input	100 kHz mode	0	—	μS	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μS	Start condition
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS	
		Setup Time	400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.6	_	μS	
IS34	THD:STO	Stop Condition	100 kHz mode	4	—	μS	
		Hold Time	400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.25		μS	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission
			1 MHz mode ⁽¹⁾	0.5		μs	can start
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	
S51	TPGD	Pulse Gobbler De	lay	65	390	ns	(Note 2)

TABLE 30-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: Typical value for this parameter is 130 ns.

3: These parameters are characterized, but not tested in manufacturing.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾						
			$\begin{array}{ll} \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
		Cloci	k Parame	eters					
AD50	TAD	ADC Clock Period	76	_	_	ns			
AD51	tRC	ADC Internal RC Oscillator Period ⁽²⁾		250	_	ns			
	•	Conv	version F	Rate		•			
AD55	tCONV	Conversion Time		12 Tad	_				
AD56	FCNV	Throughput Rate	_	—	1.1	Msps	Using simultaneous sampling		
AD57a	TSAMP	Sample Time when Sampling any ANx Input	2 Tad	—	_	—			
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	4 Tad	_	—	—			
		Timin	g Param	eters					
AD60	tPCS	Conversion Start from Sample Trigger ^(2,3)	2 Tad	—	3 Tad	_	Auto-convert trigger is not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ^(2,3))	2 Tad	—	3 Tad	—			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)	_	0.5 Tad		—			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)		—	20	μs	(Note 6)		

TABLE 30-61: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADC result is indeterminate.

TABLE 30-62: DMA MODULE TIMING REQUIREMENTS

		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)	_	_	ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

^{© 2011-2013} Microchip Technology Inc.

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS		
Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X		
HDC5	3.0 to 3.6V ⁽¹⁾	-40°C to +150°C	40		

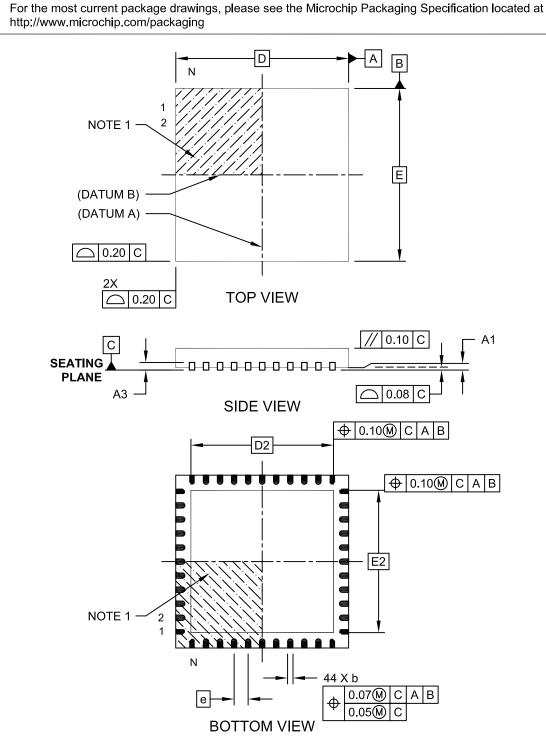

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, may have degraded performance. Device functionality is tested but not characterized.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	Pint + Pi/o		W	
Maximum Allowed Power Dissipation	PDMAX	(TJ – TΑ)/θJΑ			W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +150^{\circ}C \end{array}$								
Parameter No.	Symbol	Characteristic	Min Typ Max Units Conditions				Conditions		
Operating V	/oltage								
HDC10	Supply Voltage								
	Vdd	_	3.0	3.3	3.6	V	-40°C to +150°C		

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note:

Microchip Technology Drawing C04-103C Sheet 1 of 2