

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Vector	IRQ		Inte	errupt Bit L	ocation
Interrupt Source	# # IVI Address		IVT Address	Flag	Enable	Priority
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	—	_	_
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_
	Lowe	est Natura	I Order Priority			

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

REGISTER 8-3: DMAXSTAH: DMA CHANNEL X START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA<	23:16>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	it	U = Unimpler	mented bit, read	as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA<23:16>: Primary Start Address bits (source or destination)

REGISTER 8-4: DMAXSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-0 STA<15:0>: Primary Start Address bits (source or destination)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IC2R<6:0>			
·						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IC1R<6:0>			
						bit C
e bit	W = Writable b	it	U = Unimplem	nented bit, rea	d as '0'	
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
•			nbers)			
		1				
Unimplemer	nted: Read as '0					
(see Table 11 1111001 = I	I-2 for input pin's nput tied to RPI1	election num 21		onding RPn Pi	n bits	
	e bit POR Unimplemen IC2R<6:0>: / (see Table 11 1111001 = I 0000001 = I 0000000 = I Unimplemen IC1R<6:0>: / (see Table 11 1111001 = I	e bit W = Writable b POR '1' = Bit is set Unimplemented: Read as '0 IC2R<6:0>: Assign Input Cap (see Table 11-2 for input pin s 1111001 = Input tied to RPI1 0000001 = Input tied to CMP 0000000 = Input tied to Vss Unimplemented: Read as '0 IC1R<6:0>: Assign Input Cap (see Table 11-2 for input pin s	e bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) (see Table 11-2 for input pin selection num 1111001 = Input tied to RPI121	R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> IC1R<6:0> e bit W = Writable bit U = Unimplem POR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Correspond (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss Unimplemented: Read as '0' IC1R<6:0>: Assign Input Capture 1 (IC1) to the Correspond (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> e bit W = Writable bit U = Unimplemented bit, real POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss Unimplemented: Read as '0' IC1R<6:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 <p< td=""></p<>

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				U1RXR<6:0>	>		
bit 7							bit 0

REGISTER 11-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0' bit 6-0 U1RXR<6:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121

REGISTER 11-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

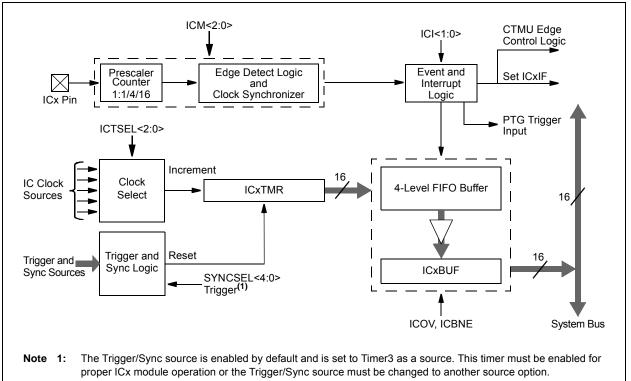
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
	—		_	_	—	—	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				U2RXR<6:0>	>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

^{0000000 =} Input tied to Vss

14.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70352) in the "dsPIC33/dsPIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices support four input capture channels.

Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 19 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	0-0	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		ENFLTB
 bit 15		COOIDE		OUTOLLI	OUTOLLU		bit 8
Sit 10							bit 0
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/Cl	earable bit			
R = Read	able bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '0)'				
bit 13	OCSIDL: Out	tput Compare x	Stop in Idle Mo	de Control bit			
		ompare x Halts					
	•	compare x conti	•		ode		
bit 12-10)>: Output Com	pare x Clock S	elect bits			
	111 = Periph 110 = Reserv	eral clock (FP)					
	101 = PTGO						
		is the clock so			hronous clock	is supported)	
		is the clock so					
		(is the clock so (is the clock so					
		is the clock so					
bit 9	Unimplemen	ted: Read as '0)'				
bit 8	ENFLTB: Fau	ult B Input Enab	le bit				
		compare Fault B compare Fault B					
bit 7	-	ult A Input Enab					
	1 = Output C	ompare Fault A compare Fault A	input (OCFA)				
bit 6	•	ted: Read as '0	• • •				
bit 5	OCFLTB: PW	M Fault B Con	dition Status bit				
		ult B condition of Fault B condition					
bit 4		/M Fault A Cond	•				
		ult A condition o					
Note 1:	OCxR and OCxF	29 are double h	uffered in D\\//	/ mode only			
Note 1. 2:	Each Output Cor			-	irce. See Secti	on 24.0 "Perin	heral Trigger
2.	Generator (PTG					5.1 2 7.0 1 611p	
	PTGO4 = OC1	-					
	PTGO5 = OC2						
	PTGO6 = OC3 PTGO7 = OC4						

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1 PTGO5 = OC2
 - PTGO6 = OC3 PTGO7 = OC4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXF	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk			nown				

REGISTER 17-10: INDX1HLD: INDEX COUNTER 1 HOLD REGISTER

bit 15-0 INDXHLD<15:0>: Hold Register for Reading and Writing INDX1CNTH bits

REGISTER 17-11: QEI1ICH: QEI1 INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIIC	<31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIIC	<23:16>			
						bit 0
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR '1' = Bit			'0' = Bit is clea	ared	x = Bit is unkr	nown
	R/W-0	R/W-0 R/W-0 it W = Writable I	QEIIC R/W-0 R/W-0 QEIIC QEIIC	QEIIC<31:24> R/W-0 R/W-0 R/W-0 QEIIC<23:16> it W = Writable bit U = Unimplen	QEIIC<31:24> R/W-0 R/W-0 R/W-0 QEIIC<23:16> it W = Writable bit U = Unimplemented bit, real	QEIIC<31:24> R/W-0 R/W-0 R/W-0 R/W-0 QEIIC<23:16>

bit 15-0 **QEIIC<31:16>:** High Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-12: QEI1ICL: QEI1 INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEI	C<7:0>			
bit 7							bit C
Legend:							
R = Readable bit		W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unkn		nown	

bit 15-0 **QEIIC<15:0>:** Low Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

21.0 ENHANCED CAN (ECAN™) MODULE (dsPIC33EPXXXGP/ MC50X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGP/MC50X devices contain one ECAN module.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The ECAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (Standard/Extended Identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to Input Capture (IC2) module for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

21.2 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3 ECAN Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

21.3.1 KEY RESOURCES

- "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	iber bits			
	10010-11111 = Invalid selection 10001 = Compares up to Data Byte 3, bit 6 with EID<17>						
	•						
	•						
	•						
		npares up to Da s not compare	•	7 with EID<0>			

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
_	_		FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0		
bit 15	I	•					bit 8		
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0		
_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0		
bit 7							bit		
Logondi									
Legend: R = Readable	- hit		hit.		nonted hit rea	d aa 'O'			
-n = Value at		W = Writable		'0' = Bit is cle	mented bit, rea				
-n = value at	POR	'1' = Bit is set		0 = Bit is cie	ared	x = Bit is unkr	IOWN		
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8	=	Filter Hit Num							
		1 = Reserved							
	01111 = Filte	r 15							
	•								
	•								
	• 00001 = Filter 1								
	00001 = Filte								
bit 7		ted: Read as '	0'						
bit 6-0	-								
	ICODE<6:0>: Interrupt Flag Code bits 1000101-1111111 = Reserved								
		IFO almost full							
		eceiver overflo							
	1000010 = K 1000001 = E	/ake-up interru rror interrupt	μ						
	1000000 = N								
	•								
	•								
	•								
		11111 = Rese							
	•	B15 buffer inte	inupt						
	•								
	•								
	0001001 = R	B9 buffer inter	rupt						
		B8 buffer inter							
		RB7 buffer inte RB6 buffer inte							
		RB5 buffer inte							
		RB4 buffer inte							
	0000011 = T	RB3 buffer inte	errupt						
		RB2 buffer inte RB1 buffer inte							

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

NOTES:

REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

bit 1	BUFM: Buffer Fill Mode Select bit
	 1 = Starts the buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on next interrupt 0 = Always starts filling the buffer from the start address.
bit 0	ALTS: Alternate Input Sample Mode Select bit

1 = Uses channel input selects for Sample MUXA on first sample and Sample MUXB on next sample 0 = Always uses channel input selects for Sample MUXA

_							
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	—	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾
bit 15						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7 ⁽²⁾	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾
bit 7							bit 0
r							
Legend:							
R = Readable b		W = Writable k	bit	•	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = ADC inter						
		ved from syste					
bit 14-13	•	ted: Read as '0					
bit 12-8		Auto-Sample T	ime bits ⁽¹⁾				
	11111 = 31 T	AD					
	•						
	•						
	00001 = 1 TA 00000 = 0 TA						
bit 7-0	ADCS<7:0>:	ADC1 Convers	ion Clock Sele	ct bits ⁽²⁾			
	11111111 = ⁻ •	TP • (ADCS<7:	0> + 1) = TP •	256 = Tad			
	•						
	00000010 = -	TP • (ADCS<7:	0> + 1) = TP •	3 = TAD			
	0000001 =	TP • (ADCS<7: TP • (ADCS<7:	0> + 1) = TP •	2 = Tad			
 Note 1: This bit is only used if SSRC<2:0> (AD1CON1<7:5>) = 111 and SSRCG (AD1CON1<4>) = 0. 2: This bit is not used if ADRC (AD1CON3<15>) = 1. 						0.	

REGISTER 23-3: AD1CON3: ADC1 CONTROL REGISTER 3

PTG Output Number	PTG Output Description
PTGO0	Trigger/Synchronization Source for OC1
PTGO1	Trigger/Synchronization Source for OC2
PTGO2	Trigger/Synchronization Source for OC3
PTGO3	Trigger/Synchronization Source for OC4
PTGO4	Clock Source for OC1
PTGO5	Clock Source for OC2
PTGO6	Clock Source for OC3
PTGO7	Clock Source for OC4
PTGO8	Trigger/Synchronization Source for IC1
PTGO9	Trigger/Synchronization Source for IC2
PTGO10	Trigger/Synchronization Source for IC3
PTGO11	Trigger/Synchronization Source for IC4
PTGO12	Sample Trigger for ADC
PTGO13	Sample Trigger for ADC
PTGO14	Sample Trigger for ADC
PTGO15	Sample Trigger for ADC
PTGO16	PWM Time Base Synchronous Source for PWM ⁽¹⁾
PTGO17	PWM Time Base Synchronous Source for PWM ⁽¹⁾
PTGO18	Mask Input Select for Op Amp/Comparator
PTGO19	Mask Input Select for Op Amp/Comparator
PTGO20	Reserved
PTGO21	Reserved
PTGO22	Reserved
PTGO23	Reserved
PTGO24	Reserved
PTGO25	Reserved
PTGO26	Reserved
PTGO27	Reserved
PTGO28	Reserved
PTGO29	Reserved
PTGO30	PTG Output to PPS Input Selection
PTGO31	PTG Output to PPS Input Selection

TABLE 24-2: PTG OUTPUT DESCRIPTIONS

Note 1: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn		1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#litl6,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws , Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

NOTES:

Revision H (August 2013)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-6.

Section Name	Update Description
Cover Section	 Adds Peripheral Pin Select (PPS) to allow Digital Function Remapping and Change Notification Interrupts to Input/Output section
	Adds heading information to 64-Pin TQFP
Section 4.0 "Memory	Corrects Reset values for ANSELE, TRISF, TRISC, ANSELC and TRISA
Organization"	 Corrects address range from 0x2FFF to 0x7FFF
	Corrects DSRPAG and DSWPAG (now 3 hex digits)
	 Changes Call Stack Frame from <15:1> to PC<15:0>
	Word length in Figure 4-20 is changed to 50 words for clarity
Section 5.0 "Flash Program	Corrects descriptions of NVM registers
Memory"	
Section 9.0 "Oscillator	Removes resistor from Figure 9-1
Configuration"	Adds Fast RC Oscillator with Divide-by-16 (FRCDIV16) row to Table 9-1
	 Removes incorrect information from ROI bit in Register 9-2
Section 14.0 "Input Capture"	 Changes 31 user-selectable Trigger/Sync interrupts to 19 user-selectable Trigger/ Sync interrupts
	Corrects ICTSEL<12:10> bits (now ICTSEL<2:0>)
Section 17.0 "Quadrature Encoder Interface (QEI)	Corrects QCAPEN bit description
Module	
(dsPIC33EPXXXMC20X/50X	
and PIC24EPXXXMC20X Devices Only)"	
Section 19.0 "Inter-	Adds note to clarify that 100kbit/sec operation of I ² C is not possible at high processor
Integrated Circuit [™] (I ² C [™])"	speeds
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Clarifies Figure 22-1 to accurately reflect peripheral behavior
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Correct Figure 23-1 (changes CH123x to CH123Sx)
Section 24.0 "Peripheral Trigger Generator (PTG) Module"	 Adds footnote to Register 24-1 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled.
Section 25.0 "Op Amp/ Comparator Module"	 Adds note to Figure 25-3 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled)
	 Adds footnote to Register 25-2 (COE is not available when OPMODE (CMxCON<10>) = 1)
Section 27.0 "Special Features"	Corrects the bit description for FNOSC<2:0>
Section 30.0 "Electrical	Corrects 512K part power-down currents based on test data
Characteristics"	Corrects WDT timing limits based on LPRC oscillator tolerance
Section 31.0 "High- Temperature Electrical Characteristics"	Adds Table 31-5 (DC Characteristics: Idle Current (IIDLE)
Unaracteristics	<u> </u>

NOTES: