

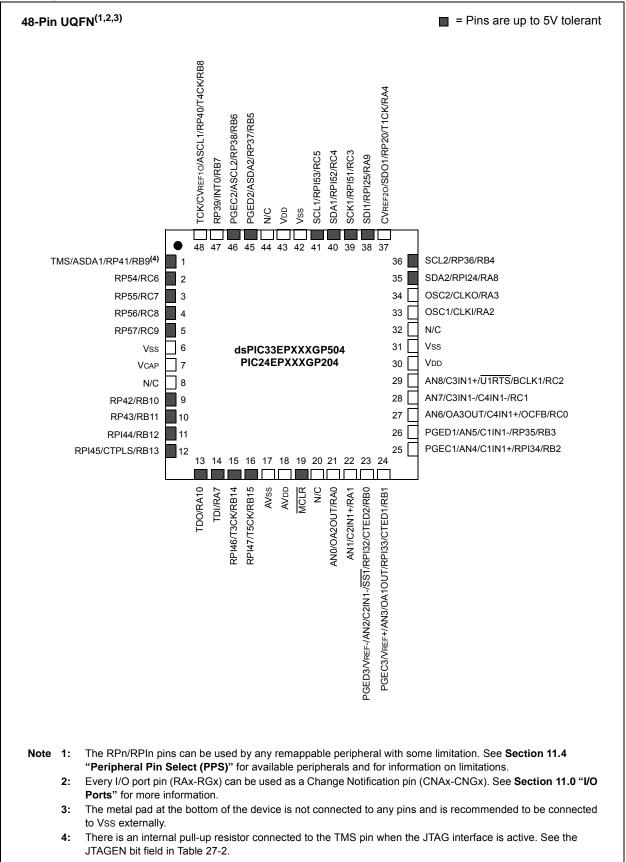
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

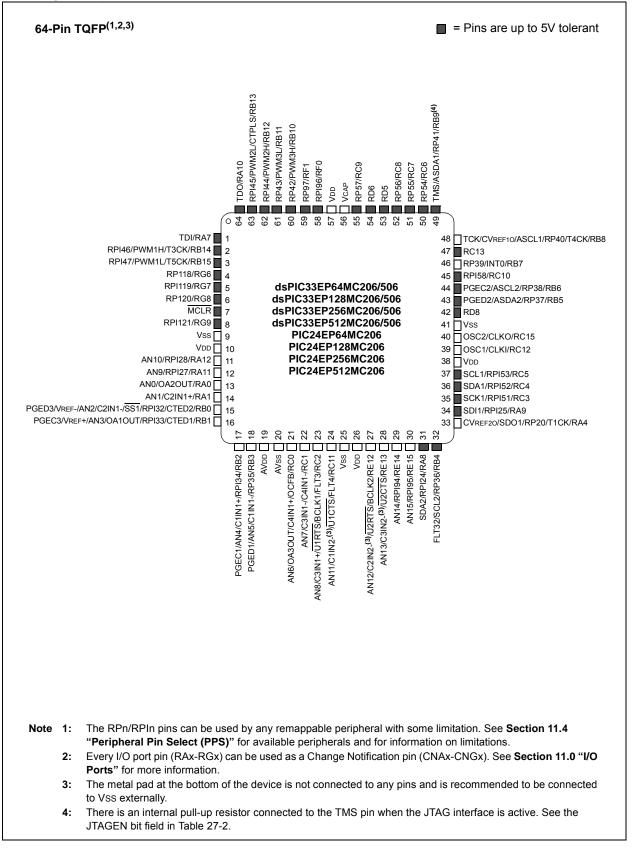
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

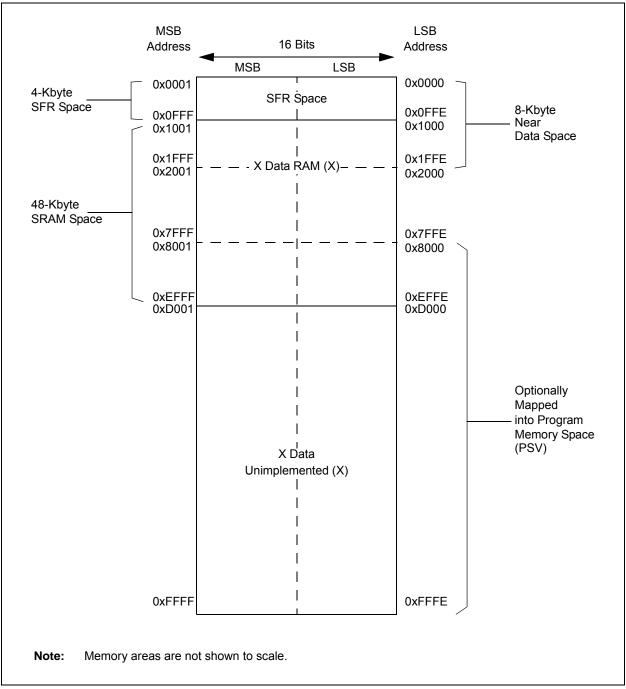
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


-·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc206-e-mr


Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

TABLE 4-59: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	—	_	_	_	-	_	_	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	0E02	_	_	_	_	_	_	_		_	_	_	RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04	_	_	_	_	_	_	_		_	_	_	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	_	_	_	_		_	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	_	_	_	_	_	_	_		_	_	_	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	_	_	_	_		_	_	_	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	_	_	_	_		_	_	_	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	—	_	—	_	_	_	_	_	_	_	ANSA4	_	_	ANSA1	ANSA0	0013

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-60: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

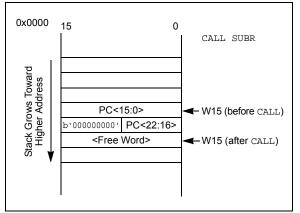
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_	_	_	_	ANSB8	_		_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the hardware.


W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-19 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-19. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-19: CALL STACK FRAME

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory starting at location, 000004h. The IVT contains seven non-maskable trap vectors and up to 246 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

	Vector	IRQ		Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	—	_	_
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_
	Lowe	est Natura	I Order Priority			

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

NOTES:

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware is clear at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware is clear at the end of the eighth bit of the master receive data byte. 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I^2C master)
511 2	1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of the master Stop sequence.
h :+ 4	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as l^2C master)
	 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start sequence. 0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	<pre>FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected</pre>
bit 1	 OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	 URXDA: UARTx Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to the "**UART**" (DS70582) section in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UARTx module for transmit operation.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-26:	CxTRmnCON: ECANx TX/RX BUFFER mn CONTROL REGISTER
	(m = 0,2,4,6; n = 1,3,5,7)

	`												
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0						
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0						
bit 15							bit 8						
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0						
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0						
bit 7		1	1				bit (
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15-8	See Dofinition	n for bits<7:0>,	Controls Ruffs	ar n									
bit 7		,											
		TXENm: TX/RX Buffer Selection bit											
	1 = Buffer TRBn is a transmit buffer 0 = Buffer TRBn is a receive buffer												
bit 6	TXABTm: Message Aborted bit ⁽¹⁾												
	1 = Message was aborted												
	•	completed trar	nsmission succ	essfully									
bit 5	TXLARBm: Message Lost Arbitration bit ⁽¹⁾												
	1 = Message lost arbitration while being sent												
	0 = Message	did not lose ar	bitration while	being sent									
bit 4	TXERRm: Error Detected During Transmission bit ⁽¹⁾												
	1 = A bus error occurred while the message was being sent												
	0 = A bus error did not occur while the message was being sent												
bit 3		TXREQm: Message Send Request bit											
	sent		-		-	n the message	is successfully						
		the bit to '0' wh	•	0	abort								
bit 2		n: Auto-Remote Transmit Enable bit											
	 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected 												
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	ority bits									
		message prior											
		ermediate mes											
		ermediate mess message priori											
	00 – Lowesi	messaye priori	ıy										
Note 1: Th	nis bit is cleared	when TXREQ i	s set.										

Note: The buffers, SID, EID, DLC, Data Field, and Receive Status registers are located in DMA RAM.

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
			Ву	/te 3						
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
			Ву	/te 2						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' =					ared	'0' = Bit is cleared x = Bit is unknown				

bit 15-8 Byte 3<15:8>: ECAN Message Byte 3 bits

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2 bits

BUFFER 21-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
			В	yte 5						
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
				yte 4						
bit 7				-			bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown			

bit 15-8 Byte 5<15:8>: ECAN Message Byte 5 bits

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4 bits

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

11.0	11.0	11.0	11.0	11.0			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_				CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

0-0	0-0	0-0	0-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	_		CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits

In 12-bit mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value	ADC Channel				
value	CH1	CH2	CH3		
11	AN9	AN10	AN11		
10 (1,2)	OA3/AN6	AN7	AN8		
0x	Vrefl	Vrefl	VREFL		

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-bit mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value	ADC Channel				
value			CH3		
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6		
0 (1,2)	OA2/AN0	AN1	AN2		

bit 7-3 Unimplemented: Read as '0'

bit 2-1 **CH123NA<1:0>:** Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-bit mode (AD21B = 1), CH123NA is Unimplemented and is Read as '<u>0</u>':

Value	ADC Channel				
value	CH1	CH2	CH3		
11	AN9	AN10	AN11		
10 (1,2)	OA3/AN6	AN7	AN8		
0x	VREFL	VREFL	Vrefl		

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER	25-3: CM40	CON: COMPA	RATOR 4 CO	ONTROL RE	GISTER				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
CON	COE	CPOL	—	—	_	CEVT	COUT		
bit 15							bit 8		
R/W-0	DAALO	U-0		U-0	U-0		R/W-0		
	R/W-0	0-0	R/W-0	0-0	0-0	R/W-0			
EVPOL1	EVPOL0	—	CREF	—	_	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾		
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'			
-n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	iown		
			•						
bit 15	CON: Comp	arator Enable b	bit						
		ator is enabled							
		ator is disabled							
bit 14	COE: Comp	arator Output E	nable bit						
		ator output is pr ator output is in		xOUT pin					
bit 13	CPOL: Com	parator Output	Polarity Select	bit					
		ator output is in							
	0 = Compara	ator output is no	ot inverted						
bit 12-10	Unimpleme	nted: Read as	'0'						
bit 9	CEVT: Com	parator Event b	it						
	interrup	ts until the bit is	cleared	POL<1:0> set	tings occurred;	disables future	triggers and		
	•	ator event did i							
bit 8		parator Output							
	$\frac{\text{VVnen CPOL}}{1 = \text{VIN} + > \text{V}}$	When CPOL = 0 (non-inverted polarity):							
	0 = VIN + < V								
	When CPOL	= 1 (inverted p	olarity):						
	1 = VIN+ < V								
	0 = VIN + > V	'IN-							
bit 7-6		>: Trigger/Ever		-					
	10 = Trigger		generated only			or output (while (ne polarity selected			
		L = 1 (inverted) -high transition		ator output.					
		L = 0 (non-inve -low transition		ator output.					
		/event/interrupt (while CEVT =		v on low-to-higl	n transition of th	e polarity selecte	ed comparato		
		L = 1 (inverted		ator output.					
		L = 0 (non-inve -high transition		ator output.					
	00 = Trigger	/event/interrupt	generation is	disabled					
Note 1: In	puts that are se	lected and not a	available will be	e tied to Vss. S	See the "Pin Dia	agrams" sectior	n for available		

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

27.6 JTAG Interface

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"
	(DS70608) in the "dsPIC33/PIC24 Family
	Reference Manual" for further information
	on usage, configuration and operation of the
	JTAG interface.

27.7 In-Circuit Serial Programming

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.8 In-Circuit Debugger

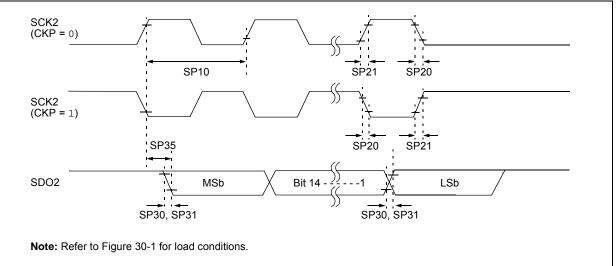
When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.9 Code Protection and CodeGuard™ Security

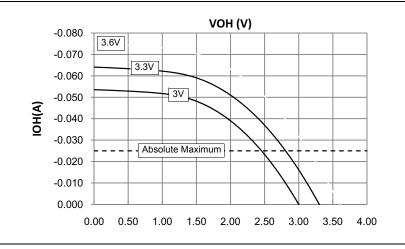

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

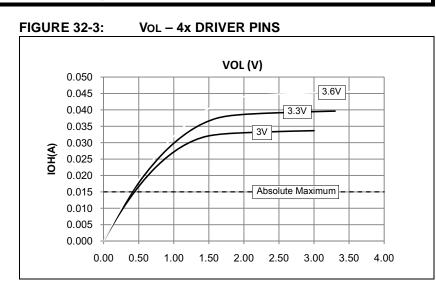
Note: Refer to "CodeGuard[™] Security" (DS70634) in the "dsPIC33/PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

AC CHARAG	CTERISTICS		$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
15 MHz	Table 30-33	_	_	0,1	0,1	0,1
9 MHz	_	Table 30-34	—	1	0,1	1
9 MHz	—	Table 30-35	—	0	0,1	1
15 MHz	—	—	Table 30-36	1	0	0
11 MHz	—	—	Table 30-37	1	1	0
15 MHz	_	—	Table 30-38	0	1	0
11 MHz	_	—	Table 30-39	0	0	0

TABLE 30-33: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-14: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS




32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

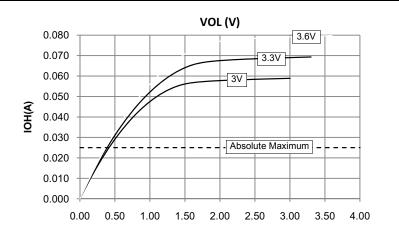

FIGURE 32-1: VOH – 4x DRIVER PINS VOH (V) -0.050 -0.045 3.6V -0.040 3.3V -0.035 3V -0.030 IOH(A) -0.025 -0.020 Absolute Maximum -0.015 -0.010 -0.005 0.000 0.50 1.00 2.00 2.50 3.00 3.50 0.00 1.50 4.00

FIGURE 32-2: VOH – 8x DRIVER PINS

FIGURE 32-4: Vol – 8x DRIVER PINS

Revision D (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 512-Kbyte Flash and 48-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	Removed the Analog Comparators column and updated the Op amps/Comparators column in Table 1 and Table 2.
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 30.0 "Electrical Characteristics"	Updated the VBOR specifications and/or its related note in the following electrical characteristics tables: • Table 30-1 • Table 30-4 • Table 30-12 • Table 30-14 • Table 30-15 • Table 30-16 • Table 30-56 • Table 30-57 • Table 30-58 • Table 30-59 • Table 30-60

TyCON (Timer3 and Timer5 Control)	211
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	
VEL1CNT (Velocity Counter 1)	
Resets	123
Brown-out Reset (BOR)	
Configuration Mismatch Reset (CM)	123
Illegal Condition Reset (IOPUWR)	123
Illegal Opcode	123
Security	
Uninitialized W Register	123
Master Clear (MCLR) Pin Reset	123
Power-on Reset (POR)	
RESET Instruction (SWR)	
Resources	
Trap Conflict Reset (TRAPR)	123
Watchdog Timer Time-out Reset (WDTO)	123
Resources Required for Digital PFC	32, 34
Revision History	507

S

Serial Peripheral Interface (SPI) Software Stack Pointer (SSP)	
Special Features of the CPU	
SPI	
Control Registers	268
Helpful Tips	267
Resources	267

т

Temperature and Voltage Specifications
AC
Thermal Operating Conditions
Thermal Packaging Characteristics
Timer1
Control Register
Resources
Timer2/3 and Timer4/5
Control Registers
Resources
Timing Diagrams
10-Bit ADC Conversion (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000,
SSRCG = 0)
10-Bit ADC Conversion (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,
SSRCG = 0, SAMC<4:0> = 00010)
12-Bit ADC Conversion (ASAM = 0,
SSRC<2:0> = 000, SSRCG = 0)
BOR and Master Clear Reset
ECANx I/O
External Clock414
High-Speed PWMx Fault422
High-Speed PWMx Module
I/O Characteristics
I2Cx Bus Data (Master Mode)450
I2Cx Bus Data (Slave Mode)
I2Cx Bus Start/Stop Bits (Master Mode)
I2Cx Bus Start/Stop Bits (Slave Mode)

Input Capture x (ICx)	. 420
OCx/PWMx	
Output Compare x (OCx)	. 421
QEA/QEB Input	. 424
QEI Module Index Pulse	. 425
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	. 441
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	. 440
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	. 438
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	. 439
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	. 448
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	. 446
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	. 442
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	. 444
SPI2 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	. 429
SPI2 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	. 428
SPI2 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	. 426
SPI2 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	. 427
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	. 436
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	. 434
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	. 430
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	
Timer1-Timer5 External Clock	
TimerQ (QEI Module) External Clock	
UARTx I/O	. 454

U

Universal Asynchronous Receiver	
Transmitter (UART)	. 281
Control Registers	. 283
Helpful Tips	. 282
Resources	. 282
User ID Words	. 384
V	
Voltage Regulator (On-Chip)	. 384

w

Watchdog Timer (WDT)	379, 385
Programming Considerations	385
WWW Address	524
WWW, On-Line Support	23

NOTES: