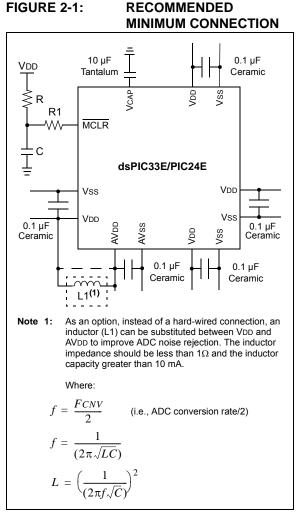


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFl

Betans	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc206t-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

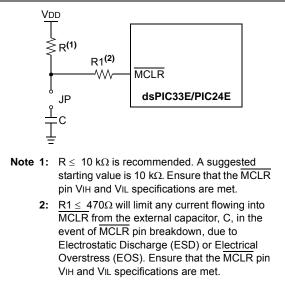
2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 30.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 27.3 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:


- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

TABLE	4-2:	CPU C	CORE RE	EGISTER	R MAP F	FOR PIC	24EPX)	XGP/M	C20X D	EVICES	ONLY							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								xxxx
W1	0002		W1 xxx									xxxx						
W2	0004		W2 xxx								xxxx							
W3	0006								W3									xxxx
W4	0008								W4									xxxx
W5	000A		W5 xxxx							xxxx								
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016		W11 xxx							xxxx								
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLIM<1	5:0>								0000
PCL	002E							P	CL<15:1>								—	0000
PCH	0030	—	-	_	_	—	—	—	—	_				PCH<6:0>				0000
DSRPAG	0032	—	-	_	_	—	—					DSRPA	G<9:0>					0001
DSWPAG	0034	_				_		_				DS	SWPAG<8:0	>				0001
RCOUNT	0036	RCOUNT<15:0> 0							0000									
SR	0042	_				—		—	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	VAR	_	-	_	—		—	_	-	_	—	-	IPL3	SFA	—	_	0020
DISICNT	0052	— — DISICNT<13:0> 000							0000									
TBLPAG	0054	TBLPAG<7:0>							0000									
MSTRPR	0058	MSTRPR<15:0> 0000							0000									

D I -4.0 - -

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-45: DMAC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW		_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA0REQ	0B02	FORCE	_	_		_	_	_	_			•	IRQSE	_<7:0>	•			00FF
DMA0STAL	0B04	STA<15:0>									0000							
DMA0STAH	0B06	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA0STBL	0B08								STB<1	5:0>								0000
DMA0STBH	0B0A	_	—	—	_	_	—	—	—				STB<2	3:16>				0000
DMA0PAD	0B0C								PAD<1	5:0>								0000
DMA0CNT	0B0E	_	_							CNT<1	3:0>							0000
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	_	—	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA1REQ	0B12	FORCE	_	_		_	_	_	_				IRQSE	_<7:0>	•			00FF
DMA1STAL	0B14								STA<15	5:0>								0000
DMA1STAH	0B16	_	—	—	_	_	—	—	—				STA<2	3:16>				0000
DMA1STBL	0B18								STB<1	5:0>								0000
DMA1STBH	0B1A	_	_	_	_		_	_	_				STB<2	3:16>				0000
DMA1PAD	0B1C								PAD<1					0000				
DMA1CNT	0B1E	_	—							CNT<13:0>					0000			
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>		—	MODE	<1:0>	0000
DMA2REQ	0B22	FORCE	_	_		_	_	_	_	- IRQSEL<7:0>						00FF		
DMA2STAL	0B24								STA<18	5:0>								0000
DMA2STAH	0B26	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA2STBL	0B28								STB<1	5:0>								0000
DMA2STBH	0B2A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA2PAD	0B2C								PAD<1	5:0>								0000
DMA2CNT	0B2E	_	_							CNT<1	3:0>							0000
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	-	—	MODE	<1:0>	0000
DMA3REQ	0B32	FORCE	_	_	_	_	_	_	_				IRQSE	L<7:0>				00FF
DMA3STAL	0B34								STA<18	5:0>								0000
DMA3STAH	0B36	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA3STBL	0B38								STB<1	5:0>								0000
DMA3STBH	0B3A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA3PAD	0B3C								PAD<1	5:0>								0000
DMA3CNT	0B3E	_	_							CNT<1	3:0>							0000
DMAPWC	0BF0	_	—	—	—	—	—		_	—	—		—	PWCOL3	PWCOL2	PWCOL1	PWCOL0	0000
DMARQC	0BF2	_	—	_	_	_	_	_	_	_	_	_	_	RQCOL3	RQCOL2	RQCOL1	RQCOL0	0000
DMAPPS	0BF4	_	—	_	_	_	_	_	_	_	_	_	_	PPST3	PPST2	PPST1	PPST0	0000
DMALCA	0BF6	_	_	_	_	_	_	_	_	_	_	_	_		LSTCH	1<3:0>		000F
DSADRL	0BF8	0BF8 DSADR<15:0> 0							0000									
DSADRH	0BFA	BFA DSADR<23:16> 00							0000									

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2011-2013 Microchip Technology Inc.

-n = Value at F	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
Legend:							
bit 7							bit C
			NVMAD)R<23:16>			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
bit 15							bit 8
_	—	—	—	—	_	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADR<23:16>:** Nonvolatile Memory Write Address High bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADRL: NONVOLATILE MEMORY ADDRESS REGISTER LOW

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 NVMADR<15:0>: Nonvolatile Memory Write Address Low bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15			•				bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit (
Legend:							
R = Readable		W = Writable		-	nented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
h:+ 45		on Interview h					
bit 15		on Interrupt bis will clear the l					
		s have no effect		EN bit			
bit 14-12	•	Processor Clo					
	111 = Fcy div						
	110 = Fcy div	vided by 64					
	101 = Fcy div						
	100 = FCY div	vided by 16 vided by 8 (defa	oult)				
	011 = FCY div 010 = FCY div		auit)				
	001 = FCY div						
	000 = Fcy div	•					
bit 11		e Mode Enable					
					pheral clocks a	nd the process	or clocks
		-	-	ratio is forced to			
bit 10-8			RC Oscillator	r Postscaler bit	S		
	111 = FRC di 110 = FRC di						
	101 = FRC di						
	100 = FRC d i	vided by 16					
	011 = FRC di						
	010 = FRC di 001 = FRC di	2					
		vided by 2 vided by 1 (de	fault)				
bit 7-6			-	r Select bits (al	so denoted as	'N2', PLL posts	caler)
	11 = Output d						,
	10 = Reserve						
		livided by 4 (de	efault)				
bit 5	00 = Output d	ted: Read as '	o'				
	•						
	e DOZE<2:0> b ZE<2:0> are ig		written to whe	en the DOZEN	bit is clear. If D	OZEN = 1, any	writes to
2: This	s bit is cleared	when the ROI I	oit is set and a	an interrupt occ	urs.		
	DOJENUS				~ ~		<i>.</i>

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD ⁽¹⁾	PWMMD ⁽¹⁾	_
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD ⁽²⁾	AD1MD
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	1 = Timer5 m	5 Module Disal odule is disable odule is enable	ed				
bit 14	1 = Timer4 m	4 Module Disal odule is disable odule is enable	ed				
bit 13	1 = Timer3 m	3 Module Disal odule is disable odule is enable	ed				
bit 12	1 = Timer2 m	2 Module Disal odule is disable odule is enable	ed				
bit 11	1 = Timer1 m	1 Module Disal odule is disable odule is enable	ed				
bit 10	1 = QEI1 mod	11 Module Disa Iule is disablec Iule is enabled					
bit 9	1 = PWM mod	/M Module Dis dule is disabled dule is enabled	1				
bit 8	Unimplemen	ted: Read as '	כי				
bit 7	1 = I2C1 mod	1 Module Disal ule is disabled ule is enabled	ble bit				
bit 6	1 = UART2 m	2 Module Disa odule is disabl odule is enable	ed				
bit 5	1 = UART1 m	1 Module Disa odule is disabl odule is enable	ed				
bit 4	1 = SPI2 mod	2 Module Disa lule is disabled lule is enabled	ole bit				

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

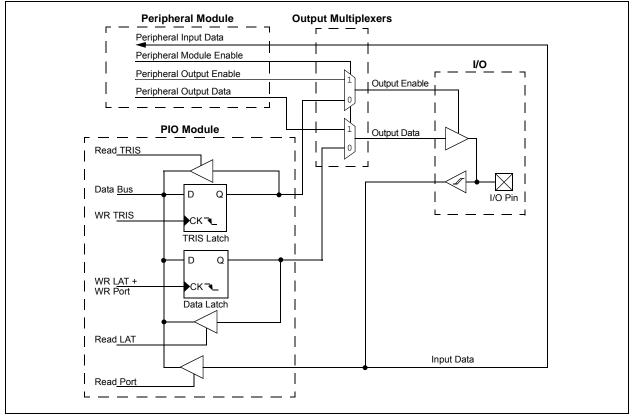
11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70598) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx) read the latch. Writes to the Latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	_	—
bit 7		•		•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
--------	----------------------------

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7-0 Unimplemented: Read as '0'

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER (CONTINUED)

- bit 2 INDEX: Status of INDXx Input Pin After Polarity Control
 - 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'
- bit 1 QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1' 0 = Pin is at logic '0'
- bit 0 **QEA:** Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPIxTXB is full
 - 0 = Transmit started, SPIxTXB is empty

Standard Buffer mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 DMABS2 DMABS1 DMABS0 — …									
bit 15 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 FSA4 FSA3 FSA2 FSA1 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknov bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM	U-0								
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — FSA4 FSA3 FSA2 FSA1 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM	—								
FSA4 FSA3 FSA2 FSA1 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM	bit 8								
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM	R/W-0								
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM	FSA0								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM	bit C								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM									
bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM									
111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM	wn								
111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM									
111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM									
110 = 32 buffers in RAM 101 = 24 buffers in RAM									
100 - 16 huffers in DAM									
100 = 16 builds in RAM	100 = 16 buffers in RAM								
011 = 12 buffers in RAM									
010 = 8 buffers in RAM									
001 = 6 buffers in RAM 000 = 4 buffers in RAM									
bit 12-5 Unimplemented: Read as '0'									
bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits									
	11111 = Read Buffer RB31								
11110 = Read Buffer RB30									
•									
•									
•									
00001 = TX/RX Buffer TRB1									
00000 = TX/RX Buffer TRB0									

REGISTER 21-4: CxFCTRL: ECANx FIFO CONTROL REGISTER

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
ADON	—	ADSIDL	ADDMABM		AD12B	FORM1	FORM0		
bit 15	•						bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0. HC. HS		
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾		
bit 7							bit (
Legend:		HC - Hardwar	e Clearable bit	HS - Hardwa	re Settable bit	C = Clearable bi	+		
R = Readable	a hit	W = Writable b			nented bit, read		L		
-n = Value at		'1' = Bit is set	nt -	'0' = Bit is clea		x = Bit is unknov	vp.		
	FUR	I - DILIS SEL			aieu				
bit 15	ADON: ADO	C1 Operating M	ode bit						
	1 = ADC mo 0 = ADC is 0	odule is operatir off	ng						
bit 14	Unimpleme	nted: Read as	' 0 '						
bit 13	ADSIDL: A	DC1 Stop in Idle	e Mode bit						
	1 = Disconti	nues module oj	peration when o	device enters	ldle mode				
	0 = Continu	es module oper	ation in Idle mo	ode					
bit 12		ADDMABM: DMA Buffer Build Mode bit							
						rovides an addre	ess to the DM		
						nd-alone buffer des a Scatter/Ga	ther address t		
						size of the DMA b			
bit 11		nted: Read as							
bit 10	AD12B: AD	C1 10-Bit or 12	-Bit Operation I	Mode bit					
		-channel ADC	-						
	0 = 10-bit, 4	-channel ADC	operation						
bit 9-8	FORM<1:0>	Data Output I	Format bits						
	For 10-Bit C								
		l fractional (Dou nal (Dou⊤ = dd			0, where s = .I	NOT.d<9>)			
		l integer (DOUT			where $s = .NC$	(<9>)			
		r (Dout = 0000							
	For 12-Bit C	peration:							
	•	fractional (Dou			0, where s = .I	NOT.d<11>)			
		nal (Dout = dd I integer (Dout				(<11>)			

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB	_	—	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾			
bit 15	•			•			bit 8			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NA			CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾			
bit 7							bit (
Legend:										
R = Read		W = Writable		•	nented bit, read					
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown			
bit 15		nannel 0 Negative	Input Soloot fo	r Samala MUV	'D hit					
DIL 15		el 0 negative input								
		el 0 negative input								
bit 14-13	Unimplem	ented: Read as 'o)'							
bit 12-8	CH0SB<4:	0>: Channel 0 Po	sitive Input Sele	ect for Sample	MUXB bits ⁽¹⁾					
						ement				
	11110 = C	11111 = Open; use this selection with CTMU capacitive and time measurement 11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)								
		11101 = Reserved								
		11100 = Reserved								
		11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)								
		11001 = Channel 0 positive input is the output of OA2/AN0 ⁽²⁾								
	11000 = C	hannel 0 positive	input is the outp	out of OA1/AN3	₃ (2)					
	10111 = R	eserved								
	•									
	•									
	10000 = R	eserved								
	01111 = Channel 0 positive input is AN15 ⁽³⁾									
	01110 = Channel 0 positive input is AN14 ⁽³⁾ 01101 = Channel 0 positive input is AN13 ⁽³⁾									
	01101 = C	nannel 0 positive	Input is AN130							
	•									
	•									
	00010 = C	hannel 0 positive	input is AN2 ⁽³⁾							
		hannel 0 positive hannel 0 positive								
L:1 7		•	•		A 64					
bit 7		nannel 0 Negative		r Sample MUX	ADI					
		el 0 negative input								
bit 6-5		ented: Read as '								
Note 1:	to determine I	AN7 are repurpos now enabling a pa								
-	and 3.						- >			
2:		t is used if the co		amp is selecte	d (OPMODE (C	MxCON<10>) :	= 1);			

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

3: See the "**Pin Diagrams**" section for the available analog channels for each device.

otherwise, the ANx input is used.

24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

24.2.1 KEY RESOURCES

- "Peripheral Trigger Generator" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

oit 3-0	Step Command	OPTION<3:0>	Option Description
	PTGCTRL(1)	0000	Reserved.
		0001	Reserved.
		0010	Disable Step Delay Timer (PTGSD).
		0011	Reserved.
		0100	Reserved.
		0101	Reserved.
		0110	Enable Step Delay Timer (PTGSD).
		0111	Reserved.
		1000	Start and wait for the PTG Timer0 to match the Timer0 Limit Register.
		1001	Start and wait for the PTG Timer1 to match the Timer1 Limit Register.
		1010	Reserved.
		1011	Wait for the software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1).
		1100	Copy contents of the Counter 0 register to the AD1CHS0 register.
		1101	Copy contents of the Counter 1 register to the AD1CHS0 register.
		1110	Copy contents of the Literal 0 register to the AD1CHS0 register.
		1111	Generate triggers indicated in the Broadcast Trigger Enable register (PTGBTE).
	PTGADD ⁽¹⁾	0000	Add contents of the PTGADJ register to the Counter 0 Limit register (PTGC0LIM).
		0001	Add contents of the PTGADJ register to the Counter 1 Limit register (PTGC1LIM).
		0010	Add contents of the PTGADJ register to the Timer0 Limit register (PTGT0LIM).
		0011	Add contents of the PTGADJ register to the Timer1 Limit register (PTGT1LIM).
		0100	Add contents of the PTGADJ register to the Step Delay Limit register (PTGSDLIM)
		0101	Add contents of the PTGADJ register to the Literal 0 register (PTGL0).
		0110	Reserved.
		0111	Reserved.
	PTGCOPY ⁽¹⁾	1000	Copy contents of the PTGHOLD register to the Counter 0 Limit register (PTGC0LIM).
		1001	Copy contents of the PTGHOLD register to the Counter 1 Limit register (PTGC1LIM).
		1010	Copy contents of the PTGHOLD register to the Timer0 Limit register (PTGT0LIM).
		1011	Copy contents of the PTGHOLD register to the Timer1 Limit register (PTGT1LIM).
		1100	Copy contents of the PTGHOLD register to the Step Delay Limit register (PTGSDLIM).
		1101	Copy contents of the PTGHOLD register to the Literal 0 register (PTGL0).
		1110	Reserved.
		1111	Reserved.

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

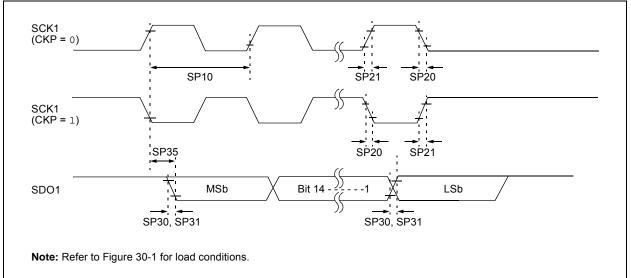
Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

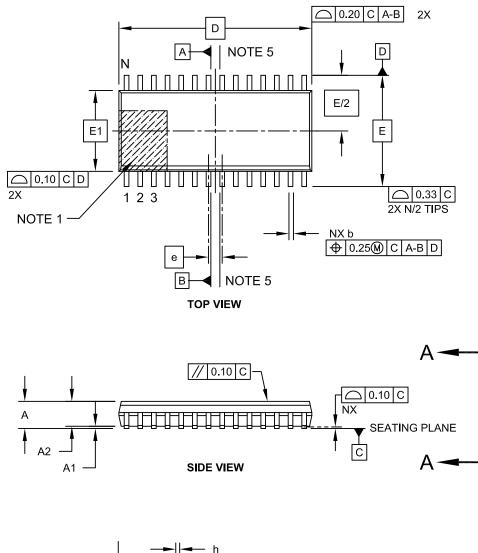
Bit Field	Description
GCP	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source
PWMLOCK ⁽¹⁾	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence
FNOSC<2:0>	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Fast RC Oscillator with Divide-by-16 (FRCDIV16) 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use 011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled 0 = PLL lock is disabled nly available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

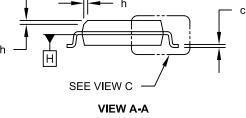
TABLE 27-2: CONFIGURATION BITS DESCRIPTION


Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

AC CHARA	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 30-42	_	_	0,1	0,1	0,1	
10 MHz	_	Table 30-43	—	1	0,1	1	
10 MHz	—	Table 30-44	—	0	0,1	1	
15 MHz	—	—	Table 30-45	1	0	0	
11 MHz	—	—	Table 30-46	1	1	0	
15 MHz	_	—	Table 30-47	0	1	0	
11 MHz	_	_	Table 30-48	0	0	0	


TABLE 30-41: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY


FIGURE 30-22: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

Remappable Input for U1RX	
Reset System	123
Shared Port Structure	
Single-Phase Synchronous Buck Converter	
SPIx Module	
Suggested Oscillator Circuit Placement	31
Type B Timer (Timer2 and Timer4)	
Type B/Type C Timer Pair (32-Bit Timer)	
Type C Timer (Timer3 and Timer5)	
UARTx Module	
User-Programmable Blanking Function	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	

С

C Compilers	
MPLAB XC Compilers	
Charge Time Measurement Unit. See CTMU.	
Code Examples	
IC1 Connection to QEI1 Input on	
Pin 43 of dsPIC33EPXXXMC206	
Port Write/Read	
PWMx Write-Protected Register	
Unlock Sequence	
PWRSAV Instruction Syntax	
Code Protection	
CodeGuard Security	379, 386
Configuration Bits	
Description	
Configuration Byte Register Map	
Configuring Analog and Digital Port Pins	
CPU	
Addressing Modes	
Clocking System Options	
Fast RC (FRC) Oscillator	
FRC Oscillator with PLL	
FRC Oscillator with Postscaler	
Low-Power RC (LPRC) Oscillator	
Primary (XT, HS, EC) Oscillator	
Primary Oscillator with PLL	
Control Registers	
Data Space Addressing	
Instruction Set	
Resources	
CTMU	
Control Registers	
Resources	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	51
Memory Map for dsPIC33EP128MC20X/50X,	
dsPIC33EP128GP50X Devices	54
Memory Map for dsPIC33EP256MC20X/50X,	
dsPIC33EP256GP50X Devices	55
Memory Map for dsPIC33EP32MC20X/50X,	
dsPIC33EP32GP50X Devices	52
Memory Map for dsPIC33EP512MC20X/50X,	
dsPIC33EP512GP50X Devices	56
Memory Map for dsPIC33EP64MC20X/50X,	
dsPIC33EP64GP50X Devices	53
Memory Map for PIC24EP128GP/MC20X/50X	
Devices	59

Memory Map for PIC24EP256GP/MC20X/50X		
Devices		60
Memory Map for PIC24EP32GP/MC20X/50X		
Devices		57
Memory Map for PIC24EP512GP/MC20X/50X	•••••	57
		~ ~
Devices		61
Memory Map for PIC24EP64GP/MC20X/50X		
Devices		58
Near Data Space		51
Organization, Alignment		51
SFR Space		
Width		
Data Memory	•••••	51
		440
Arbitration and Bus Master Priority	•••••	110
Data Space		
Extended X		109
Paged Memory Scheme		105
DC and AC Characteristics		
Graphs		475
DC Characteristics		
BOR		111
CTMU Current Source Requirements		
Doze Current (IDOZE) 4		
High Temperature		
I/O Pin Input Specifications		408
I/O Pin Output Specifications4	11,	470
Idle Current (IIDLE) 4		
Op Amp/Comparator Requirements		
Op Amp/Comparator Voltage Reference		
		457
Requirements		
Operating Current (IDD)		
Operating MIPS vs. Voltage 4		
Power-Down Current (IPD) 4		
Program Memory		412
Temperature and Voltage		468
Temperature and Voltage Specifications		
Thermal Operating Conditions		
Watchdog Timer Delta Current		
Demo/Development Boards, Evaluation and		407
		400
Starter Kits		
Development Support		
Third-Party Tools		400
DMA Controller		
Channel to Peripheral Associations		140
Control Registers		141
DMAXCNT		
DMAxCON		
DMAXPAD		
DMAXEAD		
DMAxSTA		
DMAxSTB		
Resources		
Supported Peripherals		139
Doze Mode		
DSP Engine		44
•		
E		

Ε

310
311
311
312
312
313
313