

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc206t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_		_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	_		_	_	_	_	DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6					_	_			_				_	—		SGHT	0000
INTTREG	08C8						ILR<	3:0>					VECNU	M<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	_		JTAGIP<2:()>	—		ICDIP<2:0	>	_	—	—	—	—	_	—	—	4400
IPC36	0888			PTG0IP<2:0)>	—	PT	GWDTIP<	2:0>		P	TGSTEPIP<2	:0>	—	—		—	4440
IPC37	088A		_		_	—	F	PTG3IP<2:)>			PTG2IP<2:0	>	—	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	_	_				—	—	—	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4		—		_	_	_				—	DAE	DOOVR	—	—		—	0000
INTCON4	08C6		—		_	_	_				—	—	—	—	—		SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<	3:0>		VECNUM<7:0>					0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

8.1 DMA Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

8.1.1 KEY RESOURCES

- Section 22. "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

8.2 DMAC Registers

Each DMAC Channel x (where x = 0 through 3) contains the following registers:

- 16-Bit DMA Channel Control register (DMAxCON)
- 16-Bit DMA Channel IRQ Select register (DMAxREQ)
- 32-Bit DMA RAM Primary Start Address register (DMAxSTA)
- 32-Bit DMA RAM Secondary Start Address register (DMAxSTB)
- 16-Bit DMA Peripheral Address register (DMAxPAD)
- 14-Bit DMA Transfer Count register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADR) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER 11-8: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
				QEB1R<6:0>	•							
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
				QEA1R<6:0>	•							
bit 7							bit 0					
Legend:	-1:+		L 14									
R = Readad		vv = vvritable	DIT									
-n = Value a	at POR	'1' = Bit is set		0^{\prime} = Bit is clea	ared	x = Bit is unkr	nown					
bit 15	Unimplome	ntod: Dood os '	o'									
		nteu: Reau as			- Dia kita							
DIL 14-8	(see Table 1	J>: Assign B (QE 11-2 for input pin	selection nur	nbers)	n Pin dits							
	1111001 =	1111001 = Input tied to RPI121										
	•											
	•											
	0000001 =	Input tied to CM	P1									
	0000000 =	Input tied to Vss	;									
bit 7	Unimpleme	ented: Read as '	0'									
bit 6-0	QEA1R<6:0	D>: Assign A (QE	A) to the Cor	responding RP	n Pin bits							
	(see Table ?	11-2 for input pin	selection nur	nbers)								
	1111001 =	Input tied to RPI	121									
	•											
	0000001 =	0000001 = Input tied to CMP1										
	0000000 =	Input tied to Vss	;									

FIGURE 16-1: HIGH-SPEED PWMx MODULE ARCHITECTURAL OVERVIEW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_		
bit 15	1		1		1		bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	BCH(")	BCL	BPHH	BPHL	BPLH	BPLL		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	= Bit is unknown		
bit 15	PHR: PWMxH	Rising Edge	Trigger Enabl	e bit					
	\perp = Rising edg 0 = Leading-E	ge of PyvivixH v Edge Blanking i	anores risina	edge of PWM	anking counter kH				
bit 14	PHF: PWMxH	Falling Edge	Trigger Enabl	e bit					
	1 = Falling ed	ge of PWMxH	will trigger Le	ading-Edge Bla	anking counter				
	0 = Leading-E	Edge Blanking i	gnores falling	g edge of PWM	хH				
bit 13	PLR: PWMxL	. Rising Edge T	rigger Enable	e bit oding Edgo Blo	nking countor				
	0 = Leading-E	Edge Blanking i	gnores rising	edge of PWM	kL				
bit 12	PLF: PWMxL	Falling Edge T	rigger Enable	e bit					
	1 = Falling ed	ge of PWMxL	will trigger Le	ading-Edge Bla	anking counter				
	0 = Leading-E	Edge Blanking i	gnores falling	g edge of PWM	xL				
bit 11	1 = Leading-F	-ault Input Lea Edge Blanking i	ding-Edge Bla	anking Enable	bit				
	0 = Leading-E	Edge Blanking i	s not applied	to selected Fa	ult input				
bit 10	CLLEBEN: C	urrent-Limit Le	ading-Edge E	Blanking Enable	e bit				
	1 = Leading-E	Edge Blanking i	s applied to s	selected curren	t-limit input				
hit 0.6	0 = Leading-E	tode Blanking I	s not applied	to selected cul	rrent-limit input				
bit 5	BCH Blankin	a in Selected F	J Blanking Sign	al High Enable	hit(1)				
bit 5	1 = State blan	kina (of curren	t-limit and/or	Fault input sigr	nals) when seled	ted blanking s	ianal is hiah		
	0 = No blankii	ng when select	ed blanking s	signal is high	,	5	0 0		
bit 4	BCL: Blanking	g in Selected B	lanking Signa	al Low Enable I	bit ⁽¹⁾				
	1 = State blan	iking (of curren	t-limit and/or	Fault input sigr	nals) when seled	cted blanking s	ignal is low		
bit 3	BPHH: Blanki	ing in PWMxH	High Enable	hit					
bit o	1 = State blan	iking (of curren	t-limit and/or	Fault input sigr	nals) when PWN	/IxH output is h	igh		
	0 = No blanki	ng when PWM	xH output is h	nigh			-		
bit 2	BPHL: Blanki	ng in PWMxH	Low Enable b	pit					
	1 = State blan 0 = No blankii	nking (of curren ng when PWM	t-limit and/or xH output is le	Fault input sigr ow	nals) when PWN	IxH output is lo	W		
bit 1	BPLH: Blanki	ng in PWMxL I	High Enable b	oit					
	1 = State blan 0 = No blankii	nking (of curren ng when PWM	t-limit and/or xL output is h	Fault input sigr igh	nals) when PWN	/IxL output is hi	igh		
bit 0	BPLL: Blanki	ng in PWMxL L	ow Enable b	it					
	1 = State blan	king (of curren	t-limit and/or	Fault input sigr	nals) when PWN	IxL output is lo	W		
	v = i N o diankii		x∟ output is io	JW					

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 17-13: QEI1LECH: QEI1 LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **QEILEC<31:16>:** High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 17-14: QEI1LECL: QEI1 LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			QEILE	C<15:8>							
bit 15	bit 15 bit 8										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	QEILEC<7:0>										
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown							
~											

bit 15-0 QEILEC<15:0>: Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See **Section 30.0** "**Electrical Characteristics**" for more information.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

_							
	WAKFIL	_	—		SEG2PH2	SEG2PH1	SEG2PH0
bit 15						l	bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as ')' 				
bit 14	WAKFIL: Sel	ect CAN Bus L	ine Filter for V	Vake-up bit			
	1 = Uses CAP 0 = CAN bus	n dus line filter line filter is not	tor wake-up	2-UD			
hit 13-11	Unimplemen	ted: Read as '	n'				
bit 10-8	SEG2PH<2:0	>: Phase Sear	nent 2 bits				
	111 = Length	is 8 x TQ					
	•						
	•						
	•						
	000 = Length	is 1 x Tq					
bit 7	SEG2PHTS:	Phase Segmer	nt 2 Time Sele	ct bit			
	1 = Freely pro 0 = Maximum	ogrammable of SEG1PHx I	oits or Informa	tion Processin	g Time (IPT), w	/hichever is gre	ater
bit 6	SAM: Sample	of the CAN B	us Line bit		0 ()/	0	
	1 = Bus line is 0 = Bus line is	s sampled three s sampled once	e times at the at the sample	sample point e point			
bit 5-3	SEG1PH<2:0	>: Phase Segr	nent 1 bits	·			
	111 = Length	is 8 x Tq					
	•						
	•						
	•						
	000 = Length	is 1 x Tq					
bit 2-0	PRSEG<2:0>	: Propagation	Time Segmen	t bits			
	111 = Length	is 8 x TQ					
	•						
	•						
		ie 1 v To					
	UUU - Lengin	UIAIG					

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x						
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3						
bit 15							bit 8						
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x						
SID2	SID1	SID0	—	EXIDE	_	EID17	EID16						
bit 7							bit 0						
Legend:													
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'													
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15-5	SID<10:0>: S	tandard Identif	ier bits										
	1 = Message 0 = Message	address bit, SI address bit, SI	Dx, must be 'a Dx, must be 'a	L' to match filte	er er								
bit 4	Unimplement	ted: Read as '	כי										
bit 3	EXIDE: Exten	ded Identifier E	Enable bit										
	If MIDE = 1:												
	1 = Matches c	only messages	with Extende	d Identifier add	lresses								
		only messages	with Standard		resses								
	Ignores EXIDI	E bit.											
bit 2	Unimplemented: Read as '0'												
bit 1-0	EID<17:16>:	Extended Iden	tifier bits										
	1 = Message	address bit, El	Dx, must be 'a	L' to match filte	er								
	0 = Message	address bit, El	= Message address bit, EIDx, must be 1 to match filter										

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for AN0, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0					
	—	—	_	—	—		ADDMAEN					
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
—	—	—	—	—	DMABL2	DMABL1	DMABL0					
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable b	pit	U = Unimple	mented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared			nown					
L												
bit 15-9	Unimplemen	ted: Read as 'o)'									
bit 8	ADDMAEN: /	ADC1 DMA Ena	able bit									
	1 = Conversio	on results are st	ored in the Al	DC1BUF0 regi	ster for transfer	to RAM using	DMA					
	0 = Conversio	on results are st	ored in ADC1	BUF0 through	ADC1BUFF reg	gisters; DMA w	vill not be used					
bit 7-3	Unimplemen	ted: Read as '0)'									
bit 2-0	DMABL<2:0>	Selects Number Selects Number	per of DMA Bu	uffer Locations	per Analog Inp	ut bits						
	111 = Allocat	es 128 words o	f buffer to eac	h analog input	t							
	110 = Allocat	es 64 words of	buffer to each	analog input								
	101 = Allocat	es 32 words of	buffer to each	analog input								
	100 = Allocat	es 16 words of	buffer to each	analog input								
		011 = Allocates 8 words of buffer to each analog input										
		es 2 words of h	uffer to each :	analog input								
	000 = Allocat	es 1 word of bu	ffer to each a	nalog input								

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

File Name	Address	Device Memory Size (Kbytes)	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	0057EC	32									
	00AFEC	64									
	0157EC	128	1 _	_	_	_	_	_	_	_	_
	02AFEC	256									
	0557EC	512									
Reserved	0057EE	32									
	00AFEE	64									
	0157EE	128	1 _	_	_	_	_	_	_	_	_
	02AFEE	256									
	0557EE	512									
FICD	0057F0	32									
	00AFF0	64									
	0157F0	128	1 _	Reserved ⁽³⁾	_	JTAGEN	Reserved ⁽²⁾	Reserved ⁽³⁾	_	ICS<	1:0>
	02AFF0	256									
	0557F0	512									
FPOR	0057F2	32									
-	00AFF2	64	-								
	0157F2	128	1 _	WDTV	VIN<1:0>	ALTI2C2	ALTI2C1	Reserved ⁽³⁾	_	_	_
	02AFF2	256	-		-		_				
	0557F2	512									
FWDT	0057F4	32									
	00AFF4	64	-								
	0157F4	128	- I	FWDTEN	WINDIS	PLLKEN	WDTPRE		WDTPOS	T<3:0>	
	02AFF4	256	-		_						
	0557F4	512	-								
FOSC	0057F6	32									
	00AFF6	64	-								
	0157F6	128	1 _	FCKS	SM<1:0>	IOL1WAY	_	_	OSCIOFNC	POSCM	D<1:0>
	02AFF6	256	-								
	0557F6	512	-								
FOSCSEL	0057F8	32									
	00AFF8	64	-								
	0157F8	128	1 <u> </u>	IESO	PWMLOCK ⁽¹⁾	_	_	_	F	NOSC<2:0>	
	02AFF8	256									
	0557F8	512									
FGS	0057FA	32									
	00AFFA	64									
	0157FA	128	1 _	_	_	_	_	_	_	GCP	GWRP
	02AFFA	256									
	0557FA	512									
Reserved	0057FC	32									
	00AFFC	64									
	0157FC	128	_	_	_	_	_	_	_	_	_
	02AFFC	256									
	0557FC	512									
Reserved	057FFE	32									
	00AFFE	64									
	0157FE	128	_	_	_	_	_	_	_	_	_
	02AFFE	256									
	0557FE	512									

TABLE 27-1: CONFIGURATION BYTE REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: This bit is reserved and must be programmed as '0'.

3: These bits are reserved and must be programmed as '1'.

FIGURE 30-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

TABLE 30-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC10	TccF	OCx Output Fall Time	—			ns	See Parameter DO32
OC11	TccR	OCx Output Rise Time	—	—	—	ns	See Parameter DO31

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC15	TFD	Fault Input to PWMx I/O Change	—	_	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20		—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-37:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 15	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	-	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-39: SPI2 SLAVE MO DE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
				Operating te	mperature	e -40°(-40°(C dTA C dTA	d+85°C for Industrial d+125°C for Extended
Param.	Symbol	Characteristic	(1)	Min.	Тур. ⁽²⁾	Max.	Units	Conditions

TABLE 30-45:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	_	_	Lesser of FP or 15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time		_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	_	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

Revision C (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see Section 20.1 "UART Helpful Tips" and Section 3.6 "CPU Resources". All occurrences of TLA were updated to VTLA throughout the document, with the exception of the pin diagrams (updated diagrams were not available at time of publication).

A new chapter, Section 31.0 "DC and AC Device Characteristics Graphs", was added.

All other major changes are referenced by their respective section in Table A-2.

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 256-Kbyte Flash and 32-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	The content on the first page of this section was extensively reworked to provide the reader with the key features and functionality of this device family in an "at-a-glance" format.
Section 1.0 "Device Overview"	Updated the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X Block Diagram (see Figure 1-1), which now contains a CPU block and a reference to the CPU diagram. Updated the description and Note references in the Pinout I/O Descriptions for these pins: C1IN2- C2IN2- C3IN2- OA1OUT OA2OUT and OA3OUT (see Table 1-1)
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers"	Updated the Recommended Minimum Connection diagram (see Figure 2-1).
Section 3.0 "CPU"	Updated the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X CPU Block Diagram (see Figure 3-1). Updated the Status register definition in the Programmer's Model (see Figure 3-2).
Section 4.0 "Memory Organization"	Updated the Data Memory Maps (see Figure 4-6 and Figure 4-11). Removed the DCB<1:0> bits from the OC1CON2, OC2CON2, OC3CON2, and OC4CON2 registers in the Output Compare 1 Through Output Compare 4 Register Map (see Table 4-10). Added the TRIG1 and TRGCON1 registers to the PWM Generator 1 Register Map (see Table 4-13). Added the TRIG2 and TRGCON2 registers to the PWM Generator 2 Register Map (see Table 4-14). Added the TRIG3 and TRGCON3 registers to the PWM Generator 3 Register Map (see Table 4-15). Updated the second note in Section 4.7.1 "Bit-Reversed Addressing Implementation".
Section 8.0 "Direct Memory Access (DMA)"	Updated the DMA Controller diagram (see Figure 8-1).
Section 14.0 "Input Capture"	Updated the bit values for the ICx clock source of the ICTSEL<12:10> bits in the ICxCON1 register (see Register 14-1).
Section 15.0 "Output Compare"	Updated the bit values for the OCx clock source of the OCTSEL<2:0> bits in the OCxCON1 register (see Register 15-1). Removed the DCB<1:0> bits from the Output Compare x Control Register 2 (see Register 15-2).

TABLE A-2: MAJOR SECTION UPDATES

Revision H (August 2013)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-6.

TABLE A-6:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
Cover Section	Adds Peripheral Pin Select (PPS) to allow Digital Function Remapping and Change
	Notification Interrupts to Input/Output section
	Adds heading information to 64-Pin TQFP
Section 4.0 "Memory	Corrects Reset values for ANSELE, TRISF, TRISC, ANSELC and TRISA
Organization"	Corrects address range from 0x2FFF to 0x7FFF
	 Corrects DSRPAG and DSWPAG (now 3 hex digits)
	 Changes Call Stack Frame from <15:1> to PC<15:0>
	Word length in Figure 4-20 is changed to 50 words for clarity
Section 5.0 "Flash Program Memory"	Corrects descriptions of NVM registers
Section 9.0 "Oscillator	Removes resistor from Figure 9-1
Configuration"	Adds Fast RC Oscillator with Divide-by-16 (FRCDIV16) row to Table 9-1
	Removes incorrect information from ROI bit in Register 9-2
Section 14.0 "Input Capture"	Changes 31 user-selectable Trigger/Sync interrupts to 19 user-selectable Trigger/ Sync interrupts
	Corrects ICTSEL<12:10> bits (now ICTSEL<2:0>)
Section 17.0 "Quadrature Encoder Interface (QEI)	Corrects QCAPEN bit description
Module	
(dsPIC33EPXXXMC20X/50X	
Devices Only)"	
Section 19.0 "Inter-	Adds note to clarify that 100kbit/sec operation of I ² C is not possible at high processor
Integrated Circuit™ (I ² C™)"	speeds
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Clarifies Figure 22-1 to accurately reflect peripheral behavior
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Correct Figure 23-1 (changes CH123x to CH123Sx)
Section 24.0 "Peripheral Trigger Generator (PTG) Module"	 Adds footnote to Register 24-1 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled.
Section 25.0 "Op Amp/ Comparator Module"	• Adds note to Figure 25-3 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled)
	 Adds footnote to Register 25-2 (COE is not available when OPMODE (CMxCON<10>) = 1)
Section 27.0 "Special Features"	Corrects the bit description for FNOSC<2:0>
Section 30.0 "Electrical	Corrects 512K part power-down currents based on test data
Characteristics"	Corrects WDT timing limits based on LPRC oscillator tolerance
Section 31.0 "High-	Adds Table 31-5 (DC Characteristics: Idle Current (IIDLE)
Temperature Electrical Characteristics"	