

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc502-h-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.8 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X ALU is 16 bits wide, and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.8.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.8.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.9 DSP Engine (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- · Signed, unsigned or mixed-sign DSP multiply (US)
- · Conventional or convergent rounding (RND)
- · Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

	OOMMAN									
Instruction	Algebraic Operation	ACC Write Back								
CLR	A = 0	Yes								
ED	$A = (x - y)^2$	No								
EDAC	$A = A + (x - y)^2$	No								
MAC	$A = A + (x \bullet y)$	Yes								
MAC	$A = A + x^2$	No								
MOVSAC	No change in A	Yes								
MPY	$A = x \bullet y$	No								
MPY	$A = x^2$	No								
MPY.N	$A = -x \bullet y$	No								
MSC	$A = A - x \bullet y$	Yes								

TABLE 3-2: DSP INSTRUCTIONS SUMMARY

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-6).

Program memory addresses are always word-aligned on the lower word and addresses are incremented, or decremented by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices reserve the addresses between 0x000000 and 0x000200 for hardcoded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-6: PROGRAM MEMORY ORGANIZATION

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	-	—	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	—	—	—		—	_	_	_		IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	—	—	—		—	—	_	_		—	—	_	—	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	_	_	CTMUIF		_	_	_	_		—	_	—	CRCIF	U2EIF	U1EIF	_	0000
IFS8	0810	JTAGIF	ICDIF	—	_	—	—	—	—	_	—	—	—	—	—	—	—	0000
IFS9	0812	—	—	—	_	—	—	—	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	—	0000
IEC0	0820	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	—	—	—	_	—	—	—	—	_	IC4IE	IC3IE	DMA3IE	—	—	SPI2IE	SPI2EIE	0000
IEC3	0826	—	—	—	_	—	—	—	—		—	_	—	—	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	—	—	CTMUIE	_	—	—	—	—	_	—	—	—	CRCIE	U2EIE	U1EIE	—	0000
IEC8	0830	JTAGIE	ICDIE	—	_	—	—	—	—		—	_	—	—	—	—	—	0000
IEC9	0832	—	—	—	_	—	—	—	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	—	0000
IPC0	0840	—		T1IP<2:0>		—		OC1IP<2:0)>	_		IC1IP<2:0>		—		INT0IP<2:0>		4444
IPC1	0842	—		T2IP<2:0>		—		OC2IP<2:0)>	— IC2IP<2:0> —		0	DMA0IP<2:0>		4444			
IPC2	0844	—	ι	J1RXIP<2:0	>	—	:	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	—		T3IP<2:0>		4444
IPC3	0846	—	—	—	—	—	DMA1IP<2:0>				AD1IP<2:0>			—	U1TXIP<2:0>			0444
IPC4	0848	—		CNIP<2:0>		—		CMIP<2:0	>	_	MI2C1IP<2:0>		—	SI2C1IP<2:0>			4444	
IPC5	084A	—	—	—	_	—	—	—	—	_	—	—	—	— INT1IP<2:0>			0004	
IPC6	084C	—		T4IP<2:0>		—		OC4IP<2:0)>	_	OC3IP<2:0>		—	DMA2IP<2:0>			4444	
IPC7	084E	—	l	J2TXIP<2:0	>	—	ι	J2RXIP<2:	0>	_		INT2IP<2:0>	>	—		T5IP<2:0>		4444
IPC8	0850	—	—	—	_	—	—	—	—	_		SPI2IP<2:0>	>	—	S	SPI2EIP<2:0>		0044
IPC9	0852	—	—	—	_	—		IC4IP<2:0	>	_		IC3IP<2:0>		—	0	0MA3IP<2:0>		0444
IPC12	0858	—	—	—	_	—	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	—	—	—	—	0440
IPC16	0860	—		CRCIP<2:0	>	—		U2EIP<2:0	>	_		U1EIP<2:0>		—	—	—	—	4440
IPC19	0866	—	—	—	_	—	—	—	—	_		CTMUIP<2:0	>	—	—	—	—	0040
IPC35	0886	—		JTAGIP<2:0	>	—		ICDIP<2:0	>	_	—	—	—	—	—	—	—	4400
IPC36	0888	—	F	PTG0IP<2:0	>	—	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	2:0>	—	—	—	—	4440
IPC37	088A	—	—	—		—	F	PTG3IP<2:	0>			PTG2IP<2:0	>	—	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_	—	—	—	—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	—	_	—	—	_	—	_	_	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—	—	_	—	_	—	—	_	—	DAE	DOOVR	—	_	—	—	0000
INTCON4	08C6	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	SGHT	0000
INTTREG	08C8	_	_	_	—		ILR<	3:0>					VECN	JM<7:0>				0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-33:	: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVIC	ES ONLY
-------------	--	---------

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>	•			—	_	—	—	—	—	—	_	0000
RPINR1	06A2	_	_							_				INT2R<6:0>	`			0000
RPINR3	06A6	_							—	_			-	[2CKR<6:0	>			0000
RPINR7	06AE	_		IC2R<6:0>						_				IC1R<6:0>				0000
RPINR8	06B0	_		IC4R<6:0>						_				IC3R<6:0>				0000
RPINR11	06B6	_	_						_	_			(DCFAR<6:0	>			0000
RPINR12	06B8	_				FLT2R<6:0>	>			_				FLT1R<6:0>	>			0000
RPINR14	06BC	_			(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:0)>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	_	_	_	_	—	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC	_		•	S	CK2INR<6:0)>	•	•	_				SDI2R<6:0>	>			0000
RPINR23	06CE	_	_						_				SS2R<6:0>				0000	
RPINR37	06EA	_		SYNCI1R<6:0>						—			_	_			0000	
RPINR38	06EC	_		DTCMP1R<6:0>					_	—	_	_	_	_	_	_	0000	
RPINR39	06EE	_			D	CMP3R<6:	0>				DTCMP2R<6:0>						0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-					
	tions assume word-sized data (LSb of					
	every EA is always clear).					

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-20: MODULO ADDRESSING OPERATION EXAMPLE

REGISTER 8-7: DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			PAD	<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			PAD)<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL X TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_			CNT<	13:8> (2)			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CNT≪	<7:0> (2)				
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable b	✓ = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at P	'1' = Bit is set		x = Bit is unkr	K = Bit is unknown				

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—		—	—	—					
bit 15							bit 8				
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0				
		<u> </u>		RQCOL3	RQCOL2	RQCOL1	RQCOL0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15-4	Unimplemen	ted: Read as '	י)								
bit 3	RQCOL3: DM	IA Channel 3 T	ransfer Requ	est Collision Fl	lag bit						
	1 = User forc	e and interrupt	-based reques	st collision is d	etected						
	0 = No reque	est collision is d	etected								
bit 2	RQCOL2: DM	IA Channel 2 T	ransfer Requ	est Collision Fl	lag bit						
	1 = User forc	e and interrupt	-based reques	st collision is d	etected						
	0 = No request collision is detected										
bit 1	RQCOL1: DMA Channel 1 Transfer Request Collision Flag bit										
	 1 = User force and interrupt-based request collision is detected 0 = No request collision is detected 										
bit 0	RQCOL0: DM	1A Channel 0 T	ransfer Requ	est Collision Fl	lag bit						
	1 = User forc	e and interrupt	-based reques	st collision is d	etected						

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

NOTES:

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

r												
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0					
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32					
bit 15							bit 8					
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0					
OCTRIC	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0					
bit 7							bit 0					
r												
Legend:	gend: HS = Hardware Settable bit											
R = Reada	able bit	W = Writable	itable bit U = Unimplemented bit, read as '0'									
-n = Value	at POR	'1' = Bit is set	['0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15	FLTMD: Fault	Mode Select I	bit									
	1 = Fault mo	de is maintain	ed until the Fa	ault source is r	removed; the c	orresponding	OCFLTx bit is					
	cleared in	n software and	a new PWM pe	eriod starts	loved and a po	N DWM poriod	etarte					
hit 14							Starts					
DIL 14	1 = PWM out	nut is driven h	iah on a Fault									
	0 = PWM out	a = PWM output is driven high on a Fault										
bit 13	FLTTRIEN: Fa	FLTTRIEN: Fault Output State Select bit										
	1 = OCx pin i	1 = OCx pin is tri-stated on a Fault condition										
	0 = OCx pin I	/O state is def	ined by the FLT	OUT bit on a F	ault condition							
bit 12	OCINV: Outpu	ut Compare x I	nvert bit									
	1 = OCx outp	out is inverted	bo									
hit 11_9		ted: Read as '	0'									
bit 8	OC32. Casca	de Two OCx M	° Iodules Enable	hit (32-hit oper	ration)							
bit 0	1 = Cascade	module opera	tion is enabled		allony							
	0 = Cascade	module opera	tion is disabled									
bit 7	OCTRIG: Out	put Compare >	k Trigger/Sync S	Select bit								
	1 = Triggers (0 = Synchron	OCx from the s izes OCx with	source designat the source des	ted by the SYN	CSELx bits SYNCSELx bit	s						
bit 6	TRIGSTAT: Ti	mer Trigger St	atus bit	0 ,								
	1 = Timer sou	urce has been	triggered and is	s running								
	0 = Timer sou	urce has not be	een triggered a	nd is being held	d clear							
bit 5	OCTRIS: Out	put Compare x	Coutput Pin Dir	ection Select b	it							
	1 = OCx is tri	-stated										
		ompare x mod	ule drives the C	DCx pin								
Note 1:	Do not use the O	Cx module as i	its own Synchro	nization or Trig	ger source.							
2:	When the OCy module as a Trigg	odule is turned jer source, the	l OFF, it sends a OCy module m	a trigger out sig nust be unseled	gnal. If the OCx	module uses t source prior	he OCy to disabling it.					
3:	Each Output Com	ipare x module	e (OCx) has one	e PTG Trigger/S	Synchronization	n source. See S	Section 24.0					
	PTGO0 = OC1	Jei Generator			malion.							
	PTGO1 = OC2											
	PTGO2 = OC3											
	PTGO3 = OC4											

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DMABS2	DMABS1	DMABS0	—	_	_		—
bit 15		•					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	FSA4	FSA3	FSA2	FSA1	FSA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13 bit 12-5 bit 4-0	DMABS<2:0> 111 = Reserv 110 = 32 buff 101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe Unimplemen FSA<4:0>: FI 11111 = Rea 11110 = Rea	>: DMA Buffer S red fers in RAM fers in RAM fers in RAM rs in RAM rs in RAM rs in RAM ted: Read as for IFO Area Starts d Buffer RB31 d Buffer RB30	Size bits)' s with Buffer b	its			

REGISTER 21-4: CxFCTRL: ECANx FIFO CONTROL REGISTER

REGISTER 21-8:	CxEC: ECANx TRANSMIT/RECEIVE ERROR COUNT REGISTER
REGISTER 21-8:	CXEC: ECANX TRANSMIT/RECEIVE ERROR COUNT REGISTE

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERR	CNT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERR	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at PC	R	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unknowr	า

bit 15-8	TERRCNT<7:0>:	Transmit Error	Count bits
DIL 10-0	IERRGNI<(.0).	Hanshill Enoi	Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | • | • | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	$10 = \text{Length is } 3 \times \text{Tq}$
	01 = Length is 2 x TQ
	00 = Length is 1 x TQ

```
bit 5-0 BRP<5:0>: Baud Rate Prescaler bits
```

```
11 1111 = TQ = 2 x 64 x 1/FCAN
```

•

- 00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN
- 00 0000 = Tq = 2 x 1 x 1/FCAN

26.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

$$\begin{array}{c} x16+x12+x5+1\\ \text{and}\\ x32+x26+x23+x22+x16+x12+x11+x10+x8+x7\\ +x5+x4+x2+x+1 \end{array}$$

To program these polynomials into the CRC generator, set the register bits as shown in Table 26-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 26-1:CRC SETUP EXAMPLES FOR16 AND 32-BIT POLYNOMIAL

CBC Control	Bit Values						
Bits	16-bit Polynomial	32-bit Polynomial					
PLEN<4:0>	01111	11111					
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001					
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x					

26.2 Programmable CRC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

26.2.1 KEY RESOURCES

- "Programmable Cyclic Redundancy Check (CRC)" (DS70346) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

File Name	Address	Device Memory Size (Kbytes)	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	0057EC	32									
	00AFEC	64									
	0157EC	128	1 _	_	_	_	_	_	_	_	_
	02AFEC	256									
	0557EC	512									
Reserved	0057EE	32									
	00AFEE	64									
	0157EE	128	1 _	_	_	_	_	_	_	_	_
	02AFEE	256									
	0557EE	512									
FICD	0057F0	32									
	00AFF0	64									
	0157F0	128	1 _	Reserved ⁽³⁾	_	JTAGEN	Reserved ⁽²⁾	Reserved ⁽³⁾	_	ICS<	1:0>
	02AFF0	256									
	0557F0	512									
FPOR	0057F2	32									
-	00AFF2	64	-								
	0157F2	128	1 _	WDTV	VIN<1:0>	ALTI2C2	ALTI2C1	Reserved ⁽³⁾	s)	_	_
	02AFF2	256	-								
	0557F2	512									
FWDT	0057F4	32									
	00AFF4	64	-								
	0157F4	128		FWDTEN	WINDIS	PLLKEN	WDTPRE		WDTPOST<3:0>		
	02AFF4	256	-								
	0557F4	512	-								
FOSC	0057F6	32									
	00AFF6	64	-								
	0157F6	128	1 _	FCKS	SM<1:0>	IOL1WAY	_	_	OSCIOFNC	POSCM	D<1:0>
	02AFF6	256	-								
	0557F6	512	-								
FOSCSEL	0057F8	32									
	00AFF8	64	-								
	0157F8	128	1 <u> </u>	IESO	PWMLOCK ⁽¹⁾	_	_	_	F	NOSC<2:0>	
	02AFF8	256									
	0557F8	512									
FGS	0057FA	32							1		
	00AFFA	64									
	0157FA	128	1 _	_	_	_	_	_	_	GCP	GWRP
	02AFFA	256									
	0557FA	512									
Reserved	0057FC	32									
	00AFFC	64									
	0157FC	128	_	_	_	_	_	_	_	_	_
	02AFFC	256									
	0557FC	512									
Reserved	057FFE	32									
	00AFFE	64									
	0157FE	128	_	_	_	_	_	_	_	_	_
	02AFFE	256									
	0557FE	512									

TABLE 27-1: CONFIGURATION BYTE REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: This bit is reserved and must be programmed as '0'.

3: These bits are reserved and must be programmed as '1'.

TABLE 30-44:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	_	—	10	MHz	-40°C to +125°C (Note 3)
SP20	TscF	SCK1 Output Fall Time	_	—	—	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	_	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	_	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	_	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACT	ERISTICS	Standard C (unless off Operating t	Operating Co nerwise state emperature	onditions: 3 ed) -40°C ≤ TA	0V to 3.6V ≤ +150°C		
Parameter No.	Typical	Max	Units	Conditions			
Power-Down	Current (IPD)						
HDC60e	1400	2500	μA	+150°C	3.3V	Base Power-Down Current (Notes 1, 3)	
HDC61c	15	—	μA	+150°C	3.3V	Watchdog Timer Current: ∆IWDT (Notes 2, 4)	

TABLE 31-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 31-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Max	Units	Conditions			
HDC44e	12	30	mA	+150°C	3.3V	40 MIPS	

TABLE 31-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$			
Parameter No.	Typical	Мах	Units	Conditions		
HDC20	9	15	mA	+150°C	3.3V	10 MIPS
HDC22	16	25	mA	+150°C	3.3V	20 MIPS
HDC23	30	50	mA	+150°C	3.3V	40 MIPS

TABLE 31-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Мах	Doze Ratio	Units	Conditions		
HDC72a	24	35	1:2	mA			
HDC72f ⁽¹⁾	14	—	1:64	mA	+150°C	3.3V	40 MIPS
HDC72g ⁽¹⁾	12	_	1:128	mA			

Note 1: Parameters with Doze ratios of 1:64 and 1:128 are characterized, but are not tested in manufacturing.

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins N		48			
Pitch	е	0.40 BSC			
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	4.45	4.60	4.75	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	4.45	4.60	4.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2

Revision C (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see Section 20.1 "UART Helpful Tips" and Section 3.6 "CPU Resources". All occurrences of TLA were updated to VTLA throughout the document, with the exception of the pin diagrams (updated diagrams were not available at time of publication).

A new chapter, Section 31.0 "DC and AC Device Characteristics Graphs", was added.

All other major changes are referenced by their respective section in Table A-2.

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 256-Kbyte Flash and 32-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	The content on the first page of this section was extensively reworked to provide the reader with the key features and functionality of this device family in an "at-a-glance" format.
Section 1.0 "Device Overview"	Updated the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X Block Diagram (see Figure 1-1), which now contains a CPU block and a reference to the CPU diagram. Updated the description and Note references in the Pinout I/O Descriptions for these pins: C1IN2- C2IN2- C3IN2- OA1OUT OA2OUT and OA3OUT (see Table 1-1)
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers"	Updated the Recommended Minimum Connection diagram (see Figure 2-1).
Section 3.0 "CPU"	Updated the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X CPU Block Diagram (see Figure 3-1). Updated the Status register definition in the Programmer's Model (see Figure 3-2).
Section 4.0 "Memory Organization"	Updated the Data Memory Maps (see Figure 4-6 and Figure 4-11). Removed the DCB<1:0> bits from the OC1CON2, OC2CON2, OC3CON2, and OC4CON2 registers in the Output Compare 1 Through Output Compare 4 Register Map (see Table 4-10). Added the TRIG1 and TRGCON1 registers to the PWM Generator 1 Register Map (see Table 4-13). Added the TRIG2 and TRGCON2 registers to the PWM Generator 2 Register Map (see Table 4-14). Added the TRIG3 and TRGCON3 registers to the PWM Generator 3 Register Map (see Table 4-15). Updated the second note in Section 4.7.1 "Bit-Reversed Addressing Implementation".
Section 8.0 "Direct Memory Access (DMA)"	Updated the DMA Controller diagram (see Figure 8-1).
Section 14.0 "Input Capture"	Updated the bit values for the ICx clock source of the ICTSEL<12:10> bits in the ICxCON1 register (see Register 14-1).
Section 15.0 "Output Compare"	Updated the bit values for the OCx clock source of the OCTSEL<2:0> bits in the OCxCON1 register (see Register 15-1). Removed the DCB<1:0> bits from the Output Compare x Control Register 2 (see Register 15-2).

TABLE A-2: MAJOR SECTION UPDATES