

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc504-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and
	DSWPAG values
	0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
hit 1	PND: Dounding Mode Select hit(1)

- bit 1 **RND:** Rounding Mode Select bit⁽¹⁾
 - 1 = Biased (conventional) rounding is enabled
 - 0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit⁽¹⁾ 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply

- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
 - **2:** This bit is always read as '0'.
 - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

TABLE 4-20: ADC1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300		ADC1 Data Buffer 0 x2									xxxx						
ADC1BUF1	0302		ADC1 Data Buffer 1 xx								xxxx							
ADC1BUF2	0304		ADC1 Data Buffer 2								xxxx							
ADC1BUF3	0306		ADC1 Data Buffer 3								xxxx							
ADC1BUF4	0308		ADC1 Data Buffer 4								xxxx							
ADC1BUF5	030A								ADC1 Data B	uffer 5								xxxx
ADC1BUF6	030C								ADC1 Data B	uffer 6								xxxx
ADC1BUF7	030E								ADC1 Data B	uffer 7								xxxx
ADC1BUF8	0310								ADC1 Data B	uffer 8								xxxx
ADC1BUF9	0312		ADC1 Data Buffer 9 xx							xxxx								
ADC1BUFA	0314								ADC1 Data Bu	uffer 10								xxxx
ADC1BUFB	0316								ADC1 Data Bu	uffer 11								xxxx
ADC1BUFC	0318								ADC1 Data Bu	uffer 12								xxxx
ADC1BUFD	031A								ADC1 Data Bu	uffer 13								xxxx
ADC1BUFE	031C								ADC1 Data Bu	uffer 14								xxxx
ADC1BUFF	031E								ADC1 Data Bu	uffer 15								xxxx
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>		SSRC<2:0	>	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	,	VCFG<2:0	>	—	·	CSCNA	CHP	S<1:0>	BUFS			SMPI<4:0>	>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—		-	SAMC<4:0	>	_		-	-	ADCS	<7:0>				0000
AD1CHS123	0326	_	—	—	—		CH123N	NB<1:0>	CH123SB	—	—		—	—	CH123N	A<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	—	—		-	CH0SB<4:0	>	_	CH0NA	—			C	H0SA<4:0	>		0000
AD1CSSH	032E	CSS31	CSS30	—	—	—	CSS26	CSS25	CSS24	—			—	—	—	—	—	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	-	-	-	—	—	_	ADDMAEN	—	—	—	—	—	D	MABL<2:	0>	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IADLE 4-2	:s: ⊏	CANTI	REGISI			IN WIIN		<li<u></li<u>	$y = \perp r c$		SSELV		POUX D	EVICES	UNLT	CONTI	NUED)	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E		EID<15:8>							 EID<7:0>						xxxx		
C1RXF12SID	0470		SID<10:3>							SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx	
C1RXF12EID	0472		EID<15:8>								EID<7:0>					xxxx		
C1RXF13SID	0474		SID<10:3>							SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx	
C1RXF13EID	0476				EID<	<15:8>							EID<	7:0>				xxxx
C1RXF14SID	0478				SID<	<10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF14EID	047A				EID<	<15:8>				EID<7:0>						xxxx		
C1RXF15SID	047C				SID<	<10:3>				SID<2:0> — EXIDE — EID<17:16>				7:16>	xxxx			
C1RXF15EID	047E				EID<	:15:8>							EID<	7:0>				xxxx

ECANI DECISTED MAD WHEN WIN (CICTDI 1 -0.) 1 EOD doDIC22EDXXXMC/CDE0X DEVICES ONLY (CONTINUED) TARIE 1 22.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the Data Space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-17.

For more information on the PSV page access using Data Space Page registers, refer to the "**Program Space Visibility from Data Space**" section in "**Program Memory**" (DS70613) of the "*dsPIC33/ PIC24 Family Reference Manual*".

FIGURE 4-17: EDS MEMORY MAP

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
FORCE ⁽¹⁾	—	—	_	_	—	—	—
bit 15		·			·		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0
bit 7		•			·		bit 0
Legend:		S = Settable b	oit				
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown
bit 15	FORCE: Forc	e DMA Transfe	er bit ⁽¹⁾				
	1 = Forces a	single DMA tra	insfer (Manua	l mode)			
	0 = Automati	c DMA transfer	initiation by D	MA request			
bit 14-8	Unimplemen	ted: Read as '	כי				
bit 7-0	IRQSEL<7:0>	-: DMA Periphe	eral IRQ Numl	ber Select bits			
	01000110 =	ECAN1 – TX D	ata Request ⁽²	2)			
	00100110 =	IC4 – Input Caj	oture 4				
	00100101 =	IC3 – Input Ca	oture 3				
	00100010 =	ECAN1 – RX D	ata Ready ⁽²⁾				
	00100001 = 3	SPIZ Transfer I	Jone NDT2 Transmi	ittor			
	00011111 =	UART2RX - U	ART2 Receive	ar			
	0001110 = 00011100 = 000011100 = 000011000 = 00000000	TMR5 – Timer	5				
	00011011 =	TMR4 – Timer4	1				
	00011010 =	OC4 – Output	Compare 4				
	00011001 =	OC3 – Output (Compare 3				
	00001101 =	ADC1 – ADC1	Convert done	•			
	00001100 =	UART1TX – U/	ART1 Transm	itter			
	00001011 =	UART1RX – U	ART1 Receive	er			
	00001010 =	SPI1 – Transfe	r Done				
	00001000 =	TMR3 – Timera	3				
	00000111 =	100RZ - 100RZ	<u>Compore 2</u>				
	00000110 = 0	IC2 – Duipui V	oture 2				
	00000101 = 0	OC1 = Outout 0	Compare 1				
	00000001 =	IC1 – Input Ca	oture 1				
	00000000 =	INT0 – Externa	I Interrupt 0				

REGISTER 8-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).
 - 2: This selection is available in dsPIC33EPXXXGP/MC50X devices only.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	_	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

Legend:								
R = Readable bit -n = Value at POR		W = Writable bit	U = Unimplemented bit, read as '0'					
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-4	Unimple	mented: Read as '0'						
bit 3 PPST3: DI		MA Channel 3 Ping-Pong	Mode Status Flag bit					
	1 = DMA	STB3 register is selected						
	0 = DMA	STA3 register is selected						
bit 2	PPST2: [MA Channel 2 Ping-Pong	Mode Status Flag bit					
	1 = DMA	STB2 register is selected						
	0 = DMA	STA2 register is selected						
bit 1	PPST1: [MA Channel 1 Ping-Pong	Mode Status Flag bit					

- 1 = DMASTB1 register is selected0 = DMASTA1 register is selected
- bit 0 PPST0: DMA Channel 0 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB0 register is selected
 - 0 = DMASTA0 register is selected

NOTES:

REGISTER 11-17: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP3R<6:0)>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP2R<6:0)>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-8	DTCMP3R< (see Table 1 1111001 =	6:0>: Assign PW 1-2 for input pin nput tied to RPI	/M Dead-Tim selection nun 121	e Compensatio nbers)	n Input 3 to th	ne Corresponding	g RPn Pin bits
	0000001 = 0000000 =	nput tied to CMI nput tied to Vss	P1				
bit 7	0000001 = 0000000 = Unimpleme	nput tied to CMI nput tied to Vss nted: Read as '0	21)'				

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0		
		OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB		
bit 15							bit 8		
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0		
ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0		
bit 7									
Legend:		HSC = Hardw	are Settable/Cl	earable bit					
R = Reada	ible bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-14	Unimplemen	ted: Read as '0)'						
bit 13	OCSIDL: Out	tput Compare x	Stop in Idle Mo	de Control bit					
	1 = Output C	compare x Halts	in CPU Idle me	ode via CDU Idia m	odo				
bit 12 10			nues lo operale		oue				
DIL 12-10	111 = Perinh	eral clock (Ep)	pare x Clock S						
	110 = Reserv	/ed							
	101 = PTGO	x clock ⁽²⁾							
	100 = T1CLK	is the clock so	urce of the OC	k (only the sync	hronous clock	is supported)			
	011 = 15CLK	is the clock sou	urce of the OC	х ~					
	010 = T4CLK 001 = T3CLK	is the clock so	urce of the OC	x X					
	000 = T2CLK	is the clock so	urce of the OC	ĸ					
bit 9	Unimplemen	ted: Read as '0)'						
bit 8	ENFLTB: Fau	ult B Input Enab	le bit						
	1 = Output C 0 = Output C	compare Fault B compare Fault B	input (OCFB) input (OCFB)	is enabled is disabled					
bit 7	ENFLTA: Fau	ult A Input Enabl	le bit						
	1 = Output C	ompare Fault A	input (OCFA)	is enabled					
	0 = Output C	ompare Fault A	input (OCFA)	is disabled					
bit 6	Unimplemen	ted: Read as '0)'						
bit 5	OCFLTB: PW	M Fault B Cond	dition Status bit						
	1 = PWM Fa 0 = No PWM	ult B condition of Fault B condition	on OCFB pin ha on on OCFB pi	as occurred n has occurred					
bit 4	OCFLTA: PW	/M Fault A Cond	dition Status bit						
	1 = PWM Fa	ult A condition of	on OCFA pin ha	as occurred					
	0 = No PWM	I Fault A condition	on on OCFA pi	n has occurred					
Note 1:	OCxR and OCxF	RS are double-b	ouffered in PWN	A mode only.					
2:	Each Output Cor	mpare x module	(OCx) has one	PTG clock sou	urce. See Secti	on 24.0 "Perip	oheral Trigger		
	Generator (PTG PTGO4 = OC1) wodule" for r	nore informatio	n.					
	PTGO5 = OC2								
	PTGO6 = OC3								
	PTGO7 = OC4								

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—		—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Address Mask Select bits

For 10-Bit Address:

1 = Enables masking for bit Ax of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax; bit match is required in this position

For 7-Bit Address (I2CxMSK<6:0> only):

1 = Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax + 1; bit match is required in this position

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

REGISTER 24-6:	PTGSDLIM: PTG STEP DELAY LIMIT REGISTER ^(1,2)

					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSD	LIM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSD)LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		ble bit W = Writable bit		U = Unimpler	nented bit, rea	ıd as '0'	
-n = Value at POR		alue at POR '1' = Bit is set		'0' = Bit is cleared x = B		x = Bit is unkr	nown

bit 15-0 **PTGSDLIM<15:0>:** PTG Step Delay Limit Register bits Holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

Note 1: A base Step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay = (PTGSDLIM) + 1).

2: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0	LIM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC)LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimpler	mented bit, rea	ad as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 **PTGC0LIM<15:0>:** PTG Counter 0 Limit Register bits May be used to specify the loop count for the PTGJMPC0 Step command or as a limit register for the General Purpose Counter 0.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.

25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 25-7: OP AMP CONFIGURATION B

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
CON	COE ⁽²⁾	CPOL	_		OPMODE	CEVT	COUT			
bit 15							bit 8			
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
EVPOL1	EVPOL0	—	CREF ⁽¹⁾			CCH1 ⁽¹⁾	CCH0 ⁽¹⁾			
bit 7							bit 0			
Legend:						(a)				
R = Readable	bit	W = Writable	bit		mented bit, read	as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15		n/Comporator	Enchla hit							
DIL 15		ip/Comparator								
	1 = Op amp/o 0 = Op amp/o	comparator is d	isabled							
bit 14	COE: Compa	arator Output E	nable bit ⁽²⁾							
	1 = Compara	tor output is pr	esent on the C	xOUT pin						
	0 = Comparator output is internal only									
bit 13	CPOL: Comp	parator Output	Polarity Select	bit						
	1 = Comparator output is inverted									
	0 = Compara	tor output is no	t inverted							
bit 12-11	Unimplemer	ited: Read as '	0'							
bit 10	OPMODE: Op Amp/Comparator Operation Mode Select bit									
	1 = Circuit op 0 = Circuit op	perates as an o	p amp moarator							
hit 9	CEVT: Comp	arator Event bi	t							
Sit 0	1 = Comparator event according to the EVPOL<1:0> settings occurred: disables future triggers and									
	interrupts until the bit is cleared									
	0 = Compara	ator event did n	ot occur							
bit 8	COUT: Comp	parator Output I	bit							
	When CPOL = 0 (non-inverted polarity):									
	1 = VIN + > VI $0 = VIN + < VI$	N-								
	When CPOI	= 1 (inverted n	olarity):							
	1 = VIN + < VI	N-	olanty).							
	0 = VIN+ > VI	N-								
Note 1. Inn	uts that are sel	ected and not a	vailable will be	tied to Vss. S	ee the " Pin Di a	arams" section	n for available			

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3)

- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

FIGURE 30-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Characteristic ⁽³⁾		Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7		μS		
			400 kHz mode	1.3	_	μS		
			1 MHz mode ⁽¹⁾	0.5	_	μS		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	-	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μS		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns		
	Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0		μS		
	Hold Time	400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽¹⁾	0	0.3	μS		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated	
	Setup Time	400 kHz mode	0.6		μS	Start condition		
			1 MHz mode ⁽¹⁾	0.25	—	μS		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μS		
IS33	TSU:STO	Stop Condition	100 kHz mode	4.7	—	μS		
		Setup Time	400 kHz mode	0.6	—	μS		
			1 MHz mode ⁽¹⁾	0.6	—	μS		
IS34	THD:STO	Stop Condition	100 kHz mode	4	—	μS		
	Hold Time	400 kHz mode	0.6	—	μS			
			1 MHz mode ⁽¹⁾	0.25		μS		
IS40	IS40 TAA:SCL	Output Valid	100 kHz mode	0	3500	ns		
	From Clock	400 kHz mode	0	1000	ns			
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	perore a new transmission	
	<u> </u>		1 MHz mode ⁽¹⁾	0.5	—	μS	Call Stall	
IS50	Св	Bus Capacitive Lo	ading	—	400	pF		
IS51	TPGD	Pulse Gobbler De	65	390	ns	(Note 2)		

TABLE 30-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: Typical value for this parameter is 130 ns.

3: These parameters are characterized, but not tested in manufacturing.

Revision E (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-4:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 512-Kbyte Flash and 48-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	The following 512-Kbyte devices were added to the General Purpose Families table (see Table 1): • PIC24EP512GP202 • PIC24EP512GP204 • PIC24EP512GP206 • dsPIC33EP512GP502 • dsPIC33EP512GP506 The following 512-Kbyte devices were added to the Motor Control Families table (see Table 2): • PIC24EP512MC202 • PIC24EP512MC204 • PIC24EP512MC206 • dsPIC33EP512MC206 • dsPIC33EP512MC206 • dsPIC33EP512MC206 • dsPIC33EP512MC206 • dsPIC33EP512MC206 • dsPIC33EP512MC506
Section 4.0 "Momony	Certain Pin Diagrams were updated to include the new 512-Kbyte devices.
Organization"	Added a Data Memory Map for the new dsPIC 512-Kbyte devices (see Figure 4-4). Added a Data Memory Map for the new PIC24 512-Kbyte devices (see Figure 4-11). Added a Data Memory Map for the new PIC24 512-Kbyte devices (see Figure 4-16).
Section 7.0 "Interrupt Controller"	Updated the VECNUM bits in the INTTREG register (see Register 7-7).
Section 11.0 "I/O Ports"	Added tip 6 to Section 11.5 "I/O Helpful Tips".
Section 27.0 "Special Features"	 The following modifications were made to the Configuration Byte Register Map (see Table 27-1): Added the column Device Memory Size (Kbytes) Removed Notes 1 through 4 Added addresses for the new 512-Kbyte devices
Section 30.0 "Electrical	Updated the Minimum value for Parameter DC10 (see Table 30-4).
Characteristics"	Added Power-Down Current (Ipd) parameters for the new 512-Kbyte devices (see Table 30-8).
	Updated the Minimum value for Parameter CM34 (see Table 30-53).
	Updated the Minimum and Maximum values and the Conditions for paramteer SY12 (see Table 30-22).