

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc504-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 30.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 27.3 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < F_{IN} < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP128GP50X, dsPIC33EP128MC20X/50X AND PIC24EP128GP/MC20X DEVICES

	- 0.																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	—	_	_	_	_	—	_	_	_	_	—	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	C1TXIF	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS6	080C	_	—	—	—	_	_	—	_	—	_	—		_	_		PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	—	—	_	_	—	_	—	_	—		_	_		_	0000
IFS9	0812		—	—	—		—	—	—	—	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	—	—	—	-	—	—	—	—	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	—	—	—	-	—	—	—	—	—	—	—	—	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	_	_	CTMUIE	—	_	—	—	—	_	C1TXIE	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC8	0830	JTAGIE	ICDIE	—	—	_	—	—	—	_	—	_	_	—	—	_	_	0000
IEC9	0832	_	_	—	—	_	—	—	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>	>		(OC1IP<2:0)>	_	IC1IP<2:0>			1	NT0IP<2:0>		4444	
IPC1	0842	_		T2IP<2:0>	>		(OC2IP<2:0)>	_	IC2IP<2:0>			D	MA0IP<2:0>		4444	
IPC2	0844	_	ι	J1RXIP<2:	0>	_		SPI1IP<2:()>	_		SPI1EIP<2:0	>	—	- T3IP<2:0>			4444
IPC3	0846	_			—		C	MA1IP<2:	0>	_	AD1IP<2:0> — U1TXIP<2		1TXIP<2:0>		0444			
IPC4	0848	_		CNIP<2:0	>			CMIP<2:0	>	_	MI2C1IP<2:0> — SI2C1IP<2:0		I2C1IP<2:0>		4444			
IPC5	084A	_			—			—	—	_	—	_	_	_	1	NT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>	>		(OC4IP<2:0)>	_		OC3IP<2:0>			DMA2IP<2:0>		4444	
IPC7	084E	_	I	U2TXIP<2:0	0>		ι	J2RXIP<2:	0>	_		INT2IP<2:0>	•			T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0>	>		C	1RXIP<2:	0>	_		SPI2IP<2:0>	•		S	PI2EIP<2:0>		4444
IPC9	0852	_	—	—	—	_		IC4IP<2:0	>	_		IC3IP<2:0>		—	D	MA3IP<2:0>		0444
IPC11	0856	_	—	—	—	_	—	—	—	_	—	—	—	—	—	_	_	0000
IPC12	0858	_	—	—	—	_	N	112C2IP<2	:0>	_		SI2C2IP<2:0	>	—	—	_	_	0440
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0)>	_		U1EIP<2:0>		—	—	_	_	4440
IPC17	0862	_	_	—	—	_	0	1TXIP<2:	0>	_	—	—	—	—	_	_	_	0400
IPC19	0866	_	_	—	_	_	_	_	_	_		CTMUIP<2:0	>	—	—	_	_	0040
IPC35	0886	_		JTAGIP<2:()>	_		ICDIP<2:0	>	_	—	—	—	—	_	_	_	4400
IPC36	0888	_	F	PTG0IP<2:	0>	_	PT	GWDTIP<	2:0>	_	P1	GSTEPIP<2	:0>	—	_	—	—	4440
IPC37	088A	_	—	_	_	_	F	TG3IP<2:	0>	_		PTG2IP<2:0	>	_	P	TG1IP<2:0>		0444

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities below

FIGURE 4-18: ARBITER ARCHITECTURE

that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-62.

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-62:	DATA MEMORY BUS
	ARBITER PRIORITY

Briority	MSTRPR<15:0> Bit Setting ⁽¹⁾					
Phoney	0x0000	0x0020				
M0 (highest)	CPU	DMA				
M1	Reserved	CPU				
M2	Reserved	Reserved				
M3	DMA	Reserved				
M4 (lowest)	ICD	ICD				

Note 1: All other values of MSTRPR<15:0> are reserved.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSC<2:0> bits is loaded into NOSC<2:0> (OSCCON<10:8>) on Reset, which in turn, initializes the system clock.

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0	
OA	OB	SA	SB	OAB	SAB	DA	DC	
bit 15							bit 8	
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С	
bit 7						-	bit 0	
								1

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit		-
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
GIE	DISI	SWTRAP		_	_	_	—
bit 15				·			bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
		_	_	—	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:	L:1		L:1			(0)	
R = Readable	DIT	vv = vvritable	DIT		mented bit, read	as '0'	
-n = value at I	POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unkr	nown
hit 15		ntorrunt Enable	, hit				
DIL 15		and associate	d IF hits are e	nahled			
	0 = Interrupts	are disabled,	but traps are s	still enabled			
bit 14	DISI: DISI Ir	nstruction Statu	s bit				
	1 = DISI ins	truction is activ	e				
	0 = DISI ins i	truction is not a	ictive				
bit 13	SWTRAP: So	oftware Trap St	atus bit				
	1 = Software	trap is enabled	4				
hit 12-3		ted. Read as '	 				
bit 2	INT2FP: Exte	ernal Interrupt 2	∘ PEdge Detect	Polarity Selec	et bit		
	1 = Interrupt	on negative ed	ae				
	0 = Interrupt	on positive edg	le				
bit 1	INT1EP: Exte	ernal Interrupt ?	Edge Detect	Polarity Selec	ct bit		
	1 = Interrupt	on negative ed	ge				
	0 = Interrupt	on positive edg	e				
bit 0	INTOEP: Exte	ernal Interrupt () Edge Detect	Polarity Selec	ct bit		
	\perp = interrupt	on negative ed	ye Ie				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

8.1 DMA Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

8.1.1 KEY RESOURCES

- Section 22. "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

8.2 DMAC Registers

Each DMAC Channel x (where x = 0 through 3) contains the following registers:

- 16-Bit DMA Channel Control register (DMAxCON)
- 16-Bit DMA Channel IRQ Select register (DMAxREQ)
- 32-Bit DMA RAM Primary Start Address register (DMAxSTA)
- 32-Bit DMA RAM Secondary Start Address register (DMAxSTB)
- 16-Bit DMA Peripheral Address register (DMAxPAD)
- 14-Bit DMA Transfer Count register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADR) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	_	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
		AMODE1	AMODE0			MODE1	MODE0
bit 7							bit 0
Legend:			,			(0)	
R = Readable	bit	W = Writable	bit		mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		0^{\prime} = Bit is cle	eared	x = Bit is unkn	IOWN
bit 15		Channel Enabl	o hit				
bit 15	1 = Channel	is enabled					
	0 = Channel	is disabled					
bit 14	SIZE: DMA D	ata Transfer Si	ze bit				
	1 = Byte						
	0 = Word						
bit 13	DIR: DMA Tra	ansfer Direction) bit (source/d	estination bus	select)		
	 1 = Reads from RAM address, writes to peripheral address 0 = Reads from peripheral address, writes to RAM address 						
bit 12	HALF: DMA	Block Transfer	Interrupt Sele	ct bit			
	1 = Initiates i	nterrupt when I	nalf of the dat	a has been mo	oved		
	0 = Initiates i	nterrupt when a	all of the data	has been mov	ved		
bit 11	NULLW: Null	Data Periphera	al Write Mode	Select bit			
	1 = Null data	write to periph	eral in additio	n to RAM write	e (DIR bit must a	also be clear)	
bit 10-6	Unimplemen	ted: Read as '	ר'				
bit 5-4	AMODE<1:0	: DMA Channe	el Addressina	Mode Select	bits		
	11 = Reserve	ed					
	10 = Peripher	ral Indirect Add	ressing mode				
	01 = Register	Indirect withou	ut Post-Increm	nent mode			
hit 3 2		tod: Pood as '	ost-incremen	tmode			
bit 1_0		DMA Channel	Operating Mc	nda Salact hits			
bit 1-0	11 = One-Sh	ot. Pina-Pona r	nodes are en	abled (one blo	ck transfer from	/to each DMA b	ouffer)
	10 = Continue	ous, Ping-Pong	modes are e	nabled			
	01 = One-Sho	ot, Ping-Pong r	nodes are dis	abled			
		ous, Ping-Pong	modes are d	ISADIEO			

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
	—	_	_	_	_	_	PLLDIV8	
bit 15		·					bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0	
bit 7		·					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	ıd as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as '	0'					
bit 8-0	PLLDIV<8:0	>: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)		
	111111111	= 513						
	•							
	•							
	•							
	000110000:	= 50 (default)						
	•							
	•							
	•							
	00000010:	= 4						
	000000001	= 3 = 2						
	000000000000	-						

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

; FLT32 pin must be p	ulled low externally in order to clear and disable the fault
; Writing to FCLCON1 :	register requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>
; Set PWM ownership as	nd polarity using the IOCON1 register
; Writing to IOCON1 re	egister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0xF000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>

Field	Description
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS ((CONTINUED)

DC CHARACTERISTICS			Standard (unless Operatin	d Operating otherwise g temperat	g Conditio stated) ure -40° -40°	ons: 3.0\ C ≤ Ta ≤ C ≤ Ta ≤	/ to 3.6V +85°C for Industrial +125°C for Extended	
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
	lı∟	Input Leakage Current ^(1,2)						
DI50		I/O Pins 5V Tolerant ⁽³⁾	-1	—	+1	μA	$Vss \le VPIN \le VDD$, Pin at high-impedance	
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{split} &Vss \leq V \text{PIN} \leq V \text{DD}, \\ &\text{Pin at high-impedance}, \\ &-40^\circ\text{C} \leq \text{TA} \leq +85^\circ\text{C} \end{split}$	
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$	
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +125^\circC \end{array}$	
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$	
DI55		MCLR	-5	_	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	-5	_	+5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$	

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-42: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—		15	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

31.2 **AC Characteristics and Timing Parameters**

The information contained in this section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V
	(unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$
	Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-10: PLL CLOCK TIMING SPECIFICATIONS

AC CHAR	ACTERIST	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			0V to 3.6V ≤ +150°C		
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions				
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

These parameters are characterized by similarity, but are not tested in manufacturing. This specification is Note 1: based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz. Г

$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}} \right\rfloor = \left\lfloor \frac{5\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{5\%}{4} \right\rfloor = 1.25\%$$

٦

© 2011-2013 Microchip Technology Inc.

Remappable Input for U1RX	176
Reset System	123
Shared Port Structure	173
Single-Phase Synchronous Buck Converter	
SPIx Module	
Suggested Oscillator Circuit Placement	31
Type B Timer (Timer2 and Timer4)	208
Type B/Type C Timer Pair (32-Bit Timer)	209
Type C Timer (Timer3 and Timer5)	
UARTx Module	
User-Programmable Blanking Function	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	

С

C Compilers	
MPLAB XC Compilers	
Charge Time Measurement Unit. See CTMU.	
Code Examples	
IC1 Connection to QEI1 Input on	
Pin 43 of dsPIC33EPXXXMC206	
Port Write/Read	
PWMx Write-Protected Register	
Unlock Sequence	
PWRSAV Instruction Syntax	
Code Protection	379, 386
CodeGuard Security	379, 386
Configuration Bits	
Description	
Configuration Byte Register Map	
Configuring Analog and Digital Port Pins	
CPU	
Addressing Modes	
Clocking System Options	
Fast RC (FRC) Oscillator	
FRC Oscillator with PLL	
FRC Oscillator with Postscaler	
Low-Power RC (LPRC) Oscillator	
Primary (XT, HS, EC) Oscillator	
Primary Oscillator with PLL	
Control Registers	40
Data Space Addressing	
Instruction Set	
Resources	
CTMU	
Control Registers	
Resources	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	51
Memory Map for dsPIC33EP128MC20X/50X,	
dsPIC33EP128GP50X Devices	54
Memory Map for dsPIC33EP256MC20X/50X,	
dsPIC33EP256GP50X Devices	55
Memory Map for dsPIC33EP32MC20X/50X,	
dsPIC33EP32GP50X Devices	52
Memory Map for dsPIC33EP512MC20X/50X,	
dsPIC33EP512GP50X Devices	56
Memory Map for dsPIC33EP64MC20X/50X,	
dsPIC33EP64GP50X Devices	53
Memory Map for PIC24EP128GP/MC20X/50X	
Devices	59

Memory Map for PIC24EP256GP/MC20X/50X		
Devices		60
Memory Map for PIC24EP32GP/MC20X/50X		
		57
	•••••	57
Memory Map for PIC24EP512GP/MIC20X/50X		~ ~
Devices		61
Memory Map for PIC24EP64GP/MC20X/50X		
Devices		58
Near Data Space		51
Organization. Alignment		51
SER Snace		51
Width		
Data Mamany	•••••	51
Data Methory		440
Arbitration and Bus Master Priority	•••••	110
Data Space		
Extended X		109
Paged Memory Scheme		105
DC and AC Characteristics		
Graphs		475
DC Characteristics		
POP		111
CTMU Current Source Dequiremente	•••••	411
CTMU Current Source Requirements		458
Doze Current (IDOZE) 4	07,	469
High Temperature		468
I/O Pin Input Specifications		408
I/O Pin Output Specifications 4	11,	470
Idle Current (IIDLE)	05.	469
Op Amp/Comparator Requirements	,	455
On Amp/Comparator Voltage Reference		
		457
Requirements		457
Operating Current (IDD) 4	04,	469
Operating MIPS vs. Voltage 4	02,	468
Power-Down Current (IPD) 4	06,	469
Program Memory		412
Temperature and Voltage		468
Temperature and Voltage Specifications		403
Thermal Operating Conditions		468
Watchdog Timer Delta Current		407
Demo/Development Boardo, Evoluction and		407
		400
Starter Kits	•••••	400
Development Support	•••••	397
Third-Party Tools		400
DMA Controller		
Channel to Peripheral Associations		140
Control Registers		141
DMAxCNT		141
		141
		1/1
	•••••	141
		141
DMAXSTA	•••••	141
DMAxSTB		141
Resources		141
Supported Peripherals		139
Doze Mode		165
DSP Engine		44
E		

Ε

310
311
311
312
312
313
313

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support