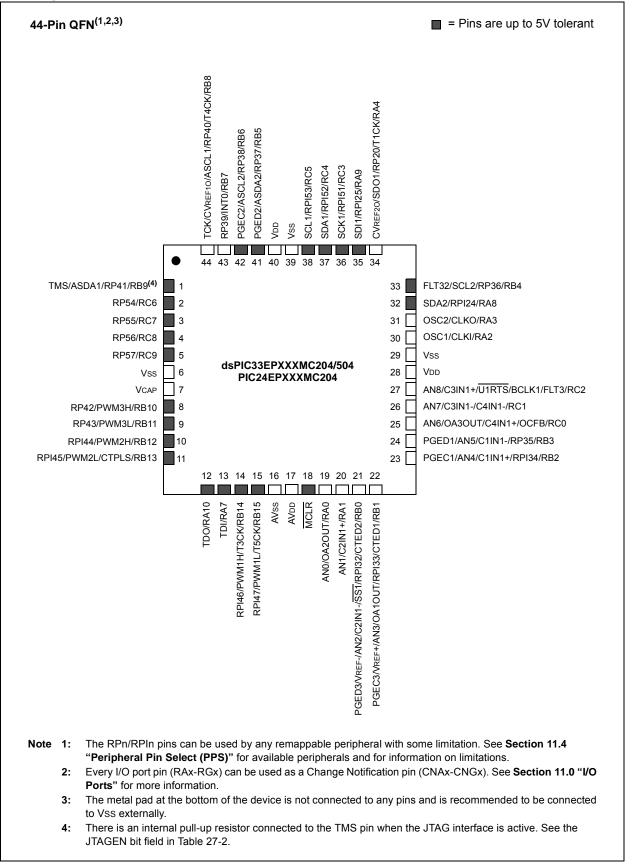


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc504-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/

MC20X devices contain control registers for Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only), Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only) and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
DSWPAG	Extended Data Space (EDS) Write Page Register
RCOUNT	REPEAT Loop Count Register
DCOUNT ⁽¹⁾	DO Loop Count Register
DOSTARTH ^(1,2) , DOSTARTL ^(1,2)	DO Loop Start Address Register (High and Low)
DOENDH ⁽¹⁾ , DOENDL ⁽¹⁾	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: This register is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

2: The DOSTARTH and DOSTARTL registers are read-only.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_				_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_		QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF				-	_	_	C1TXIF	_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	_					_	_	_	_	_	_	_	_		0000
IFS6	080C	_	_	_					_	_	_	_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_					_	_	_	_	_	_	_	_		0000
IFS9	0812	_	—	_	_	_			_	—	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_		_	_	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	QEI1IE	PSEMIE	_	_	_	_	_	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	_	_	CTMUIE	_			_	_	_	C1TXIE	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
IEC6	082C	_	_	_	_	_		_	_	_	_	_	_	_	_	_	PWM3IE	0000
IEC7	082E	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_		_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0	>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_		OC2IP<2:0	>	_		IC2IP<2:0>		_	[DMA0IP<2:0>		4444
IPC2	0844	_	l	J1RXIP<2:0	>	_		SPI1IP<2:0)>	_		SPI1EIP<2:0	>			T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	C	MA1IP<2:	0>	_		AD1IP<2:0>				U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_		MI2C1IP<2:0	>		5	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_		_	_	_	_	_	_			INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0	>	_		OC3IP<2:0>			[DMA2IP<2:0>		4444
IPC7	084E	_	1	U2TXIP<2:0	>	_	U2RXIP<2:0> — INT2IP<2:0>				T5IP<2:0>		4444					
IPC8	0850	_		C1IP<2:0>		_	C	2: 2: 2:	0>	_		SPI2IP<2:0>			5	SPI2EIP<2:0>		4444
IPC9	0852	_	_	_	_	_		IC4IP<2:0	>	_		IC3IP<2:0>			[DMA3IP<2:0>		0444
IPC12	0858	_	_	_	_	_	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC14	085C	_	_	_	_	_	(QEI1IP<2:()>	_	PSEMIP<2:0>		>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0		_				_	<u> </u>	_	_	4440
IPC17	0862	_	_	_	_	_		C1TXIP<2:		_			—	_	_	_	_	0400
IPC19	0866	_	_		_	_						L CTMUIP<2:0	>		<u> </u>	_	_	0040

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

DS70000657H-page 73

TABLE 4	4-9:	INPUT		JRE 1 T	HROUG	H INPU	Т САРТ	URE 4	REGIST	ER MA	Р							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	—	ICSIDL	10	CTSEL<2:0	>	—	-	_	ICI<	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC1CON2	0142	_	_		_		—	—	IC32	ICTRIG	TRIGSTAT			S	YNCSEL<4	:0>		000D
IC1BUF	0144							Inp	ut Capture '	1 Buffer Reg	gister							xxxx
IC1TMR	0146		Input Capture 1 Timer													0000		
IC2CON1	0148		ICSIDL ICTSEL<2:0> ICI<1:0> ICOV ICBNE ICM<2:0>													0000		
IC2CON2	014A															000D		
IC2BUF	014C		Input Capture 2 Buffer Register														xxxx	
IC2TMR	014E								Input Capt	ture 2 Time	r							0000
IC3CON1	0150		_	ICSIDL	10	CTSEL<2:0	>	—	_		ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3CON2	0152		_				—	—	IC32	ICTRIG	TRIGSTAT			S	YNCSEL<4	:0>		000D
IC3BUF	0154							Inp	ut Capture 3	3 Buffer Reg	gister							xxxx
IC3TMR	0156								Input Capt	ture 3 Time	r							0000
IC4CON1	0158		_	ICSIDL	10	CTSEL<2:0	>	—	_		ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC4CON2	015A	_	_		-		-	_	IC32	ICTRIG	TRIGSTAT	-		S	YNCSEL<4	:0>		000D
IC4BUF	015C	Input Capture 4 Buffer Register												xxxx				
IC4TMR	015E								Input Capt	ure 4 Time	r							0000

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC204/504 AND PIC24EPXXXGP/MC204 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
RPOR0	0680				RP35R<5:0>									RP20F	₹<5:0>			0000	
RPOR1	0682	_	_		RP37R<5:0>						—	RP36R<5:0> 01							
RPOR2	0684	_	_			RP39	R<5:0>				—	RP38R<5:0>							
RPOR3	0686	_	_			RP41	R<5:0>				—	RP40R<5:0>							
RPOR4	0688	_	_			RP43	R<5:0>				—	RP42R<5:0>						0000	
RPOR5	068A	_	—		RP55R<5:0>						—	RP54R<5:0>						0000	
RPOR6	068C	_	—		RP57R<5:0>					_	—			RP56F	R<5:0>			0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC206/506 AND PIC24EPXXXGP/MC206 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
RPOR0	0680	_	_		RP35R<5:0>					_	_		•	RP20F	R<5:0>			0000	
RPOR1	0682	_				RP37F	R<5:0>			_	_			RP36	R<5:0>			0000	
RPOR2	0684	_	—			RP39F	२<5:0>			_	_	RP38R<5:0>							
RPOR3	0686	_	—			RP41F	२<5:0>			_	_		RP40R<5:0>						
RPOR4	0688	_	_			RP43F	२<5:0>			—	_		RP42R<5:0>						
RPOR5	068A	_	_			RP55F	२<5:0>			—	_	RP54R<5:0>						0000	
RPOR6	068C	_	_			RP57F	२<5:0>			—	_			RP56	R<5:0>			0000	
RPOR7	068E	_	_		RP97R<5:0>					—	_	_	_	_	_	_	_	0000	
RPOR8	0690		_		RP118R<5:0>					_	_							0000	
RPOR9	0692	—	_	_					_	_	_	RP120R<5:0>						0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-37: PMD REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_		_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764		_	_	—	_	CMPMD	_	-	CRCMD	_				_	I2C2MD	_	0000
PMD4	0766		_	_	—	_		_	-	—	_			REFOMD	CTMUMD	_	_	0000
PMD6	076A		_		—	_		_		—	_				—	—		0000
													DMA0MD					
PMD7	076C	_			_								DMA1MD	PTGMD	_			0000
	0700	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PMD REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD		_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_		_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	—	-	_			PWM3MD	PWM2MD	PWM1MD	_	—	—	_		—	_		0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIVID7	0700	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

	Vector	IRQ		Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	—	—	_
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_
	Lowe	est Natura	I Order Priority			

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD ⁽¹⁾	PWMMD ⁽¹⁾	_
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD ⁽²⁾	AD1MD
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	1 = Timer5 m	5 Module Disal odule is disable odule is enable	ed				
bit 14	1 = Timer4 m	4 Module Disal odule is disable odule is enable	ed				
bit 13	1 = Timer3 m	3 Module Disal odule is disable odule is enable	ed				
bit 12	1 = Timer2 m	2 Module Disal odule is disable odule is enable	ed				
bit 11	1 = Timer1 m	1 Module Disal odule is disable odule is enable	ed				
bit 10	1 = QEI1 mod	11 Module Disa Iule is disablec Iule is enabled					
bit 9	1 = PWM mod	/M Module Dis dule is disabled dule is enabled	1				
bit 8	Unimplemen	ted: Read as '	כי				
bit 7	1 = I2C1 mod	1 Module Disal ule is disabled ule is enabled	ble bit				
bit 6	1 = UART2 m	2 Module Disa odule is disabl odule is enable	ed				
bit 5	1 = UART1 m	1 Module Disa odule is disabl odule is enable	ed				
bit 4	1 = SPI2 mod	2 Module Disa lule is disabled lule is enabled	ole bit				

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

11.5 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-11, under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.

5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 30.0 "Electrical Characteristics" for additional information.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

				DD20			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
				RP35	iR<5:0>		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP20	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP37	′R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP36	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP37R<5:0>: Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP36R<5:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
0-0	0-0	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	0-0	ENFLTB	
 bit 15		OCSIDE	OCTSEL2	OCISELI	OCTSELU	—	bit 8	
DIL 15	Dit o							
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	
ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	
bit 7		001218	OOFEIN	ITTOMODE	001112	0.0111	bit 0	
							2.1.0	
Legend:		HSC = Hardw	are Settable/Cl	earable bit				
R = Read	able bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15-14	Unimplemen	ted: Read as 'o)'					
bit 13	OCSIDL: Out	tput Compare x	Stop in Idle Mo	de Control bit				
		compare x Halts						
	•	compare x conti	•		ode			
bit 12-10		D>: Output Com	pare x Clock Se	elect bits				
	111 = Periph 110 = Reserv	eral clock (FP)						
	101 = PTGO							
		is the clock so	urce of the OC	k (only the sync	hronous clock	is supported)		
		is the clock so						
		is the clock so						
		(is the clock so (is the clock so						
bit 9		ted: Read as '0		-				
bit 8	-	ult B Input Enab						
		ompare Fault B		is enabled				
	-	compare Fault B		is disabled				
bit 7		ult A Input Enab						
		Compare Fault A Compare Fault A						
bit 6	•	•	,	is disabled				
bit 5	-	i ted: Read as '0 VM Fault B Cond						
DIL 5		ult B condition of						
		I Fault B condition						
bit 4	OCFLTA: PW	OCFLTA: PWM Fault A Condition Status bit						
	1 = PWM Fa	1 = PWM Fault A condition on OCFA pin has occurred						
	0 = No PWM Fault A condition on OCFA pin has occurred							
Note 1:	OCxR and OCxF	RS are double-b	ouffered in PWN	/I mode only.				
2:	OCxR and OCxRS are double-buffered in PWM mode only. Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 " Peripheral Trigger							
	Generator (PTG) Module" for more information.							
	PTGO4 = 0C1							
	PTGO5 = OC2 PTGO6 = OC3							
	PTGO6 = OC3 $PTGO7 = OC4$							

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0	
I2CEN	—	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7							bit 0	
Legend:		HC = Hardware	Clearable bit					
R = Readab	le bit	W = Writable bi		U = Unimpler	mented bit, rea	d as '0'		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown	
bit 15	I2CEN: I2Cx	Enable bit						
		the I2Cx module					;	
L:1 4 4		the I2Cx module	; all I-C ™ pins a	are controlled	by port function	IS		
bit 14 bit 13	-	ited: Read as '0'	do bit					
DIC 13		Stop in Idle Mo ues module oper		rice enters an l	dle mode			
		s module operati						
bit 12	SCLREL: SC	Lx Release Con	rol bit (when op	perating as I ² C	slave)			
	1 = Releases							
		Lx clock low (clo	ck stretch)					
	If STREN = 1 Bit is R/W (i e	<u>.:</u> e., software can w	rite '0' to initiate	e stretch and w	rite '1' to relea	se clock) Harr	lware is clear	
	at the beginn	ing of every slav reception. Hardv	ve data byte tra	ansmission. Ha	ardware is clea	r at the end o		
	If STREN = 0							
		., software can or						
hit 11	-	te transmission. Iligent Peripheral			-	address byte re	eception.	
bit 11		le is enabled; all						
	$0 = IPMI \mod$, lon no me agea				
bit 10	A10M: 10-Bit	Slave Address b	oit					
		is a 10-bit slave						
		is a 7-bit slave a						
bit 9		able Slew Rate (
		1 = Slew rate control is disabled 0 = Slew rate control is enabled						
bit 8		SMEN: SMBus Input Levels bit						
		/O pin thresholds		SMBus speci	fication			
		SMBus input thre		,				
bit 7	GCEN: Gene	eral Call Enable b	it (when operat	ing as I ² C slav	/e)			
		nterrupt when a ge call address disal		ss is received ir	n I2CxRSR (mo	dule is enabled	for reception)	

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

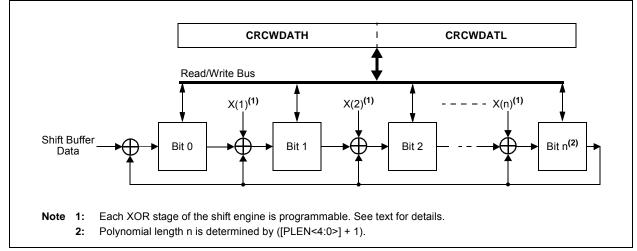
_								
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADRC	—	—	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾	
bit 15	5							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADCS7 ⁽²⁾	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾	
bit 7							bit 0	
r								
Legend:								
R = Readable b		W = Writable k	bit	•	nented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	1 = ADC inter							
		ved from syste						
bit 14-13	•	ted: Read as '0						
bit 12-8		Auto-Sample T	ime bits ⁽¹⁾					
	11111 = 31 T	AD						
	•							
	•							
	00001 = 1 TA 00000 = 0 TA							
bit 7-0	ADCS<7:0>:	ADC1 Convers	ion Clock Sele	ct bits ⁽²⁾				
	11111111 = ⁻ •	TP • (ADCS<7:	0> + 1) = TP •	256 = Tad				
	•							
	• 00000010 = TP • (ADCS<7:0> + 1) = TP •3 = TAD							
	$00000001 = TP \cdot (ADCS < 7:0 > + 1) = TP \cdot 2 = TAD$ $00000000 = TP \cdot (ADCS < 7:0 > + 1) = TP \cdot 1 = TAD$							
 Note 1: This bit is only used if SSRC<2:0> (AD1CON1<7:5>) = 111 and SSRCG (AD1CON1<4>) = 0. 2: This bit is not used if ADRC (AD1CON3<15>) = 1. 								

REGISTER 23-3: AD1CON3: ADC1 CONTROL REGISTER 3

24.4 Step Commands and Format

TABLE 24-1: PTG STEP COMMAND FORMAT

Step Command Byte:					
STEPx<7:0>					
CMD<3:0>		OPTION<3:0>			
bit 7	bit 4 bit 3	bit 0			


bit 7-4	CMD<3:0>	Step Command	Command Description
	0000	PTGCTRL	Execute control command as described by OPTION<3:0>.
	0001	PTGADD	Add contents of PTGADJ register to target register as described by OPTION<3:0>.
		PTGCOPY	Copy contents of PTGHOLD register to target register as described by OPTION<3:0>.
	001x	PTGSTRB	Copy the value contained in CMD<0>:OPTION<3:0> to the CH0SA<4:0> bits (AD1CHS0<4:0>).
	0100	PTGWHI	Wait for a low-to-high edge input from the selected PTG trigger input as described by OPTION<3:0>.
	0101	PTGWLO	Wait for a high-to-low edge input from the selected PTG trigger input as described by OPTION<3:0>.
	0110	Reserved	Reserved.
	0111	PTGIRQ	Generate individual interrupt request as described by OPTION3<:0>.
	100x	PTGTRIG	Generate individual trigger output as described by < <cmd<0>:OPTION<3:0>>.</cmd<0>
	101x	PTGJMP	Copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that Step queue.</cmd<0>
	110x	PTGJMPC0	PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR).
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR), and jump to that Step queue</cmd<0>
	111x	PTGJMPC1	PTGC1 = PTGC1LIM: Increment the Queue Pointer (PTGQPTR).
			$PTGC1 \neq PTGC1LIM$: Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR), and jump to that Step queue.</cmd<0>

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

26.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

$$\begin{array}{c} x16+x12+x5+1\\ \text{and}\\ x32+x26+x23+x22+x16+x12+x11+x10+x8+x7\\ +x5+x4+x2+x+1 \end{array}$$

To program these polynomials into the CRC generator, set the register bits as shown in Table 26-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 26-1:CRC SETUP EXAMPLES FOR16 AND 32-BIT POLYNOMIAL

CRC Control	Bit Values			
Bits	16-bit Polynomial	32-bit Polynomial		
PLEN<4:0>	01111	11111		
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001		
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x		

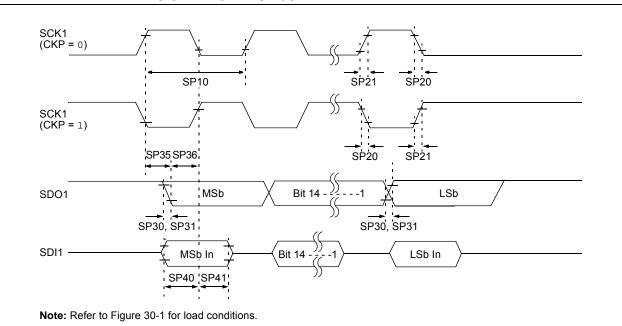
26.2 Programmable CRC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

26.2.1 KEY RESOURCES

- "Programmable Cyclic Redundancy Check (CRC)" (DS70346) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools


U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	DWIDTH<4:0>: Data Width Select bits						
	These bits se	t the width of th	ne data word (DWIDTH<4:0>	• + 1).		
bit 7-5	Unimplemented: Read as '0'						

REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits

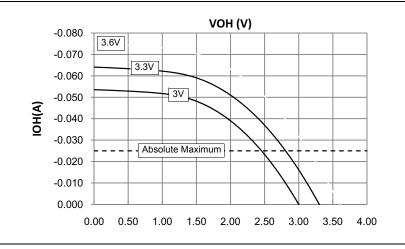
These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1).

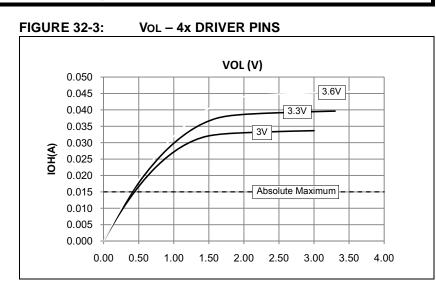
TABLE 30-44:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency		—	10	MHz	-40°C to +125°C (Note 3)
SP20	TscF	SCK1 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.


- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI1 pins.


32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

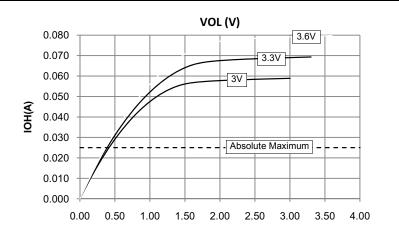
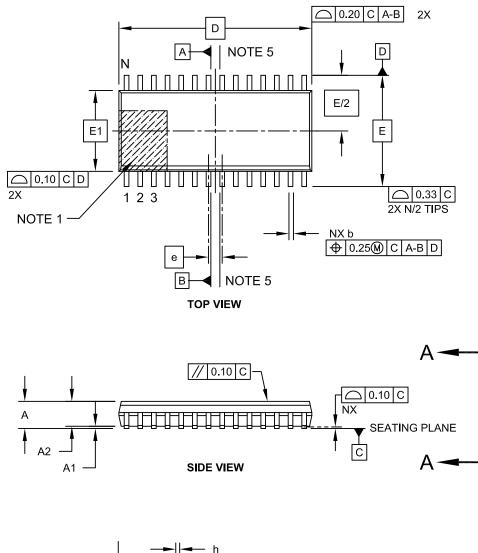
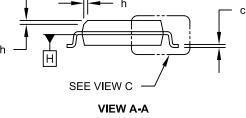

FIGURE 32-1: VOH – 4x DRIVER PINS VOH (V) -0.050 -0.045 3.6V -0.040 3.3V -0.035 3V -0.030 IOH(A) -0.025 -0.020 Absolute Maximum -0.015 -0.010 -0.005 0.000 0.50 1.00 2.00 2.50 3.00 3.50 0.00 1.50 4.00

FIGURE 32-2: VOH – 8x DRIVER PINS




FIGURE 32-4: Vol – 8x DRIVER PINS

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2