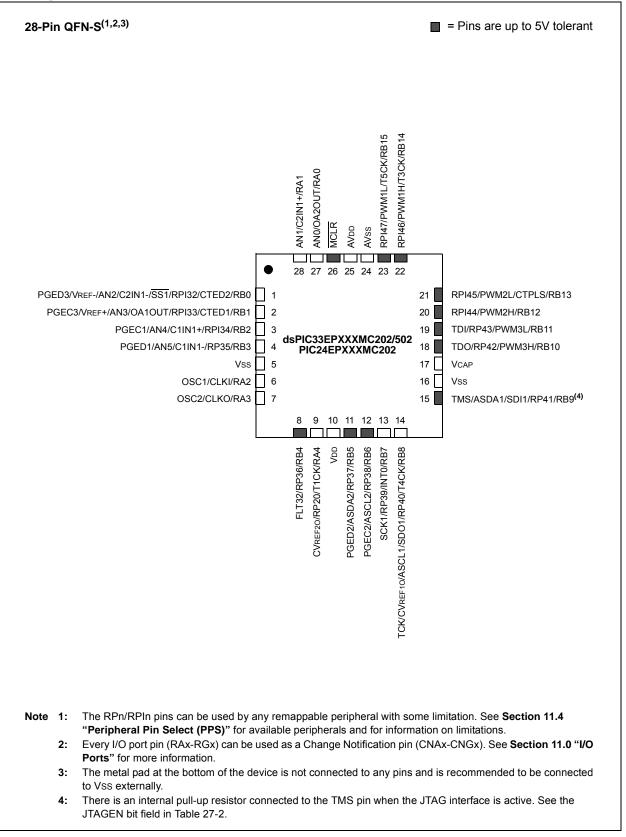


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc506t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Name ⁽⁴⁾	Pin Buffer Type Type		PPS	Description					
AN0-AN15	I	Analog	No	Analog input channels.					
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function					
CLKO	0	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.					
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS					
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.					
REFCLKO	0		Yes	Reference clock output.					
IC1-IC4	Ι	ST	Yes	Capture Inputs 1 through 4.					
OCFA OCFB OC1-OC4	 0	ST ST	Yes No Yes	Compare Fault A input (for Compare channels). Compare Fault B input (for Compare channels). Compare Outputs 1 through 4.					
INT0	I	ST	No	External Interrupt 0.					
INT1 INT2		ST ST	Yes Yes	External Interrupt 1. External Interrupt 2.					
RA0-RA4, RA7-RA12	I/O	ST	No	PORTA is a bidirectional I/O port.					
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.					
RC0-RC13, RC15	I/O	ST	No	PORTC is a bidirectional I/O port.					
RD5, RD6, RD8	I/O	ST	No	PORTD is a bidirectional I/O port.					
RE12-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.					
RF0, RF1	I/O	ST	No	PORTF is a bidirectional I/O port.					
RG6-RG9	I/O	ST	No	PORTG is a bidirectional I/O port.					
T1CK	Ι	ST	No	Timer1 external clock input.					
T2CK T3CK		ST ST	Yes	Timer2 external clock input.					
T4CK		ST	No No	Timer3 external clock input. Timer4 external clock input.					
T5CK	i	ST	No	Timer5 external clock input.					
CTPLS	0	ST	No	CTMU pulse output.					
CTED1	Ι	ST	No	CTMU External Edge Input 1.					
CTED2	Ι	ST	No	CTMU External Edge Input 2.					
U1CTS	Ι	ST	No	UART1 Clear-To-Send.					
U1RTS	0		No	UART1 Ready-To-Send.					
U1RX		ST	Yes	UART1 receive. UART1 transmit.					
U1TX BCLK1	0	ST	Yes No	UART1 Iransmit. UART1 IrDA [®] baud clock output.					
Legend: CMOS = CM ST = Schmi PPS = Perip	MOS co itt Trigg	ompatible er input v	input with CN	or output Analog = Analog input P = Power					

TABLE 1-1:PINOUT I/O DESCRIPTIONS

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description						
C1IN1-	I	Analog	No	Op Amp/Comparator 1 Negative Input 1.						
C1IN2-	I	Analog	No	Comparator 1 Negative Input 2.						
C1IN1+	I	Analog	No	Op Amp/Comparator 1 Positive Input 1.						
OA1OUT	0	Analog	No	Op Amp 1 output.						
C1OUT	0	—	Yes	Comparator 1 output.						
C2IN1-	I	Analog	No	Op Amp/Comparator 2 Negative Input 1.						
C2IN2-	I	Analog	No	Comparator 2 Negative Input 2.						
C2IN1+	I	Analog	No	Op Amp/Comparator 2 Positive Input 1.						
OA2OUT	0	Analog	No	Op Amp 2 output.						
C2OUT	0		Yes	Comparator 2 output.						
C3IN1-	I	Analog	No	Op Amp/Comparator 3 Negative Input 1.						
C3IN2-	I	Analog	No	Comparator 3 Negative Input 2.						
C3IN1+	I	Analog	No	Op Amp/Comparator 3 Positive Input 1.						
OA3OUT	0	Analog	No	Op Amp 3 output.						
C3OUT	0		Yes	Comparator 3 output.						
C4IN1-	I.	Analog	No	Comparator 4 Negative Input 1.						
C4IN1+	I.	Analog	No	Comparator 4 Positive Input 1.						
C4OUT	0		Yes	Comparator 4 output.						
CVREF10	0	Analog	No	Op amp/comparator voltage reference output.						
CVREF20	0	Analog	No	Op amp/comparator voltage reference divided by 2 output.						
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.						
PGEC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.						
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.						
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.						
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.						
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 3.						
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.						
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.						
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.						
Vdd	Р		No	Positive supply for peripheral logic and I/O pins.						
VCAP	Р		No	CPU logic filter capacitor connection.						
Vss	Р		No	Ground reference for logic and I/O pins.						
VREF+	I	Analog	No	Analog voltage reference (high) input.						
VREF-	Ι	Analog	No	Analog voltage reference (low) input.						
Legend: CMOS = C ST = Schn	nitt Trigg	jer input v	with CI	or output Analog = Analog input P = Power MOS levels O = Output I = Input						

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

PPS = Peripheral Pin Select

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

TTL = TTL input buffer

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for the ADC module is implemented

Note: The AVDD and AVSS pins must be connected, independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \ \mu\text{F}$ to $0.001 \ \mu\text{F}$. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \ \mu\text{F}$ in parallel with $0.001 \ \mu\text{F}$.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E	See definition when WIN = x																
C1BUFPNT1	0420		F3BF	P<3:0>			F2BI	><3:0>		F1BP<3:0>				F0BP	<3:0>		0000	
C1BUFPNT2	0422		F7BF	><3:0>			F6BI	><3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13B	D<3:0>			F12BF	P<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		_	MIDE	—	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440		SID<10:3>				SID<2:0> —			EXIDE	—	EID<	17:16>	xxxx				
C1RXF0EID	0442				EID<	:15:8>				EID				7:0>			xxxx	
C1RXF1SID	0444				SID<	:10:3>				SID<2:0> — EXID					—	EID<	17:16>	xxxx
C1RXF1EID	0446				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF3SID	044C				SID<	:10:3>				SID<2:0> —				EXIDE	—	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF4SID	0450				SID<	:10:3>				SID<2:0> —				EXIDE	—	EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>				EID<7:0>							xxxx	
C1RXF5SID	0454				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>						17:16>	xxxx	
C1RXF5EID	0456				EID<	:15:8>				EID<7:0>							xxxx	
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:1					17:16>	xxxx		
C1RXF8EID	0462					:15:8>				EID<				<7:0>				xxxx
C1RXF9SID	0464					:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF9EID	0466					:15:8>				EID<7:0>						xxxx		
C1RXF10SID	0468					:10:3>					SID<2:0>		—	EXIDE				xxxx
C1RXF10EID	046A					:15:8>							EID<	-				xxxx
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		—	EXIDE	-	EID<	17:16>	xxxx

TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address prior to modification addresses an EDS or PSV page
- The EA calculation uses Pre-Modified or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-61 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

	-	SV SI ACE BOON						
O/U, R/W			Before		After			
	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description	
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1	
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page	
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1	
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1	
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1	
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1	
U, Read	[//11 -]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page	

TABLE 4-61: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and PSV SPACE BOUNDARIES^(2,3,4)

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudo-Linear Addressing is not supported for large offsets.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1 PTGO5 = OC2
 - PTGO6 = OC3 PTGO7 = OC4

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾ 111 = Reserved 100 = Reserved
bit 3-0	100 = Reserved 011 = PTGO17 ⁽²⁾ 010 = PTGO16 ⁽²⁾ 001 = Reserved 000 = SYNCI1 input from PPS SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits ⁽¹⁾
	 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event . <l< td=""></l<>
	0000 = 1:1 Postscaler generates Special Event Trigger on every second compare match event

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

NOTES:

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
r							
Legend:		HS = Hardware		C = Clearable			
R = Readable I		W = Writable b	bit	•	nented bit, rea		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-14	-	ted: Read as '0				.,	
bit 13		Position Counte	er Greater Tha	n or Equal Cor	npare Status b	it	
		T ≥ QEI1GEC T < QEI1GEC					
bit 12		Position Counte	r Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt i						
	0 = Interrupt i	s disabled					
bit 11		Position Counte	r Less Than o	r Equal Compa	are Status bit		
	1 = POS1CN						
bit 10		Position Counte	r Less Than or	- Equal Compa	ire Interrunt En	ahla hit	
	1 = Interrupt i						
	0 = Interrupt i						
bit 9	POSOVIRQ:	Position Counte	er Overflow Sta	itus bit			
	1 = Overflow						
		ow has occurred					
bit 8		Position Counte	r Overflow Inte	errupt Enable b	Dit		
	1 = Interrupt i 0 = Interrupt i						
bit 7	•	tion Counter (H	oming) Initializ	ation Process	Complete Stat	us bit ⁽¹⁾	
		T was reinitialize	•		· · · · · · · ·		
	0 = POS1CN	T was not reiniti	alized				
bit 6	PCIIEN: Posi	tion Counter (He	oming) Initializ	ation Process	Complete inter	rupt Enable bit	
	1 = Interrupt i						
bit 5	0 = Interrupt i		r Overflow Sta	tuo hit			
DIL 5	1 = Overflow	Velocity Counter	I Overnow Sta				
		ow has not occu	irred				
bit 4	VELOVIEN:	/elocity Counter	Overflow Inte	rrupt Enable bi	it		
	1 = Interrupt i	s enabled					
	0 = Interrupt i						
bit 3		atus Flag for Ho		us bit			
		ent has occurred event has occu					

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

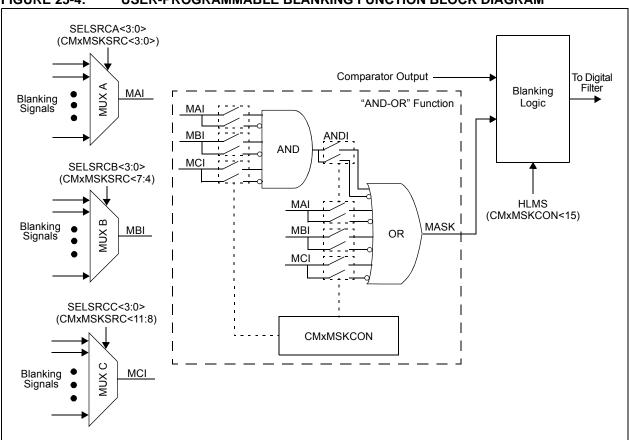
FIGURE 22-1: CTMU BLOCK DIAGRAM

5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1<9>) = 1, and opened when IDISSEN = 0.

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

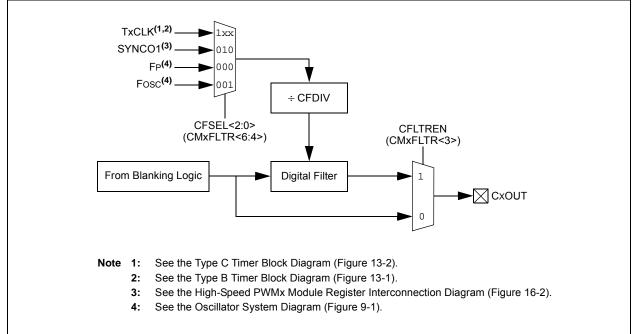
Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464


22.1.1 KEY RESOURCES

- "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

_										
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADRC	—	—	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADCS7 ⁽²⁾	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾			
bit 7							bit 0			
r										
Legend:										
R = Readable b		W = Writable k	bit	•	nented bit, read	l as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	it 15 ADRC: ADC1 Conversion Clock Source bit 1 = ADC internal RC clock									
		ved from syste								
bit 14-13	•	ted: Read as '0								
bit 12-8		Auto-Sample T	ime bits ⁽¹⁾							
	11111 = 31 T	AD								
	•									
	•									
	00001 = 1 TA 00000 = 0 TA									
bit 7-0	ADCS<7:0>:	ADC1 Convers	ion Clock Sele	ct bits ⁽²⁾						
	11111111 = ⁻ •	TP • (ADCS<7:	0> + 1) = TP •	256 = Tad						
	•									
	00000010 = -	TP • (ADCS<7:	0> + 1) = TP •	3 = TAD						
	0000001 =	TP • (ADCS<7: TP • (ADCS<7:	0> + 1) = TP •	2 = Tad						
	•	d if SSRC<2:0> if ADRC (AD10	•	,	nd SSRCG (AD	1CON1<4>) =	0.			


REGISTER 23-3: AD1CON3: ADC1 CONTROL REGISTER 3

DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	—	—	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

DIL 10-12	Uninpienenteu. Reau as 0
bit 11-8	SELSRCC<3:0>: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = PTGO19
	1100 = PTGO18
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved
	0111 = Reserved
	0110 = Reserved
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4
bit 7-4	1111 = FLT4 1110 = FLT2
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0101 = PWM3H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0110 = PWM3H 0100 = PWM3L 0011 = PWM2H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0110 = PWM3H 0100 = PWM3L 0011 = PWM2H

NOTES:

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 27-1: DEVID: DEVICE ID REGISTER

	R = Read-Only bit			U = Unimplem			
bit 7							bit 0
			DEVID	<7:0> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 15							bit 8
			DEVID<	15:8> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 23							bit 16
			DEVID<2	23:16>(1)			
R	R	R	R	R	R	R	R

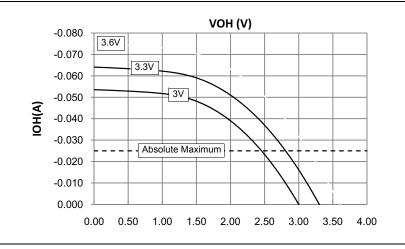
bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

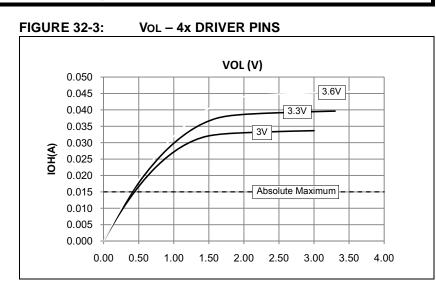
Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV	<23:16> ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVREV	<15:8>(1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE\	/<7:0> ⁽¹⁾			
bit 7							bit 0
Legend: R =	Read-only bit			U = Unimplem	nented bit		

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾


Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device revision values.


32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

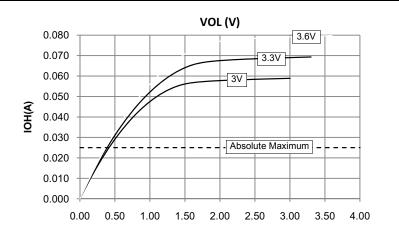

FIGURE 32-1: VOH – 4x DRIVER PINS VOH (V) -0.050 -0.045 3.6V -0.040 3.3V -0.035 3V -0.030 IOH(A) -0.025 -0.020 Absolute Maximum -0.015 -0.010 -0.005 0.000 0.50 1.00 2.00 2.50 3.00 3.50 0.00 1.50 4.00

FIGURE 32-2: VOH – 8x DRIVER PINS

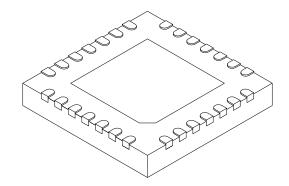


FIGURE 32-4: Vol – 8x DRIVER PINS

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.20 REF	
Overall Width	Е		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.70
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2

TABLE A-1:MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss and added Note 5 in Absolute Maximum Ratings ⁽¹⁾ .
	Removed Parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4).
	Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-6).
	Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7).
	Changed the Typical values for Parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8).
	Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9).
	Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12).
	Updated Parameters CM20 and CM31, and added Parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated Internal FRC Accuracy Parameter F20a (see Table 30-21).
	Updated the Typical value and Units for Parameter CTMUI1, and added Parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).
Section 31.0 "Packaging Information"	Updated packages by replacing references of VLAP with TLA.
"Product Identification System"	Changed VLAP to TLA.