

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                             |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 70 MIPs                                                                           |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                      |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT                     |
| Number of I/O              | 53                                                                                |
| Program Memory Size        | 512KB (170K x 24)                                                                 |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 24K x 16                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                         |
| Data Converters            | A/D 16x10b/12b                                                                    |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 64-VFQFN Exposed Pad                                                              |
| Supplier Device Package    | 64-VQFN (9x9)                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc506t-i-mr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### **Pin Diagrams (Continued)**



### **Pin Diagrams (Continued)**







## 2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB<sup>®</sup> PICkit<sup>™</sup> 3, MPLAB ICD 3, or MPLAB REAL ICE<sup>™</sup>.

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB<sup>®</sup> ICD 3" (poster) DS51765
- "MPLAB<sup>®</sup> ICD 3 Design Advisory" DS51764
- "MPLAB<sup>®</sup> REAL ICE<sup>™</sup> In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB<sup>®</sup> REAL ICE™ In-Circuit Emulator" (poster) DS51749

### 2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.



#### SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT



# 3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

# 3.1 Registers

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

# 3.2 Instruction Set

The instruction set for dsPIC33EPXXXGP50X and dsPIC33EPXXXMC20X/50X devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The instruction set for PIC24EPXXXGP/MC20X devices has the MCU class of instructions only and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

## 3.3 Data Space Addressing

The base Data Space can be addressed as 64 Kbytes (32K words).

The Data Space includes two ranges of memory, referred to as X and Y data memory. Each memory range is accessible through its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Spaces have memory locations that are device-specific, and are described further in the data memory maps in **Section 4.2 "Data Address Space"**.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 32-Kbyte aligned program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to the "**Data Memory**" (DS70595) and "**Program Memory**" (DS70613) sections in the "*dsPIC33/PIC24 Family Reference Manual*" for more details on EDS, PSV and table accesses.

On the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms. PIC24EPXXXGP/MC20X devices do not support Modulo and Bit-Reversed Addressing.

# 3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- · Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

### TABLE 4-37: PMD REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7  | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0 | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|--------|--------|-------|-------|--------|-------|-------|--------|--------|--------|--------|-------|---------------|
| PMD1         | 0760  | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | -      | -     | -     | I2C1MD | U2MD  | U1MD  | SPI2MD | SPI1MD | —      | —      | AD1MD | 0000          |
| PMD2         | 0762  | _      | _      | —      | _      | IC4MD  | IC3MD  | IC2MD | IC1MD | _      | _     | _     | -      | OC4MD  | OC3MD  | OC2MD  | OC1MD | 0000          |
| PMD3         | 0764  | _      | _      | _      | _      | _      | CMPMD  | _     | _     | CRCMD  | _     | _     | _      | _      | _      | I2C2MD | _     | 0000          |
| PMD4         | 0766  | _      | _      | _      | _      | _      | _      | _     | _     | _      | _     | _     | _      | REFOMD | CTMUMD | _      | _     | 0000          |
| PMD6         | 076A  | _      | _      | _      | _      | _      | _      | _     | _     | _      | _     | _     | _      | _      | _      | _      | _     | 0000          |
|              |       |        |        |        |        |        |        |       |       |        |       |       | DMA0MD |        |        |        |       |               |
|              | 0760  |        |        |        |        |        |        |       |       |        |       |       | DMA1MD | DTCMD  |        |        |       | 0000          |
| PIVID7       | 0760  | _      | _      | _      | _      | _      | _      | _     | _     | _      | _     | _     | DMA2MD | PIGMD  | _      | _      | _     | 0000          |
|              |       |        |        |        |        |        |        |       |       |        |       |       | DMA3MD |        |        |        |       |               |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-38: PMD REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0 | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|-------|---------------|
| PMD1         | 0760  | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  | _      | I2C1MD | U2MD  | U1MD  | SPI2MD | SPI1MD | _      | _      | AD1MD | 0000          |
| PMD2         | 0762  | _      | —      | —      | —      | IC4MD  | IC3MD  | IC2MD  | IC1MD  | —      | _     | —     |        | OC4MD  | OC3MD  | OC2MD  | OC1MD | 0000          |
| PMD3         | 0764  | _      | _      | _      | _      | _      | CMPMD  | _      | _      | CRCMD  | _     | _     | _      | _      | _      | I2C2MD | _     | 0000          |
| PMD4         | 0766  | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     | _     | _      | REFOMD | CTMUMD | _      | _     | 0000          |
| PMD6         | 076A  | _      | _      | _      | _      | _      | PWM3MD | PWM2MD | PWM1MD | _      | _     | _     | _      | _      | _      | _      | _     | 0000          |
|              |       |        |        |        |        |        |        |        |        |        |       |       | DMA0MD |        |        |        |       |               |
|              | 0760  |        |        |        |        |        |        |        |        |        |       |       | DMA1MD | DTCMD  |        |        |       | 0000          |
| FIND         | 0700  | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     | _     | DMA2MD | FIGND  | _      | _      |       | 0000          |
|              |       |        |        |        |        |        |        |        |        |        |       |       | DMA3MD |        |        |        |       | 1             |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| R/W-0                  | R/W-0                        | R/W-0                            | R/W-0                             | R/W-0                   | R/W-0                 | R/W-0                | R/W-0                |
|------------------------|------------------------------|----------------------------------|-----------------------------------|-------------------------|-----------------------|----------------------|----------------------|
| NSTDIS                 | OVAERR <sup>(1)</sup>        | OVBERR <sup>(1)</sup>            | COVAERR <sup>(1)</sup>            | COVBERR <sup>(1)</sup>  | OVATE <sup>(1)</sup>  | OVBTE <sup>(1)</sup> | COVTE <sup>(1)</sup> |
| bit 15                 |                              |                                  |                                   |                         |                       |                      | bit 8                |
| r                      |                              |                                  |                                   |                         |                       |                      |                      |
| R/W-0                  | R/W-0                        | R/W-0                            | R/W-0                             | R/W-0                   | R/W-0                 | R/W-0                | U-0                  |
| SFTACERR <sup>(1</sup> | ) DIV0ERR                    | DMACERR                          | MATHERR                           | ADDRERR                 | STKERR                | OSCFAIL              | —                    |
| bit 7                  |                              |                                  |                                   |                         |                       |                      | bit 0                |
| [                      |                              |                                  |                                   |                         |                       |                      |                      |
| Legend:                |                              |                                  |                                   |                         |                       |                      |                      |
| R = Readable           | bit                          | W = Writable                     | bit                               | U = Unimpleme           | ented bit, read a     | as '0'               |                      |
| -n = Value at I        | POR                          | '1' = Bit is set                 |                                   | '0' = Bit is clea       | red                   | x = Bit is unk       | nown                 |
|                        |                              |                                  |                                   |                         |                       |                      |                      |
| bit 15                 | NSTDIS: Inte                 | errupt Nesting                   | Disable bit                       |                         |                       |                      |                      |
|                        | $\perp$ = Interrupt          | nesting is disa                  | ibled                             |                         |                       |                      |                      |
| bit 14                 | OVAFRR: A                    | ccumulator A (                   | Overflow Trap F                   | lag bit(1)              |                       |                      |                      |
| 2                      | 1 = Trap was                 | s caused by ov                   | erflow of Accur                   | nulator A               |                       |                      |                      |
|                        | 0 = Trap was                 | s not caused b                   | y overflow of A                   | ccumulator A            |                       |                      |                      |
| bit 13                 | OVBERR: A                    | ccumulator B (                   | Overflow Trap F                   | lag bit <sup>(1)</sup>  |                       |                      |                      |
|                        | 1 = Trap was                 | s caused by ow                   | erflow of Accur                   | nulator B               |                       |                      |                      |
|                        | 0 = Irap was                 | s not caused b                   | y overflow of A                   | ccumulator B            | (1)                   |                      |                      |
| bit 12                 | COVAERR:                     | Accumulator A                    | Catastrophic (                    | Jverflow Trap FI        | ag bit("              |                      |                      |
|                        | 1 = Trap was<br>0 = Trap was | s not caused by ca               | v catastrophic over               | overflow of Accu        | mulator A             |                      |                      |
| bit 11                 | COVBERR:                     | Accumulator E                    | Catastrophic (                    | Overflow Trap Fl        | ag bit <sup>(1)</sup> |                      |                      |
|                        | 1 = Trap was                 | s caused by ca                   | tastrophic over                   | flow of Accumul         | ator B                |                      |                      |
|                        | 0 = Trap was                 | s not caused b                   | y catastrophic o                  | overflow of Accu        | mulator B             |                      |                      |
| bit 10                 | OVATE: Acc                   | umulator A Ov                    | erflow Trap En                    | able bit <sup>(1)</sup> |                       |                      |                      |
|                        | 1 = Trap ove                 | rflow of Accun                   | nulator A                         |                         |                       |                      |                      |
| hit 0                  |                              |                                  | orflow Tran En                    | able bit(1)             |                       |                      |                      |
| DIL 9                  | 1 = Tran ove                 | rflow of Accun                   | nulator B                         |                         |                       |                      |                      |
|                        | 0 = Trap is d                | isabled                          |                                   |                         |                       |                      |                      |
| bit 8                  | COVTE: Cat                   | astrophic Ove                    | rflow Trap Enat                   | ole bit <sup>(1)</sup>  |                       |                      |                      |
|                        | 1 = Trap on o                | catastrophic ov                  | erflow of Accu                    | mulator A or B is       | s enabled             |                      |                      |
|                        | 0 = Trap is d                | isabled                          |                                   |                         |                       |                      |                      |
| bit 7                  | SFTACERR:                    | Shift Accumu                     | lator Error Statu                 | us bit <sup>(1)</sup>   |                       |                      |                      |
|                        | 1 = Math erro                | or trap was ca<br>or trap was po | used by an inva<br>t caused by an | alid accumulator        | shift<br>ator shift   |                      |                      |
| bit 6                  |                              | ivide-hv-Zero                    | Error Status bit                  |                         |                       |                      |                      |
| bit o                  | 1 = Math erro                | or trap was ca                   | used by a divide                  | e-bv-zero               |                       |                      |                      |
|                        | 0 = Math erro                | or trap was no                   | t caused by a d                   | ivide-by-zero           |                       |                      |                      |
| bit 5                  | DMACERR:                     | DMAC Trap F                      | lag bit                           |                         |                       |                      |                      |
|                        | 1 = DMAC tr                  | ap has occurre                   | ed                                |                         |                       |                      |                      |
|                        | 0 = DMAC tr                  | ap has not occ                   | curred                            |                         |                       |                      |                      |
| Note 1: The            | ese bits are ava             | ailable on dsPl                  | C33EPXXXMC                        | 20X/50X and de          | PIC33EPXXX            | GP50X devices        | s only.              |

### REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

| Peripheral Pin<br>Select Input<br>Register Value | Input/<br>Output | Pin Assignment | Peripheral Pin<br>Select Input<br>Register Value | Input/<br>Output | Pin Assignment |
|--------------------------------------------------|------------------|----------------|--------------------------------------------------|------------------|----------------|
| 010 1000                                         | I/O              | RP40           | 101 0101                                         | —                |                |
| 010 1001                                         | I/O              | RP41           | 101 0110                                         | —                | —              |
| 010 1010                                         | I/O              | RP42           | 101 0111                                         |                  | —              |
| 010 1011                                         | I/O              | RP43           | 101 1000                                         |                  | —              |
| 010 1100                                         | I                | RPI44          | 101 1001                                         | —                | —              |
| 101 1010                                         | —                | —              | 110 1101                                         |                  | —              |
| 101 1011                                         |                  |                | 110 1110                                         |                  | —              |
| 101 1100                                         | _                |                | 110 1111                                         |                  | —              |
| 101 1101                                         | —                | —              | 111 0000                                         |                  | —              |
| 101 1110                                         | Ι                | RPI94          | 111 0001                                         |                  | —              |
| 101 1111                                         | I                | RPI95          | 111 0010                                         | —                | —              |
| 110 0000                                         | I                | RPI96          | 111 0011                                         | _                | —              |
| 110 0001                                         | I/O              | RP97           | 111 0100                                         | —                | —              |
| 110 0010                                         | —                | —              | 111 0101                                         | —                | —              |
| 110 0011                                         | _                |                | 111 0110                                         | I/O              | RP118          |
| 110 0100                                         | —                | —              | 111 0111                                         | Ι                | RPI119         |
| 110 0101                                         |                  | _              | 111 1000                                         | I/O              | RP120          |
| 110 0110                                         |                  | _              | 111 1001                                         | I                | RPI121         |
| 110 0111                                         | _                | _              | 111 1010                                         | —                | _              |
| 110 1000                                         | —                |                | 111 1011                                         | —                | <u> </u>       |
| 110 1001                                         | _                | _              | 111 1100                                         |                  | _              |
| 110 1010                                         | —                | _              | 111 1101                                         | —                | —              |
| 110 1011                                         | —                |                | 111 1110                                         | —                | <u> </u>       |
| 110 1100                                         | —                |                | 111 1111                                         | —                | _              |

### TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X





#### FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

| ·               |                                 |                                      |                            |                                |                      |                 |        |
|-----------------|---------------------------------|--------------------------------------|----------------------------|--------------------------------|----------------------|-----------------|--------|
| R/W-1           | R/W-1                           | R/W-0                                | R/W-0                      | R/W-0                          | R/W-0                | R/W-0           | R/W-0  |
| PENH            | PENL                            | POLH                                 | POLL                       | PMOD1 <sup>(1)</sup>           | PMOD0 <sup>(1)</sup> | OVRENH          | OVRENL |
| bit 15          |                                 |                                      |                            |                                |                      |                 | bit 8  |
|                 |                                 |                                      |                            |                                |                      |                 |        |
| R/W-0           | R/W-0                           | R/W-0                                | R/W-0                      | R/W-0                          | R/W-0                | R/W-0           | R/W-0  |
| OVRDAT1         | OVRDAT0                         | FLTDAT1                              | FLTDAT0                    | CLDAT1                         | CLDAT0               | SWAP            | OSYNC  |
| bit 7           |                                 |                                      |                            |                                |                      |                 | bit 0  |
|                 |                                 |                                      |                            |                                |                      |                 |        |
| Legend:         |                                 |                                      |                            |                                |                      |                 |        |
| R = Readable    | bit                             | W = Writable                         | bit                        | U = Unimplei                   | mented bit, read     | l as '0'        |        |
| -n = Value at F | POR                             | '1' = Bit is set                     |                            | '0' = Bit is cle               | eared                | x = Bit is unkr | nown   |
|                 |                                 |                                      |                            |                                |                      |                 |        |
| bit 15          | PENH: PWM                       | (H Output Pin (                      | Ownership bit              |                                |                      |                 |        |
|                 | 1 = PWMx mc                     | dule controls I                      | PWMxH pin<br>WMx⊟ pin      |                                |                      |                 |        |
| hit 11          |                                 |                                      |                            |                                |                      |                 |        |
| DIL 14          | 1 = DM/Mx mc                    | a Output Pin C                       |                            |                                |                      |                 |        |
|                 | 1 = PWWX IIIC<br>0 = GPIO model | dule controls P                      | WMxL pin                   |                                |                      |                 |        |
| hit 13          |                                 | H Output Pin I                       | Polarity bit               |                                |                      |                 |        |
|                 | 1 = PWMxH r                     | in is active-low                     | /                          |                                |                      |                 |        |
|                 | 0 = PWMxH p                     | oin is active-hig                    | h                          |                                |                      |                 |        |
| bit 12          | POLL: PWMx                      | L Output Pin F                       | olarity bit                |                                |                      |                 |        |
|                 | 1 = PWMxL p                     | in is active-low                     | ,                          |                                |                      |                 |        |
|                 | 0 = PWMxL p                     | in is active-hig                     | h                          |                                |                      |                 |        |
| bit 11-10       | PMOD<1:0>:                      | PWMx # I/O P                         | in Mode bits <sup>(1</sup> | )                              |                      |                 |        |
|                 | 11 = Reserve                    | d; do not use                        |                            |                                |                      |                 |        |
|                 | 10 = PWMx I/                    | O pin pair is in                     | the Push-Pul               | I Output mode                  |                      |                 |        |
|                 | 01 = PWWx I/<br>00 = PWMx I/    | O pin pair is in<br>O pin pair is in | the Complem                | nt Output mod<br>entary Output | mode                 |                 |        |
| hit 9           | OVRENH: Ov                      | erride Enable i                      | for PWMxH P                | in bit                         | mouo                 |                 |        |
| bit o           | 1 = OVRDAT                      | <1> controls or                      | itput on PWM               | xH nin                         |                      |                 |        |
|                 | 0 = PWMx ge                     | nerator control                      | s PWMxH pin                |                                |                      |                 |        |
| bit 8           | OVRENL: Ov                      | erride Enable f                      | or PWMxL Pi                | n bit                          |                      |                 |        |
|                 | 1 = OVRDAT                      | <0> controls ou                      | Itput on PWM               | xL pin                         |                      |                 |        |
|                 | 0 = PWMx ge                     | nerator control                      | s PWMxL pin                |                                |                      |                 |        |
| bit 7-6         | OVRDAT<1:0                      | >: Data for PW                       | /MxH, PWMxl                | L Pins if Overr                | ide is Enabled b     | its             |        |
|                 | If OVERENH                      | = 1, PWMxH is                        | s driven to the            | state specifie                 | d by OVRDAT<         | 1>.             |        |
|                 | If OVERENL :                    | = 1, PWMxL is                        | driven to the              | state specified                | l by OVRDAT<0        | >.              |        |
| bit 5-4         | FLTDAT<1:0>                     | Data for PW                          | MxH and PWI                | MxL Pins if FL                 | TMOD is Enable       | ed bits         |        |
|                 | If Fault is activ               | ve, PWMxH is                         | driven to the s            | state specified                | by FLTDAT<1>         |                 |        |
| hit 2 0         |                                 | VE, FVVIVIXL IS (                    |                            |                                | UY FLIDAISUS.        | hita            |        |
| DIL 3-2         | LUAI <1:0>                      | is active DIM                        |                            | IXL PILIS IT ULN               |                      |                 |        |
|                 | If current-limit                | is active. PWN                       | /IxL is driven t           | to the state sp                | ecified by CLDA      | T<0>.           |        |
|                 |                                 |                                      |                            |                                |                      |                 |        |
| Note 1: The     | ese bits should i               | not be changed                       | d after the PW             | Mx module is                   | enabled (PTEN        | = 1).           |        |

# REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER<sup>(2)</sup>

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

| PTG Output<br>Number | PTG Output Description                                  |
|----------------------|---------------------------------------------------------|
| PTGO0                | Trigger/Synchronization Source for OC1                  |
| PTGO1                | Trigger/Synchronization Source for OC2                  |
| PTGO2                | Trigger/Synchronization Source for OC3                  |
| PTGO3                | Trigger/Synchronization Source for OC4                  |
| PTGO4                | Clock Source for OC1                                    |
| PTGO5                | Clock Source for OC2                                    |
| PTGO6                | Clock Source for OC3                                    |
| PTGO7                | Clock Source for OC4                                    |
| PTGO8                | Trigger/Synchronization Source for IC1                  |
| PTGO9                | Trigger/Synchronization Source for IC2                  |
| PTGO10               | Trigger/Synchronization Source for IC3                  |
| PTGO11               | Trigger/Synchronization Source for IC4                  |
| PTGO12               | Sample Trigger for ADC                                  |
| PTGO13               | Sample Trigger for ADC                                  |
| PTGO14               | Sample Trigger for ADC                                  |
| PTGO15               | Sample Trigger for ADC                                  |
| PTGO16               | PWM Time Base Synchronous Source for PWM <sup>(1)</sup> |
| PTGO17               | PWM Time Base Synchronous Source for PWM <sup>(1)</sup> |
| PTGO18               | Mask Input Select for Op Amp/Comparator                 |
| PTGO19               | Mask Input Select for Op Amp/Comparator                 |
| PTGO20               | Reserved                                                |
| PTGO21               | Reserved                                                |
| PTGO22               | Reserved                                                |
| PTGO23               | Reserved                                                |
| PTGO24               | Reserved                                                |
| PTGO25               | Reserved                                                |
| PTGO26               | Reserved                                                |
| PTGO27               | Reserved                                                |
| PTGO28               | Reserved                                                |
| PTGO29               | Reserved                                                |
| PTGO30               | PTG Output to PPS Input Selection                       |
| PTGO31               | PTG Output to PPS Input Selection                       |

# TABLE 24-2: PTG OUTPUT DESCRIPTIONS

Note 1: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

### 25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.

## 25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the<br>product page using the link above, enter<br>this URL in your browser: |
|-------|----------------------------------------------------------------------------------------------------------------------|
|       | http://www.microchip.com/wwwproducts/<br>Devices.aspx?dDocName=en555464                                              |

#### 25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools



#### FIGURE 25-7: OP AMP CONFIGURATION B

|                 |                                                                      |                    |                          |                  | -                        |                     |                     |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------|--------------------|--------------------------|------------------|--------------------------|---------------------|---------------------|--|--|--|--|--|
| R/W-0           | R/W-0                                                                | R/W-0              | U-0                      | U-0              | R/W-0                    | R/W-0               | R/W-0               |  |  |  |  |  |
| CON             | COE <sup>(2)</sup>                                                   | CPOL               | _                        |                  | OPMODE                   | CEVT                | COUT                |  |  |  |  |  |
| bit 15          |                                                                      |                    |                          |                  |                          | •                   | bit 8               |  |  |  |  |  |
|                 |                                                                      |                    |                          |                  |                          |                     |                     |  |  |  |  |  |
| R/W-0           | R/W-0                                                                | U-0                | R/W-0                    | U-0              | U-0                      | R/W-0               | R/W-0               |  |  |  |  |  |
| EVPOL1          | EVPOL0                                                               |                    | CREF <sup>(1)</sup>      | —                | _                        | CCH1 <sup>(1)</sup> | CCH0 <sup>(1)</sup> |  |  |  |  |  |
| bit 7           |                                                                      |                    |                          |                  |                          |                     | bit 0               |  |  |  |  |  |
|                 |                                                                      |                    |                          |                  |                          |                     |                     |  |  |  |  |  |
| Legend:         |                                                                      |                    |                          |                  |                          |                     |                     |  |  |  |  |  |
| R = Readable    | R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |                    |                          |                  |                          |                     |                     |  |  |  |  |  |
| -n = Value at I | POR                                                                  | '1' = Bit is set   |                          | '0' = Bit is cle | eared                    | x = Bit is unkr     | IOWN                |  |  |  |  |  |
| bit 1E          |                                                                      | n/Comporator       | Enabla bit               |                  |                          |                     |                     |  |  |  |  |  |
| DIL 15          |                                                                      | ip/Comparator is e |                          |                  |                          |                     |                     |  |  |  |  |  |
|                 | 0 = Op amp/o                                                         | comparator is d    | lisabled                 |                  |                          |                     |                     |  |  |  |  |  |
| bit 14          | COE: Compa                                                           | arator Output E    | nable bit <sup>(2)</sup> |                  |                          |                     |                     |  |  |  |  |  |
|                 | 1 = Compara                                                          | itor output is pr  | esent on the C           | xOUT pin         |                          |                     |                     |  |  |  |  |  |
|                 | 0 = Compara                                                          | itor output is int | ernal only               |                  |                          |                     |                     |  |  |  |  |  |
| bit 13          | CPOL: Comp                                                           | parator Output     | Polarity Select          | bit              |                          |                     |                     |  |  |  |  |  |
|                 | 1 = Compara                                                          | tor output is inv  | verted                   |                  |                          |                     |                     |  |  |  |  |  |
| h: 40 44        | 0 = Compara                                                          | itor output is no  | o, inverted              |                  |                          |                     |                     |  |  |  |  |  |
|                 |                                                                      | ited: Read as      | 0<br>                    | - Maria Oalart   |                          |                     |                     |  |  |  |  |  |
| DIT 10          |                                                                      | p Amp/Compa        | rator Operation          | n Mode Select    | DIT                      |                     |                     |  |  |  |  |  |
|                 | 1 = Circuit op<br>0 = Circuit op                                     | perates as an o    | p amp<br>mparator        |                  |                          |                     |                     |  |  |  |  |  |
| bit 9           | CEVT: Comp                                                           | arator Event bi    | t                        |                  |                          |                     |                     |  |  |  |  |  |
|                 | 1 = Compara                                                          | ator event acco    | ording to the E          | VPOL<1:0> se     | ettings occurred         | ; disables futur    | e triggers and      |  |  |  |  |  |
|                 | interrupt                                                            | s until the bit is | cleared                  |                  |                          |                     |                     |  |  |  |  |  |
|                 | 0 = Compara                                                          | ator event did n   | ot occur                 |                  |                          |                     |                     |  |  |  |  |  |
| bit 8           | COUT: Comp                                                           | parator Output I   | oit                      |                  |                          |                     |                     |  |  |  |  |  |
|                 | <u>When CPOL</u><br>1 = Vin + > Vi                                   |                    | ed polarity):            |                  |                          |                     |                     |  |  |  |  |  |
|                 | 0 = VIN + < VI                                                       | IN-                |                          |                  |                          |                     |                     |  |  |  |  |  |
|                 | When CPOL                                                            | = 1 (inverted p    | olarity):                |                  |                          |                     |                     |  |  |  |  |  |
|                 | 1 = VIN+ < VI                                                        | N-                 |                          |                  |                          |                     |                     |  |  |  |  |  |
|                 | 0 = VIN + > VI                                                       | N-                 |                          |                  |                          |                     |                     |  |  |  |  |  |
| Note 1. Inn     | uts that are sel                                                     | ected and not a    | vailable will be         | tied to Vss. S   | See the " <b>Pin Dia</b> | arams" section      | n for available     |  |  |  |  |  |

### **REGISTER 25-2:** CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3)

- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
  - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

| Base<br>Instr<br># | Assembly<br>Mnemonic |                    | Assembly Syntax    | Description                              | # of<br>Words | # of<br>Cycles <sup>(2)</sup> | Status Flags<br>Affected |
|--------------------|----------------------|--------------------|--------------------|------------------------------------------|---------------|-------------------------------|--------------------------|
| 1                  | ADD                  | ADD                | Acc <sup>(1)</sup> | Add Accumulators                         | 1             | 1                             | OA,OB,SA,SB              |
|                    |                      | ADD                | f                  | f = f + WREG                             | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADD                | f,WREG             | WREG = f + WREG                          | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADD                | #lit10,Wn          | Wd = lit10 + Wd                          | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADD Wb, Ws, Wd     |                    | Wd = Wb + Ws                             | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADD Wb,#lit5,Wd    |                    | Wd = Wb + lit5                           | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADD Wso,#Slit4,Acc |                    | 16-bit Signed Add to Accumulator         | 1             | 1                             | OA,OB,SA,SB              |
| 2                  | ADDC                 | ADDC               | f                  | f = f + WREG + (C)                       | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADDC               | f,WREG             | WREG = f + WREG + (C)                    | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADDC               | #lit10,Wn          | Wd = lit10 + Wd + (C)                    | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADDC               | Wb,Ws,Wd           | Wd = Wb + Ws + (C)                       | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADDC               | Wb,#lit5,Wd        | Wd = Wb + lit5 + (C)                     | 1             | 1                             | C,DC,N,OV,Z              |
| 3                  | AND                  | AND                | f                  | f = f .AND. WREG                         | 1             | 1                             | N,Z                      |
|                    |                      | AND                | f,WREG             | WREG = f .AND. WREG                      | 1             | 1                             | N,Z                      |
|                    |                      | AND                | #lit10,Wn          | Wd = lit10 .AND. Wd                      | 1             | 1                             | N,Z                      |
|                    |                      | AND                | Wb,Ws,Wd           | Wd = Wb .AND. Ws                         | 1             | 1                             | N,Z                      |
|                    |                      | AND                | Wb,#lit5,Wd        | Wd = Wb .AND. lit5                       | 1             | 1                             | N,Z                      |
| 4                  | ASR                  | ASR                | f                  | f = Arithmetic Right Shift f             | 1             | 1                             | C,N,OV,Z                 |
|                    |                      | ASR                | f,WREG             | WREG = Arithmetic Right Shift f          | 1             | 1                             | C,N,OV,Z                 |
|                    |                      | ASR                | Ws,Wd              | Wd = Arithmetic Right Shift Ws           | 1             | 1                             | C,N,OV,Z                 |
|                    |                      | ASR                | Wb,Wns,Wnd         | Wnd = Arithmetic Right Shift Wb by Wns   | 1             | 1                             | N,Z                      |
|                    |                      | ASR                | Wb,#lit5,Wnd       | Wnd = Arithmetic Right Shift Wb by lit5  | 1             | 1                             | N,Z                      |
| 5                  | BCLR                 | BCLR               | f,#bit4            | Bit Clear f                              | 1             | 1                             | None                     |
|                    |                      | BCLR               | Ws,#bit4           | Bit Clear Ws                             | 1             | 1                             | None                     |
| 6                  | BRA                  | BRA                | C,Expr             | Branch if Carry                          | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | GE, Expr           | Branch if greater than or equal          | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | GEU, Expr          | Branch if unsigned greater than or equal | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | GT, Expr           | Branch if greater than                   | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | GTU, Expr          | Branch if unsigned greater than          | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | LE, Expr           | Branch if less than or equal             | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | LEU, Expr          | Branch if unsigned less than or equal    | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | LT,Expr            | Branch if less than                      | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | LTU, Expr          | Branch if unsigned less than             | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | N,Expr             | Branch if Negative                       | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | NC, Expr           | Branch if Not Carry                      | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | NN, Expr           | Branch if Not Negative                   | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | NOV, Expr          | Branch if Not Overflow                   | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | NZ,Expr            | Branch if Not Zero                       | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | OA, Expr(1)        | Branch if Accumulator A overflow         | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | OB, Expr(1)        | Branch if Accumulator B overflow         | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | OV, Expr(1)        | Branch if Overflow                       | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | SA, Expr(1)        | Branch if Accumulator A saturated        | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | SB, Expr(1)        | Branch if Accumulator B saturated        | 1             | 1 (4)                         | None                     |
|                    |                      | BRA                | Expr               | Branch Unconditionally                   | 1             | 4                             | None                     |
|                    |                      | BRA                | Z,Expr             | Branch if Zero                           | 1             | 1 (4)                         | None                     |
| L                  |                      | BRA                | Wn                 | Computed Branch                          | 1             | 4                             | None                     |
| 7                  | BSET                 | BSET               | f,#bit4            | Bit Set f                                | 1             | 1                             | None                     |
|                    |                      | BSET               | Ws,#bit4           | Bit Set Ws                               | 1             | 1                             | None                     |
| 8                  | BSW                  | BSW.C              | Ws,Wb              | Write C bit to Ws <wb></wb>              | 1             | 1                             | None                     |
|                    |                      | BSW.Z              | Ws,Wb              | Write Z bit to Ws <wb></wb>              | 1             | 1                             | None                     |

### TABLE 28-2: INSTRUCTION SET OVERVIEW

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| DC CHARACT       | ERISTICS                  |      | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |                 |              |           |  |  |  |  |
|------------------|---------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-----------|--|--|--|--|
| Parameter<br>No. | Тур.                      | Max. | Units                                                                                                                                                                                                                                                                                   | nits Conditions |              |           |  |  |  |  |
| Operating Cur    | rent (IDD) <sup>(1)</sup> |      |                                                                                                                                                                                                                                                                                         |                 |              |           |  |  |  |  |
| DC20d            | 9                         | 15   | mA                                                                                                                                                                                                                                                                                      | -40°C           |              |           |  |  |  |  |
| DC20a            | 9                         | 15   | mA                                                                                                                                                                                                                                                                                      | +25°C           | 3 3\/        |           |  |  |  |  |
| DC20b            | 9                         | 15   | mA                                                                                                                                                                                                                                                                                      | +85°C           | 3.5 V        | 10 1011-5 |  |  |  |  |
| DC20c            | 9                         | 15   | mA                                                                                                                                                                                                                                                                                      | +125°C          |              |           |  |  |  |  |
| DC22d            | 16                        | 25   | mA                                                                                                                                                                                                                                                                                      | -40°C           |              |           |  |  |  |  |
| DC22a            | 16                        | 25   | mA                                                                                                                                                                                                                                                                                      | +25°C           | 2 2)/        |           |  |  |  |  |
| DC22b            | 16                        | 25   | mA                                                                                                                                                                                                                                                                                      | +85°C           | 3.3V         | 20 MIF 3  |  |  |  |  |
| DC22c            | 16                        | 25   | mA                                                                                                                                                                                                                                                                                      | +125°C          |              |           |  |  |  |  |
| DC24d            | 27                        | 40   | mA                                                                                                                                                                                                                                                                                      | -40°C           |              |           |  |  |  |  |
| DC24a            | 27                        | 40   | mA                                                                                                                                                                                                                                                                                      | +25°C           | 2 2)/        |           |  |  |  |  |
| DC24b            | 27                        | 40   | mA                                                                                                                                                                                                                                                                                      | +85°C           | 3.3V         | 40 101175 |  |  |  |  |
| DC24c            | 27                        | 40   | mA                                                                                                                                                                                                                                                                                      | +125°C          |              |           |  |  |  |  |
| DC25d            | 36                        | 55   | mA                                                                                                                                                                                                                                                                                      | -40°C           |              |           |  |  |  |  |
| DC25a            | 36                        | 55   | mA                                                                                                                                                                                                                                                                                      | +25°C           | 2.21/        |           |  |  |  |  |
| DC25b            | 36                        | 55   | mA                                                                                                                                                                                                                                                                                      | +85°C           | 3.3V         | 60 MIPS   |  |  |  |  |
| DC25c            | 36                        | 55   | mA                                                                                                                                                                                                                                                                                      | +125°C          |              |           |  |  |  |  |
| DC26d            | 41                        | 60   | mA                                                                                                                                                                                                                                                                                      | -40°C           |              |           |  |  |  |  |
| DC26a            | 41                        | 60   | mA                                                                                                                                                                                                                                                                                      | +25°C           | 3.3V 70 MIPS |           |  |  |  |  |
| DC26b            | 41                        | 60   | mA                                                                                                                                                                                                                                                                                      | +85°C           | 7            |           |  |  |  |  |

#### TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

**Note 1:** IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) {NOP(); } statement
- · JTAG is disabled



#### FIGURE 30-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

## TABLE 30-32: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

| AC CHA       | RACTERI | STICS                                                               | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |      |       |                                                         |  |  |  |
|--------------|---------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|---------------------------------------------------------|--|--|--|
| Param<br>No. | Symbol  | Characteristic <sup>(1)</sup>                                       | Min.                                                                                                                                                                                                                                                                                | Max. | Units | Conditions                                              |  |  |  |
| TQ50         | TqiL    | Filter Time to Recognize Low,<br>with Digital Filter                | 3 * N * Tcy                                                                                                                                                                                                                                                                         | _    | ns    | N = 1, 2, 4, 16, 32, 64,<br>128 and 256 <b>(Note 2)</b> |  |  |  |
| TQ51         | TqiH    | Filter Time to Recognize High, with Digital Filter                  | 3 * N * Tcy                                                                                                                                                                                                                                                                         | —    | ns    | N = 1, 2, 4, 16, 32, 64,<br>128 and 256 <b>(Note 2)</b> |  |  |  |
| TQ55         | Tqidxr  | Index Pulse Recognized to Position<br>Counter Reset (ungated index) | 3 TCY                                                                                                                                                                                                                                                                               | —    | ns    |                                                         |  |  |  |

**Note 1:** These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on the falling edge.

| AC CHARA             | CTERISTICS                               |                                                                                                       | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |     |     |     |  |
|----------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|--|
| Maximum<br>Data Rate | Master<br>Transmit Only<br>(Half-Duplex) | MasterMasterSlaveTransmit OnlyTransmit/ReceiveTransmit/Receive(Half-Duplex)(Full-Duplex)(Full-Duplex) |                                                                                                                                                                                                                                                                                   | CKE | СКР | SMP |  |
| 15 MHz               | Table 30-42                              |                                                                                                       |                                                                                                                                                                                                                                                                                   | 0,1 | 0,1 | 0,1 |  |
| 10 MHz               | —                                        | Table 30-43                                                                                           | —                                                                                                                                                                                                                                                                                 | 1   | 0,1 | 1   |  |
| 10 MHz               | —                                        | Table 30-44                                                                                           | —                                                                                                                                                                                                                                                                                 | 0   | 0,1 | 1   |  |
| 15 MHz               | —                                        | —                                                                                                     | Table 30-45                                                                                                                                                                                                                                                                       | 1   | 0   | 0   |  |
| 11 MHz               | —                                        | —                                                                                                     | Table 30-46                                                                                                                                                                                                                                                                       | 1   | 1   | 0   |  |
| 15 MHz               | _                                        | _                                                                                                     | Table 30-47                                                                                                                                                                                                                                                                       | 0   | 1   | 0   |  |
| 11 MHz               | _                                        | _                                                                                                     | Table 30-48                                                                                                                                                                                                                                                                       | 0   | 0   | 0   |  |

### TABLE 30-41: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

## FIGURE 30-22: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS



| DC CHARACTERISTICS |                               |                                                      | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)(1)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |                     |      |        |                                                    |  |
|--------------------|-------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|--------|----------------------------------------------------|--|
|                    |                               |                                                      | -40°C $\leq$ TA $\leq$ +125°C for Extended                                                                                                         |                     |      |        |                                                    |  |
| Param<br>No.       | Symbol                        | Characteristic                                       | Min.                                                                                                                                               | Тур. <sup>(2)</sup> | Max. | Units  | Conditions                                         |  |
| Compa              | Comparator AC Characteristics |                                                      |                                                                                                                                                    |                     |      |        |                                                    |  |
| CM10               | Tresp                         | Response Time <sup>(3)</sup>                         | _                                                                                                                                                  | 19                  | _    | ns     | V+ input step of 100 mV,<br>V- input held at VDD/2 |  |
| CM11               | Тмс2о∨                        | Comparator Mode<br>Change to Output Valid            |                                                                                                                                                    | _                   | 10   | μs     |                                                    |  |
| Compa              | rator DC Ch                   | naracteristics                                       |                                                                                                                                                    |                     |      |        |                                                    |  |
| CM30               | VOFFSET                       | Comparator Offset<br>Voltage                         | —                                                                                                                                                  | ±10                 | 40   | mV     |                                                    |  |
| CM31               | VHYST                         | Input Hysteresis<br>Voltage <sup>(3)</sup>           | _                                                                                                                                                  | 30                  | —    | mV     |                                                    |  |
| CM32               | Trise/<br>Tfall               | Comparator Output Rise/<br>Fall Time <sup>(3)</sup>  |                                                                                                                                                    | 20                  | —    | ns     | 1 pF load capacitance<br>on input                  |  |
| CM33               | Vgain                         | Open-Loop Voltage<br>Gain <sup>(3)</sup>             |                                                                                                                                                    | 90                  |      | db     |                                                    |  |
| CM34               | VICM                          | Input Common-Mode<br>Voltage                         | AVss                                                                                                                                               | —                   | AVdd | V      |                                                    |  |
| Op Am              | p AC Chara                    | cteristics                                           |                                                                                                                                                    |                     |      |        |                                                    |  |
| CM20               | SR                            | Slew Rate <sup>(3)</sup>                             | —                                                                                                                                                  | 9                   | —    | V/µs   | 10 pF load                                         |  |
| CM21a              | Рм                            | Phase Margin<br>(Configuration A) <sup>(3,4)</sup>   | _                                                                                                                                                  | 55                  | _    | Degree | G = 100V/V; 10 pF load                             |  |
| CM21b              | Рм                            | Phase Margin<br>(Configuration B) <sup>(3,5)</sup>   | _                                                                                                                                                  | 40                  | —    | Degree | G = 100V/V; 10 pF load                             |  |
| CM22               | Gм                            | Gain Margin <sup>(3)</sup>                           | _                                                                                                                                                  | 20                  | —    | db     | G = 100V/V; 10 pF load                             |  |
| CM23a              | Gвw                           | Gain Bandwidth<br>(Configuration A) <sup>(3,4)</sup> | _                                                                                                                                                  | 10                  | —    | MHz    | 10 pF load                                         |  |
| CM23b              | Gвw                           | Gain Bandwidth<br>(Configuration B) <sup>(3,5)</sup> | —                                                                                                                                                  | 6                   | —    | MHz    | 10 pF load                                         |  |

# TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.

# 33.0 PACKAGING INFORMATION

## 33.1 Package Marking Information

## 28-Lead SPDIP



#### 28-Lead SOIC (.300")



28-Lead SSOP



Example dsPIC33EP64GP 502-I/SP@3 1310017

## Example



#### Example



28-Lead QFN-S (6x6x0.9 mm)



Example



| Legend | : XXX<br>Y<br>YY<br>WW<br>NNN<br>@3<br>*                                                                                                                                                                      | Customer-specific information<br>Year code (last digit of calendar year)<br>Year code (last 2 digits of calendar year)<br>Week code (week of January 1 is week '01')<br>Alphanumeric traceability code<br>Pb-free JEDEC designator for Matte Tin (Sn)<br>This package is Pb-free. The Pb-free JEDEC designator ((e3))<br>can be found on the outer packaging for this package. |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Note:  | In the event the full Microchip part number cannot be marked on one line, it will<br>be carried over to the next line, thus limiting the number of available<br>characters for customer-specific information. |                                                                                                                                                                                                                                                                                                                                                                                |  |