

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gp502t-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

- VREF+/VREF- pins are used when external voltage reference for the ADC module is implemented
 - Note: The AVDD and AVSS pins must be connected, independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSs is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \ \mu$ F to $0.001 \ \mu$ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \ \mu$ F in parallel with $0.001 \ \mu$ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33EP32MC20X/50X AND dsPIC33EP32GP50X DEVICES

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_		_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	_		_	_	_	_	DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6					_	_			_				_	—		SGHT	0000
INTTREG	08C8						ILR<	3:0>		VECNUM<7:0>					0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-33:	: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVIC	ES ONLY
-------------	--	---------

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>	•			—							_	0000
RPINR1	06A2	_						_	INT2R<6:0>						0000			
RPINR3	06A6	_		_	_	_	_	_	—	_			-	[2CKR<6:0	>			0000
RPINR7	06AE	_				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_	—	—	—	—	_	—	_	— OCFAR<6:0>					0000		
RPINR12	06B8	_				FLT2R<6:0>	>			_				FLT1R<6:0>	>			0000
RPINR14	06BC	_			(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:0)>			_	INDX1R<6:0>						0000	
RPINR18	06C4	_	_	_	_	_	_	_	_	_	U1RXR<6:0>						0000	
RPINR19	06C6	_	_	_	_	_	_	_	—	_	U2RXR<6:0>						0000	
RPINR22	06CC	_		•	S	CK2INR<6:0)>	•	•	_				SDI2R<6:0>	>			0000
RPINR23	06CE	_					_				SS2R<6:0>				0000			
RPINR37	06EA	_	SYNCI1R<6:0>					_			_	_			0000			
RPINR38	06EC	_	DTCMP1R<6:0>				_	—	_	_	_	_	_	_	0000			
RPINR39	06EE	_		DTCMP3R<6:0>								D	CMP2R<6:	0>			0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-52: PORTG REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60			—	—	—	—	TRISG9	TRISG8	TRISG7	TRISG6				—	—		03C0
PORTG	0E62	_	_	_	_	_	_	RG9	RG8	RG7	RG6	_	_	_	_	_	_	xxxx
LATG	0E64	_	_	_	_	_	_	LATG9	LATG8	LATG7	LATG6	_	_	_	_	_	_	xxxx
ODCG	0E66			—	—	—	—	ODCG9	ODCG8	ODCG7	ODCG6				—	—		0000
CNENG	0E68	_	_	_	_	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	_	_	_	_	0000
CNPUG	0E6A	_	_	_	_	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	_	_	_	_	0000
CNPDG	0E6C	_	_	_	_	_	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_		—	—	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-2: NV	MADRH: NONVOLATILE MEMORY ADDRESS REGISTER HIGH
------------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15			•	•	•		bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAD	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADR<23:16>:** Nonvolatile Memory Write Address High bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADRL: NONVOLATILE MEMORY ADDRESS REGISTER LOW

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 NVMADR<15:0>: Nonvolatile Memory Write Address Low bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set	٤	'0' = Bit is cle	eared	x = Bit is unk	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSC<2:0> bits is loaded into NOSC<2:0> (OSCCON<10:8>) on Reset, which in turn, initializes the system clock.

NOTES:

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
Input Capture 4	IC4	RPINR8	IC4R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1 ⁽³⁾	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2 ⁽³⁾	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A ⁽³⁾	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B ⁽³⁾	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index ⁽³⁾	INDX1	RPINR15	INDX1R<6:0>
QEI1 Home ⁽³⁾	HOME1	RPINR15	HOM1R<6:0>
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
PWM Sync Input 1 ⁽³⁾	SYNCI1	RPINR37	SYNCI1R<6:0>
PWM Dead-Time Compensation 1 ⁽³⁾	DTCMP1	RPINR38	DTCMP1R<6:0>
PWM Dead-Time Compensation 2 ⁽³⁾	DTCMP2	RPINR39	DTCMP2R<6:0>
PWM Dead-Time Compensation 3(3)	DTCMP3	RPINR39	DTCMP3R<6:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input source is available on dsPIC33EPXXXGP/MC50X devices only.

3: This input source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

16.3 PWMx Control Registers

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PTEN: PWMx Module Enable bit
	 1 = PWMx module is enabled 0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	 1 = Special event interrupt is pending 0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
	0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled
L:1 7	0 = SYNCOT output is disabled
DIT /	SYNCEN: External Time Base Synchronization Enable bit
	1 = External synchronization of primary time base is enabled
	0 - External synemonization of primary time base is disabled
Note 1:	These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user
	application must program the period register with a value that is slightly larger than the expected period of

the external synchronization input signal.

2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

bit 3-0	Step Command	OPTION<3:0>	Option Description			
	PTGCTRL(1)	0000	Reserved.			
		0001	Reserved.			
		0010	Disable Step Delay Timer (PTGSD).			
		0011	Reserved.			
		0100	Reserved.			
		0101	Reserved.			
		0110	Enable Step Delay Timer (PTGSD).			
		0111	Reserved.			
		1000	Start and wait for the PTG Timer0 to match the Timer0 Limit Register.			
		1001	Start and wait for the PTG Timer1 to match the Timer1 Limit Register.			
		1010	Reserved.			
		1011	Wait for the software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1).			
		1100	Copy contents of the Counter 0 register to the AD1CHS0 register.			
		1101	Copy contents of the Counter 1 register to the AD1CHS0 register.			
		1110	Copy contents of the Literal 0 register to the AD1CHS0 register.			
		1111	Generate triggers indicated in the Broadcast Trigger Enable register (PTGBTE).			
	PTGADD(1)	0000	Add contents of the PTGADJ register to the Counter 0 Limit register (PTGC0LIM).			
		0001	Add contents of the PTGADJ register to the Counter 1 Limit register (PTGC1LIM).			
		0010	Add contents of the PTGADJ register to the Timer0 Limit register (PTGT0LIM).			
		0011	Add contents of the PTGADJ register to the Timer1 Limit register (PTGT1LIM).			
		0100	Add contents of the PTGADJ register to the Step Delay Limit register (PTGSDLIM).			
		0101	Add contents of the PTGADJ register to the Literal 0 register (PTGL0).			
		0110	Reserved.			
		0111	Reserved.			
	PTGCOPY(1)	1000	Copy contents of the PTGHOLD register to the Counter 0 Limit register (PTGC0LIM).			
		1001	Copy contents of the PTGHOLD register to the Counter 1 Limit register (PTGC1LIM).			
		1010	Copy contents of the PTGHOLD register to the Timer0 Limit register (PTGT0LIM).			
		1011	Copy contents of the PTGHOLD register to the Timer1 Limit register (PTGT1LIM).			
		1100	Copy contents of the PTGHOLD register to the Step Delay Limit register (PTGSDLIM).			
		1101	Copy contents of the PTGHOLD register to the Literal 0 register (PTGL0).			
		1110	Reserved.			
		1111	Reserved.			

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER (CONTINUED)

- C2OUT: Comparator 2 Output Status bit⁽²⁾ bit 1 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -C10UT: Comparator 1 Output Status bit⁽²⁾ bit 0 When CPOL = 0: 1 = VIN + > VIN-0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -
- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON<9>.
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON<8>.

- 29.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits
- A wide variety of demonstration, development and

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V	
DI18		I/O Pins with SDAx, SCLx	Vss	_	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled
	Vih	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant	0.8 VDD	—	Vdd	V	(Note 3)
		I/O Pins 5V Tolerant and MCLR	0.8 VDD	—	5.5	V	(Note 3)
		I/O Pins with SDAx, SCLx	0.8 VDD	—	5.5	V	SMBus disabled
		I/O Pins with SDAx, SCLx	2.1	—	5.5	V	SMBus enabled
	ICNPU	Change Notification Pull-up Current					
DI30			150	250	550	μA	VDD = 3.3V, VPIN = VSS
	ICNPD	Change Notification Pull-Down Current ⁽⁴⁾					
DI31			20	50	100	μA	VDD = 3.3V, VPIN = VDD

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (VSS 0.3). Characterized but not tested.

5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE A-1:MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description				
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss and added Note 5 in Absolute Maximum Ratings ⁽¹⁾ .				
	Removed Parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4).				
	Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-				
	Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7).				
	Changed the Typical values for Parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8).				
	Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9).				
	Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12).				
	Updated Parameters CM20 and CM31, and added Parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).				
	Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15).				
	Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).				
	Updated Internal FRC Accuracy Parameter F20a (see Table 30-21).				
	Updated the Typical value and Units for Parameter CTMUI1, and added Parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).				
Section 31.0 "Packaging Information"	Updated packages by replacing references of VLAP with TLA.				
"Product Identification System"	Changed VLAP to TLA.				