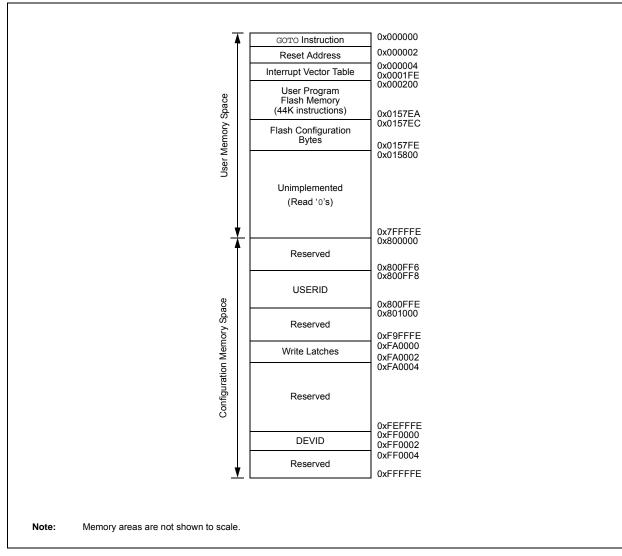


Welcome to E-XFL.COM

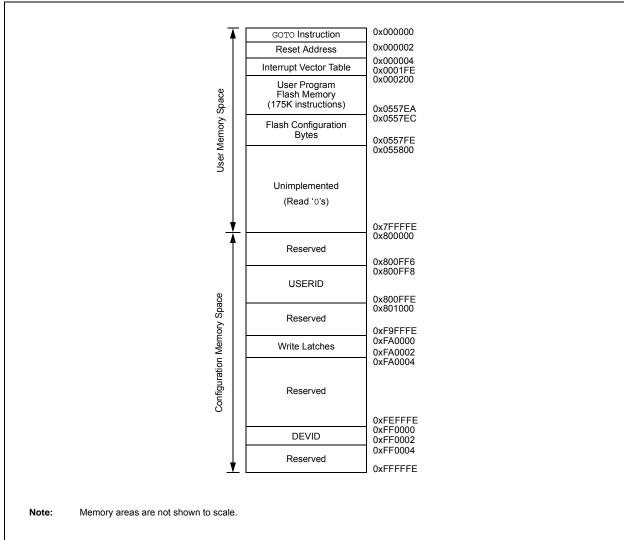
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI


Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gp502t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP128GP50X, dsPIC33EP128MC20X/50X AND PIC24EP128GP/MC20X DEVICES

FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_				—	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_		QEI1IF	PSEMIF	—	_	_	_	_	_	MI2C2IF	SI2C2IF		0000
IFS4	0808	_	_	CTMUIF				-	—	_	C1TXIF	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS5	080A	PWM2IF	PWM1IF	_					—	_	_	_	_	_	_	_	_	0000
IFS6	080C	_	_	_					—	_	_	_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_					—	_	_	_	_	_	_	_	_	0000
IFS9	0812	_	—	_	_	_			_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	-	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_		_	_	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	QEI1IE	PSEMIE	_	_	_	_	_	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	_	_	CTMUIE	_			_	_	_	C1TXIE	_	_	CRCIE	U2EIE	U1EIE		0000
IEC5	082A	PWM2IE	PWM1IE	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
IEC6	082C	_	_	_	_	_		_	_	_	_	_	_		_	_	PWM3IE	0000
IEC7	082E	_	_	_	_	_		_	_	_	_	_	_		_	_	_	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_		_	_	_	_	_	_		_	_	_	0000
IEC9	0832	_	_	_	_	_		_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0	>	_		IC1IP<2:0>		_	INT0IP<2:0>			4444
IPC1	0842	_		T2IP<2:0>		_		OC2IP<2:0	>	_		IC2IP<2:0>			DMA0IP<2:0>			4444
IPC2	0844	_	I	J1RXIP<2:0	>	_		SPI1IP<2:0)>	_		SPI1EIP<2:0	>			T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	C	MA1IP<2:	0>	_		AD1IP<2:0>				J1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_		MI2C1IP<2:0	>		5	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_		_	—	_	_	_	_			INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0	>	_		OC3IP<2:0>			[) MA2IP<2:0>		4444
IPC7	084E	_		U2TXIP<2:0	>	_	ι	J2RXIP<2:	0>	_		INT2IP<2:0>		_		T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0>		_	0	21RXIP<2:	0>	_	SPI2IP<2:0>		_	5	SPI2EIP<2:0>		4444	
IPC9	0852	_	_		_	_		IC4IP<2:0	>	_	IC3IP<2:0>		_	[DMA3IP<2:0>		0444	
IPC12	0858	_	_	_	_	_	N	MI2C2IP<2:0> —			SI2C2IP<2:0>		_	_	_	_	0440	
IPC14	085C	_	_	_	_	_	(QEI1IP<2:0> —		_		PSEMIP<2:0	>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0	>	_	U2EIP<2:0>		_		U1EIP<2:0>			<u> </u>	_		444(
IPC17	0862	_	_	_	_	_		C1TXIP<2:		_			_		0400			
IPC19	0866		_	_								L CTMUIP<2:0:			_			0040

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

DS70000657H-page 73

TABLE 4-37: PMD REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_		_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764		_	_	—	_	CMPMD	_	-	CRCMD	_				_	I2C2MD	_	0000
PMD4	0766		_	_	—	_		_	-	—	_			REFOMD	CTMUMD	_	_	0000
PMD6	076A		—		—	_		_		—	_				—	_		0000
													DMA0MD					
PMD7	076C	_			_								DMA1MD	PTGMD	_			0000
	0700	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PMD REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD		_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_		_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	—	_			PWM3MD	PWM2MD	PWM1MD	_	—	—	_		—	_		0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIVID7	0700	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

	Vector	IRQ		Inte	errupt Bit L	ocation	
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority	
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>	
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_	
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>	
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>	
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>	
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—	
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>	
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—	
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>	
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—	
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>	
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>	
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>	
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—	
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>	
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>	
Reserved	152	144	0x000134	—	_	_	
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>	
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>	
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>	
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>	
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>	
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>	
Reserved 159-245 151-245 0x000142-0x0001FE — — —							
Lowest Natural Order Priority							

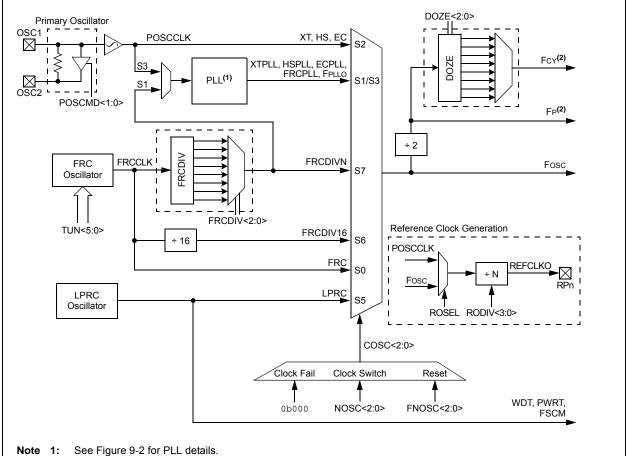
TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW			
bit 15							bit
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	0-0	AMODE1	AMODE0	0-0	0-0	MODE1	MODE0
bit 7		AWODET	7 WIODE0			MODET	bit
Lovende							
Legend: R = Readab	lo hit	M - Mritabla	hit.		monted bit rec	ud aa '0'	
		W = Writable		-	mented bit, rea		
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown
bit 15	CHEN: DMA	Channel Enabl	e bit				
	1 = Channel 0 = Channel						
bit 14		ata Transfer S	ze hit				
	1 = Byte						
	0 = Word						
bit 13	DIR: DMA Tra	ansfer Directior	n bit (source/d	estination bus	select)		
		om RAM addre om peripheral a		•			
bit 12		Block Transfer					
	1 = Initiates i	nterrupt when	half of the data	a has been mo			
bit 11		Data Periphera					
		write to periph			e (DIR bit must	also be clear)	
bit 10-6	Unimplemen	ted: Read as '	0'				
bit 5-4	AMODE<1:0	-: DMA Chann	el Addressing	Mode Select b	oits		
	11 = Reserve 10 = Periphe 01 = Register		ressing mode ut Post-Increm	nent mode			
bit 3-2	•	ted: Read as '					
bit 1-0	-	DMA Channel		de Select bits			
	11 = One-Sho 10 = Continue	ot, Ping-Pong r ous, Ping-Pong ot, Ping-Pong r	nodes are ena modes are e nodes are dis	abled (one bloc nabled abled	ck transfer fror	n/to each DMA t	ouffer)

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER


9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (DS70580) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

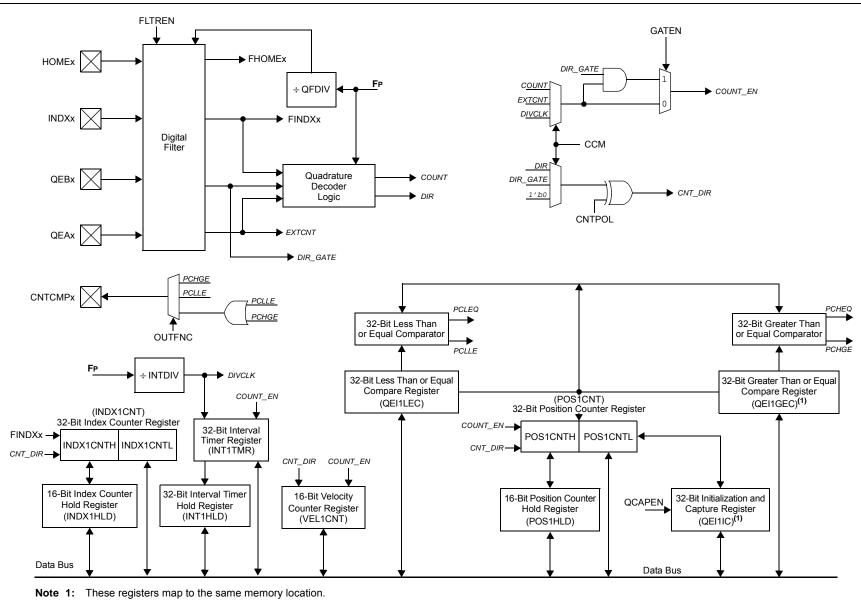
FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used with a doze ratio of 1:2 or lower.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - $\label{eq:constraint} \textbf{2:} \quad \text{This bit is cleared when the ROI bit is set and an interrupt occurs.}$
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

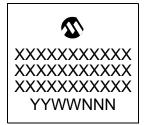
REGISTER 11-17: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)


U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DTCMP3R<6:0)>		
bit 15							bit 8
	DAMA	DAMO	DAMO	DAMO		DAALO	DAVO
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP2R<6:0)>		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		Input tied to CMI					
		Input tied to Vss					
bit 7	-	nted: Read as 'o					
bit 6-0	(see Table 1 1111001 =	6:0>: Assign PW 1-2 for input pin Input tied to RPI	selection nun 121		n Input 2 to th	ne Correspondin	g RPn Pin bits
		Input tied to CMI Input tied to Vss					

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — BCH ⁽¹⁾ BCL ⁽¹⁾ BPHH BPHL BPLL BPLL bit 7	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 BCH ⁽¹⁾ BCL ⁽¹⁾ BPHH BPHL BPLH BPLH bit 7 B Readable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Reading-Edge Blanking ignores rising edge of PWMxH	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_				
— BCH ⁽¹⁾ BCL ⁽¹⁾ BPHH BPHL BPLH BPLH BPLH bit 7	bit 15							bit			
— BCH ⁽¹⁾ BCL ⁽¹⁾ BPHH BPHL BPLH BPLH BPLH bit 7	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH bit 1 PHF: PWMxH Raling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is applied to selected Fault input 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Crurent-limit input 0 = Leading-Edge Blanking is not applied to selected crurent-limit input 0 = Leading-Edge Blanking is not applied to selected crurent-limit input 0 = Leading-Edge Blanking is not applied to selected crurent-limit input 0 = Leading-Edge Blanking is not applied to selected Crurent-limit input 0 = Leading-Edge Blanking Signal High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when PWMxH ubpt Enable bit 1 = Sta	_				1	r	1	BPLL			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PVMxH Rising Edge Trigger Enable bit 1 = Rising edge of PVMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PVMxH bit 14 PHF: PVMxH Falling Edge Trigger Enable bit 1 = Falling edge of PVMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PVMxH bit 13 PLR: PVMxL Rising Edge Trigger Enable bit 1 = Rising edge of PVMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PVMxL bit 12 PLF: PVMxL Falling Edge Trigger Enable bit 1 = Falling edge of PVMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PVMxL bit 11 FLTEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input bit 10 CLLEBEN: Current-Limit Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit 1 = Leading-Edge Blanking is inplied to selected current-limit input bit 5 BCH: Blanking in Selected Blanking signal is high 1 = State	bit 7							bit			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PVMxH Rising Edge Trigger Enable bit 1 = Rising edge of PVMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PVMxH bit 14 PHF: PVMxH Falling Edge Trigger Enable bit 1 = Falling edge of PVMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PVMxH bit 13 PLR: PVMxL Rising Edge Trigger Enable bit 1 = Rising edge of PVMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PVMxL bit 12 PLF: PVMxL Falling Edge Trigger Enable bit 1 = Falling edge of PVMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PVMxL bit 11 FLTEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input bit 10 CLLEBEN: Current-Limit Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit 1 = Leading-Edge Blanking is inplied to selected current-limit input bit 5 BCH: Blanking in Selected Blanking signal is high 1 = State	Legend:										
 PHR: PWMxH Rising Edge Trigger Enable bit I = Rising edge of PWMxH will trigger Leading-Edge Blanking counter I = Raiding-Edge Blanking ignores rising edge of PWMxH PHF: PWMxH Falling Edge Trigger Enable bit I = Falling edge of PWMxH will trigger Leading-Edge Blanking counter I = Falling edge of PWMxL will trigger Leading-Edge Blanking counter I = Falling edge of PWMxL will trigger Leading-Edge Blanking counter I = Rising edge of PWMxL will trigger Leading-Edge Blanking counter I = cading-Edge Blanking ignores rising edge of PWMxL PLF: PWMxL Falling Edge Trigger Enable bit I = Falling edge of PWMxL will trigger Leading-Edge Blanking counter I = Leading-Edge Blanking ignores raling edge of PWMxL DE: PWMxL Falling Edge Trigger Enable bit I = Falling edge of PWMxL will trigger Leading-Edge Blanking counter I = Leading-Edge Blanking is applied to selected Fault input I = Leading-Edge Blanking is not applied to selected Fault input I = Leading-Edge Blanking is not applied to selected current-limit input I = Leading-Edge Blanking is not applied to selected current-limit input I = Leading-Edge Blanking is not applied to selected current-limit input I = Leading-Edge Blanking is not applied to selected current-limit input I = Leading-Edge Blanking is not applied to selected blanking signal is high I = State blanking of current-limit and/or Fault input signals) when selected blanking signal is high I = State blanking (of current-limit and/or Fault input signals) when selected	-	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
1 = Rising edge of PWMxH will rigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH bit 14 PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 13 PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking Signal High Enable bit ⁽¹⁾ 1 = Leading-Edge Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking	-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown			
 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 13 PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking Signal High Enable bit 1 = State blanking (or current-limit and/or Fault input signals) when selected blanking signal is high 0 = No blanking when selected blanking Signal is low 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low No blanking when PWMxH output is low 1 = State blanking (of current-limit and/or Fault input signals	bit 15	1 = Rising ed	ge of PWMxH	will trigger Le	ading-Edge Bla						
 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = No blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when Selected blanking signal is low 0 = No blanking when selected blanking signal is low bit 3 BPHH: Blanking in PWMxH dutput is high 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 =	bit 14	1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter									
1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = No blanking in Selected Blanking Signal High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 3 BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking	bit 13	1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter									
 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking Signal High Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxH output is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL dutput is high 0 = No blanking when PWMxL cutput is high 0 = No blanking when PWMxL cutput is high 0 = No blanking when PWMxL cutput is high 	bit 12	PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter									
 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 9-6 Unimplemented: Read as '0' BCH: Blanking in Selected Blanking Signal High Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig 0 = No blanking when selected blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking in Current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of curr	bit 11	1 = Leading-E	Edge Blanking	is applied to	selected Fault in	nput					
bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 3 BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxH tigh Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 0<	bit 10	1 = Leading-E	Edge Blanking	is applied to	selected current	t-limit input					
 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is low 	bit 9-6	Unimplemen	ted: Read as '	0'							
 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low bit 3 BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 	bit 5	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr		cted blanking s	ignal is high			
 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking in PWMxL dutput is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 	bit 4	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr		cted blanking s	ignal is low			
 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low 	bit 3	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr	nals) when PWN	/IxH output is h	igh			
bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 2	1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low									
bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 1	BPLH: Blanki 1 = State blar	ing in PWMxL hking (of currer	High Enable I nt-limit and/or	bit Fault input sigr	nals) when PWN	/IxL output is hi	igh			
	bit 0										

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

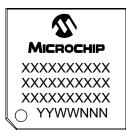
Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.


FIGURE 17-1: QEI BLOCK DIAGRAM

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

33.1 Package Marking Information (Continued)

48-Lead UQFN (6x6x0.5 mm)


Example 33EP64GP 504-I/MV (3) 1310017

64-Lead QFN (9x9x0.9 mm)

Example dsPIC33EP 64GP506 -I/MR® 1310017

64-Lead TQFP (10x10x1 mm)

Example

© 2011-2013 Microchip Technology Inc.

Section Name	Update Description
Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)"	Updated the High-Speed PWM Module Register Interconnection Diagram (see Figure 16-2). Added the TRGCONx and TRIGx registers (see Register 16-12 and Register 16-14, respectively).
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the IRNG<1:0> bit value definitions and added Note 2 in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the Op amp/Comparator I/O Operating Modes Diagram (see Figure 25-1). Updated the User-programmable Blanking Function Block Diagram (see Figure 25-3). Updated the Digital Filter Interconnect Block Diagram (see Figure 25-4). Added Section 25.1 "Op amp Application Considerations ". Added Note 2 to the Comparator Control Register (see Register 25-2). Updated the bit definitions in the Comparator Mask Gating Control Register (see Register 25-5).
Section 27.0 "Special Features"	Updated the FICD Configuration Register, updated Note 1, and added Note 3 in the Configuration Byte Register Map (see Table 27-1). Added Section 27.2 "User ID Words" .
Section 30.0 "Electrical Characteristics"	 Updated the following Absolute Maximum Ratings: Maximum current out of Vss pin Maximum current into VDD pin Added Note 1 to the Operating MIPS vs. Voltage (see Table 30-1).
	Updated all Idle Current (IIDLE) Typical and Maximum DC Characteristics values (see Table 30-7).
	Updated all Doze Current (IDOZE) Typical and Maximum DC Characteristics values (see Table 30-9).
	Added Note 2, removed Parameter CM24, updated the Typical values Parameters CM10, CM20, CM21, CM32, CM41, CM44, and CM45, and updated the Minimum values for CM40 and CM41, and the Maximum value for CM40 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Updated Note 2 and the Typical value for Parameter VR310 in the Op amp/ Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Note 1, removed Parameter VRD312, and added Parameter VRD314 to the Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated the Minimum, Typical, and Maximum values for Internal LPRC Accuracy (see Table 30-22).
	Updated the Minimum, Typical, and Maximum values for Parameter SY37 in the Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer Timing Requirements (see Table 30-24).
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-35)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12