

Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

E·XFI

| Product Status             | Obsolete                                                                         |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 60 MIPs                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                          |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                       |
| Number of I/O              | 25                                                                               |
| Program Memory Size        | 64KB (22K x 24)                                                                  |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 4K x 16                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 8x10b/12b                                                                    |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 36-VFTLA Exposed Pad                                                             |
| Supplier Device Package    | 36-VTLA (5x5)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gp503t-e-tl |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### **REGISTER 3-1:** SR: CPU STATUS REGISTER (CONTINUED)

| bit 7-5       | IPL<2:0>: CPU Interrupt Priority Level Status bits <sup>(2,3)</sup><br>111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled<br>110 = CPU Interrupt Priority Level is 6 (14)<br>101 = CPU Interrupt Priority Level is 5 (13)<br>100 = CPU Interrupt Priority Level is 4 (12)<br>011 = CPU Interrupt Priority Level is 3 (11)<br>010 = CPU Interrupt Priority Level is 2 (10)<br>001 = CPU Interrupt Priority Level is 1 (9)<br>000 = CPU Interrupt Priority Level is 0 (8) |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 4         | RA: REPEAT Loop Active bit<br>1 = REPEAT loop in progress<br>0 = REPEAT loop not in progress                                                                                                                                                                                                                                                                                                                                                                                                    |
| bit 3         | N: MCU ALU Negative bit<br>1 = Result was negative<br>0 = Result was non-negative (zero or positive)                                                                                                                                                                                                                                                                                                                                                                                            |
| bit 2         | <ul> <li>OV: MCU ALU Overflow bit</li> <li>This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state.</li> <li>1 = Overflow occurred for signed arithmetic (in this arithmetic operation)</li> <li>0 = No overflow occurred</li> </ul>                                                                                                                                                                        |
| bit 1         | <ul> <li><b>Z:</b> MCU ALU Zero bit</li> <li>1 = An operation that affects the Z bit has set it at some time in the past</li> <li>0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)</li> </ul>                                                                                                                                                                                                                                                      |
| bit 0         | <b>C:</b> MCU ALU Carry/Borrow bit<br>1 = A carry-out from the Most Significant bit of the result occurred<br>0 = No carry-out from the Most Significant bit of the result occurred                                                                                                                                                                                                                                                                                                             |
| Note 1:<br>2: | This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.<br>The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority                                                                                                                                                                                                                                                                                                     |

- Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
  3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- 4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| U-0                               | R/W-0                         | R/W-0                               | R/W-0                          | R/W-0                 | R/W-0           | R/W-0           | R/W-0 |
|-----------------------------------|-------------------------------|-------------------------------------|--------------------------------|-----------------------|-----------------|-----------------|-------|
| _                                 |                               |                                     |                                | IC2R<6:0>             |                 |                 |       |
| bit 15                            |                               |                                     |                                |                       |                 |                 | bit 8 |
|                                   |                               |                                     |                                |                       |                 |                 |       |
| U-0                               | R/W-0                         | R/W-0                               | R/W-0                          | R/W-0                 | R/W-0           | R/W-0           | R/W-0 |
|                                   |                               |                                     |                                | IC1R<6:0>             |                 |                 |       |
| bit 7                             |                               |                                     |                                |                       |                 |                 | bit 0 |
|                                   |                               |                                     |                                |                       |                 |                 |       |
| Legend:                           |                               |                                     |                                |                       |                 |                 |       |
| R = Readable bit W = Writable bit |                               |                                     |                                | U = Unimpler          | mented bit, rea | ad as '0'       |       |
| -n = Value at F                   | POR                           | '1' = Bit is set                    |                                | '0' = Bit is cle      | ared            | x = Bit is unkr | nown  |
|                                   |                               |                                     |                                |                       |                 |                 |       |
| bit 15                            | Unimplemen                    | ted: Read as '                      | 0'                             |                       |                 |                 |       |
| bit 14-8                          | IC2R<6:0>: A<br>(see Table 11 | Assign Input Ca<br>-2 for input pin | pture 2 (IC2)<br>selection nur | to the Correspondent  | onding RPn P    | in bits         |       |
|                                   | 1111001 <b>= I</b> r          | nput tied to RPI                    | 121                            |                       |                 |                 |       |
|                                   |                               |                                     |                                |                       |                 |                 |       |
|                                   | •                             |                                     |                                |                       |                 |                 |       |
|                                   | 0000001 = lr                  | nput tied to CM                     | P1                             |                       |                 |                 |       |
|                                   | nl = 0000000                  | nput tied to Vss                    | ;                              |                       |                 |                 |       |
| bit 7                             | Unimplemen                    | ted: Read as '                      | 0'                             |                       |                 |                 |       |
| bit 6-0                           | IC1R<6:0>: A<br>(see Table 11 | Assign Input Ca<br>-2 for input pin | pture 1 (IC1)<br>selection nur | to the Correspondence | onding RPn P    | in bits         |       |
|                                   | 1111001 <b>= I</b> r          | nput tied to RPI                    | 121                            |                       |                 |                 |       |
|                                   | •                             |                                     |                                |                       |                 |                 |       |
|                                   | •                             |                                     |                                |                       |                 |                 |       |
|                                   | 0000001 = lr                  | nput tied to CM                     | P1                             |                       |                 |                 |       |
|                                   | 0000000 = Ir                  | nput tied to Vss                    | ;                              |                       |                 |                 |       |

### REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

NOTES:

# 13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (32-bit timer pairs, and Timer3 and Timer5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

| R/W-0        | R/W-0                                                      | R/W-0                                                          | R/W-0                    | R/W-0             | R/W-0             | R/W-0          | R/W-0 |  |  |  |  |  |
|--------------|------------------------------------------------------------|----------------------------------------------------------------|--------------------------|-------------------|-------------------|----------------|-------|--|--|--|--|--|
| QCAPEN       | FLTREN                                                     | QFDIV2                                                         | QFDIV1                   | QFDIV0            | OUTFNC1           | OUTFNC0        | SWPAB |  |  |  |  |  |
| bit 15       |                                                            |                                                                |                          |                   | •<br>•            |                | bit 8 |  |  |  |  |  |
|              |                                                            |                                                                |                          |                   |                   |                |       |  |  |  |  |  |
| R/W-0        | R/W-0                                                      | R/W-0                                                          | R/W-0                    | R-x               | R-x               | R-x            | R-x   |  |  |  |  |  |
| HOMPOL       | IDXPOL                                                     | QEBPOL                                                         | QEAPOL                   | HOME              | INDEX             | QEB            | QEA   |  |  |  |  |  |
| bit 7        |                                                            |                                                                |                          |                   |                   |                | bit 0 |  |  |  |  |  |
|              |                                                            |                                                                |                          |                   |                   |                |       |  |  |  |  |  |
| Legend:      | a hit                                                      | \// - \//ritabla                                               | h it                     | II – Unimploy     | monted bit read   | 4 a.a. (0)     |       |  |  |  |  |  |
| n - Value at |                                                            | vv = vvii(able                                                 | DIL                      | $0^{\circ} = 0$   | nented bit, read  | v – Ritic unkn |       |  |  |  |  |  |
|              |                                                            | 1 - Dit 13 36t                                                 |                          |                   | areu              |                |       |  |  |  |  |  |
| bit 15       | OCAPEN: OF                                                 | -I Position Cou                                                | nter Input Cap           | ture Enable bit   |                   |                |       |  |  |  |  |  |
|              | 1 = Index ma                                               | tch event trigge                                               | ers a position c         | apture event      |                   |                |       |  |  |  |  |  |
|              | 0 = Index ma                                               | tch event does                                                 | not trigger a p          | osition capture   | event             |                |       |  |  |  |  |  |
| bit 14       | FLTREN: QE                                                 | Ax/QEBx/INDX                                                   | x/HOMEx Digi             | ital Filter Enabl | e bit             |                |       |  |  |  |  |  |
|              | 1 = Input pin                                              | digital filter is e<br>digital filter is d                     | nabled<br>isabled (bypas | eed)              |                   |                |       |  |  |  |  |  |
| hit 13_11    |                                                            |                                                                | NDXv/HOMEv               | Digital Input Fi  | ilter Clock Divid | a Salact hits  |       |  |  |  |  |  |
| 511 15-11    | 111 = 1:128 (                                              | clock divide                                                   |                          | Digital Input I   |                   |                |       |  |  |  |  |  |
|              | 110 = 1:64 clock divide                                    |                                                                |                          |                   |                   |                |       |  |  |  |  |  |
|              | 101 = 1:32 clock divide                                    |                                                                |                          |                   |                   |                |       |  |  |  |  |  |
|              | 100 = 1.16  cm<br>011 = 1:8  clo                           | 011 = 1:8 clock divide                                         |                          |                   |                   |                |       |  |  |  |  |  |
|              | 010 = 1:4 clo                                              | 010 = 1:4 clock divide                                         |                          |                   |                   |                |       |  |  |  |  |  |
|              | 001 = 1:2 clock divide                                     |                                                                |                          |                   |                   |                |       |  |  |  |  |  |
| hit 10₋9     |                                                            |                                                                | Output Functi            | ion Mode Sele     | rt hits           |                |       |  |  |  |  |  |
| bit 10 5     | 11 = The CTN                                               | 1 = The CTNCMPx in goes high when QEI11 EC > POS1CNT > QEI1GEC |                          |                   |                   |                |       |  |  |  |  |  |
|              | 10 = The CTM                                               | NCMPx pin goe                                                  | s high when P            | $OS1CNT \leq QE$  | EIILEC            |                |       |  |  |  |  |  |
|              | 01 = The CTNCMPx pin goes high when POS1CNT $\geq$ QEI1GEC |                                                                |                          |                   |                   |                |       |  |  |  |  |  |
| hit 8        | SWPAB: Swa                                                 | s uisabled<br>an $OEA$ and $OE$                                | B Inputs hit             |                   |                   |                |       |  |  |  |  |  |
| bit 0        | 1 = QEAx and                                               | d QEBx are swa                                                 | apped prior to           | quadrature de     | coder logic       |                |       |  |  |  |  |  |
|              | 0 = QEAx and                                               | 0 = QEAx and QEBx are not swapped                              |                          |                   |                   |                |       |  |  |  |  |  |
| bit 7        | HOMPOL: HO                                                 | OMEx Input Po                                                  | larity Select bit        | t                 |                   |                |       |  |  |  |  |  |
|              | 1 = Input is in                                            | iverted                                                        |                          |                   |                   |                |       |  |  |  |  |  |
| hit 6        |                                                            | ot inverted<br>Vy Input Dolori                                 | ty Soloot bit            |                   |                   |                |       |  |  |  |  |  |
| DILO         | 1 = Input is in                                            | verted                                                         | ly Select bit            |                   |                   |                |       |  |  |  |  |  |
|              | 0 = Input is no                                            | 0 = Input is not inverted                                      |                          |                   |                   |                |       |  |  |  |  |  |
| bit 5        | QEBPOL: QE                                                 | EBx Input Polar                                                | ity Select bit           |                   |                   |                |       |  |  |  |  |  |
|              | 1 = Input is ir                                            | nverted                                                        |                          |                   |                   |                |       |  |  |  |  |  |
| L:1 4        |                                                            | ot inverted                                                    | :                        |                   |                   |                |       |  |  |  |  |  |
| DIT 4        |                                                            | EAX Input Polar                                                | ity Select bit           |                   |                   |                |       |  |  |  |  |  |
|              | 1 = 10000000000000000000000000000000000                    | not inverted                                                   |                          |                   |                   |                |       |  |  |  |  |  |
| bit 3        | HOME: Statu                                                | s of HOMEx In                                                  | out Pin After P          | olarity Control   |                   |                |       |  |  |  |  |  |
|              | 1 = Pin is at I                                            | logic '1'                                                      |                          | -                 |                   |                |       |  |  |  |  |  |
|              | 0 = Pin is at                                              | logic '0'                                                      |                          |                   |                   |                |       |  |  |  |  |  |

# REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

### REGISTER 17-4: POSICNTH: POSITION COUNTER 1 HIGH WORD REGISTER

| -n = Value at P                   | POR   | '1' = Bit is set |       | '0' = Bit is cleared x = Bit is unknown |                 |          | nown  |
|-----------------------------------|-------|------------------|-------|-----------------------------------------|-----------------|----------|-------|
| R = Readable bit W = Writable bit |       |                  | bit   | U = Unimpler                            | mented bit, rea | d as '0' |       |
| Legend:                           |       |                  |       |                                         |                 |          |       |
|                                   |       |                  |       |                                         |                 |          |       |
| bit 7                             |       |                  |       |                                         |                 |          | bit 0 |
|                                   |       |                  | POSCN | IT<23:16>                               |                 |          |       |
| R/W-0                             | R/W-0 | R/W-0            | R/W-0 | R/W-0                                   | R/W-0           | R/W-0    | R/W-0 |
| bit 15                            |       |                  |       |                                         |                 |          | bit 8 |
|                                   |       |                  | POSCN | IT<31:24>                               |                 |          |       |
| R/W-0                             | R/W-0 | R/W-0            | R/W-0 | R/W-0                                   | R/W-0           | R/W-0    | R/W-0 |

bit 15-0 **POSCNT<31:16>:** High Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

### REGISTER 17-5: POS1CNTL: POSITION COUNTER 1 LOW WORD REGISTER

| R/W-0        | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |
|--------------|-------|-------|-------|-------|-------|-------|-------|--|
| POSCNT<15:8> |       |       |       |       |       |       |       |  |
| bit 15       |       |       |       |       |       |       | bit 8 |  |
|              |       |       |       |       |       |       |       |  |

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 | R/W-0 | R/W-0 |
|-------|-------|-------|-------|---------|-------|-------|-------|
|       |       |       | POSCN | NT<7:0> |       |       |       |
| bit 7 |       |       |       |         |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

### REGISTER 17-6: POS1HLD: POSITION COUNTER 1 HOLD REGISTER

| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |
|-----------------|-------|------------------|-------|-----------------------------------------|-------|-------|-------|
|                 |       |                  | POSH  | LD<15:8>                                |       |       |       |
| bit 15          |       |                  |       |                                         |       |       | bit 8 |
|                 |       |                  |       |                                         |       |       |       |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |
|                 |       |                  | POSH  | ILD<7:0>                                |       |       |       |
| bit 7           |       |                  |       |                                         |       |       | bit 0 |
|                 |       |                  |       |                                         |       |       |       |
| Legend:         |       |                  |       |                                         |       |       |       |
| R = Readable    | bit   | W = Writable     | bit   | U = Unimplemented bit, read as '0'      |       |       |       |
| -n = Value at P | OR    | '1' = Bit is set |       | '0' = Bit is cleared x = Bit is unknown |       |       |       |

bit 15-0 **POSHLD<15:0>:** Hold Register for Reading and Writing POS1CNTH bits

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

### REGISTER 17-17: INT1TMRH: INTERVAL 1 TIMER HIGH WORD REGISTER

| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |  |  |  |
|-----------------|-------|------------------|-------|-----------------------------------------|-------|-------|-------|--|--|--|
| INTTMR<31:24>   |       |                  |       |                                         |       |       |       |  |  |  |
| bit 15 bit 8    |       |                  |       |                                         |       |       |       |  |  |  |
|                 |       |                  |       |                                         |       |       |       |  |  |  |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |  |  |  |
|                 |       |                  | INTTM | R<23:16>                                |       |       |       |  |  |  |
| bit 7           |       |                  |       |                                         |       |       | bit 0 |  |  |  |
|                 |       |                  |       |                                         |       |       |       |  |  |  |
| Legend:         |       |                  |       |                                         |       |       |       |  |  |  |
| R = Readable b  | bit   | W = Writable bi  | it    | U = Unimplemented bit, read as '0'      |       |       |       |  |  |  |
| -n = Value at P | OR    | '1' = Bit is set |       | '0' = Bit is cleared x = Bit is unknown |       |       |       |  |  |  |

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

### REGISTER 17-18: INT1TMRL: INTERVAL 1 TIMER LOW WORD REGISTER

| R/W-0           | R/W-0 | R/W-0            | R/W-0                                      | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |
|-----------------|-------|------------------|--------------------------------------------|-----------------------------------------|-------|-------|-------|
|                 |       |                  | INTTM                                      | 1R<15:8>                                |       |       |       |
| bit 15          |       |                  |                                            |                                         |       |       | bit 8 |
|                 |       |                  |                                            |                                         |       |       |       |
| R/W-0           | R/W-0 | R/W-0            | R/W-0                                      | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |
|                 |       |                  | INTT                                       | /IR<7:0>                                |       |       |       |
| bit 7           |       |                  |                                            |                                         |       |       | bit 0 |
|                 |       |                  |                                            |                                         |       |       |       |
| Legend:         |       |                  |                                            |                                         |       |       |       |
| R = Readable I  | bit   | W = Writable b   | ble bit U = Unimplemented bit, read as '0' |                                         |       |       |       |
| -n = Value at P | OR    | '1' = Bit is set |                                            | '0' = Bit is cleared x = Bit is unknown |       |       |       |

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

### 18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
  - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
  - b) If FRMPOL = 0, use a pull-up resistor on  $\frac{1}{SSx}$ .

| Note: | This           | insures | that  | the       | first | fra | ame |
|-------|----------------|---------|-------|-----------|-------|-----|-----|
|       | transmission a |         | after | initializ | ation | is  | not |
|       | shifted        |         |       |           |       |     |     |

- 2. In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
  - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
  - b) If CKP = 0, always place a pull-down resistor on SSx.
  - **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
  - Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 30.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

### 18.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en555464              |

### 18.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

# **19.2** I<sup>2</sup>C Control Registers

### REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

| R/W-0           | U-0                                           | R/W-0                                  | R/W-1, HC                               | R/W-0                        | R/W-0                                 | R/W-0            | R/W-0          |
|-----------------|-----------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------|---------------------------------------|------------------|----------------|
| I2CEN           | _                                             | I2CSIDL                                | SCLREL                                  | IPMIEN <sup>(1)</sup>        | A10M                                  | DISSLW           | SMEN           |
| bit 15          |                                               |                                        |                                         |                              | •                                     |                  | bit 8          |
|                 |                                               |                                        |                                         |                              |                                       |                  |                |
| R/W-0           | R/W-0                                         | R/W-0                                  | R/W-0, HC                               | R/W-0, HC                    | R/W-0, HC                             | R/W-0, HC        | R/W-0, HC      |
| GCEN            | STREN                                         | ACKDT                                  | ACKEN                                   | RCEN                         | PEN                                   | RSEN             | SEN            |
| bit 7           |                                               |                                        |                                         |                              |                                       |                  | bit 0          |
|                 |                                               |                                        |                                         |                              |                                       |                  |                |
| Legend:         |                                               | HC = Hardware                          | Clearable bit                           |                              |                                       |                  |                |
| R = Readable    | e bit                                         | W = Writable bit                       | t                                       | U = Unimpler                 | mented bit, rea                       | d as '0'         |                |
| -n = Value at   | POR                                           | '1' = Bit is set                       |                                         | '0' = Bit is cle             | ared                                  | x = Bit is unk   | nown           |
|                 |                                               |                                        |                                         |                              |                                       |                  |                |
| bit 15          | 12CEN: 12Cx                                   | Enable bit                             |                                         |                              |                                       |                  |                |
|                 | 1 = Enables t                                 | he I2Cx module a                       | and configures                          | the SDAx and                 | SCLx pins as                          | serial port pins | ;              |
| <b>h</b> it 4.4 |                                               |                                        | all I-C ···· pins a                     | are controlled               | by port function                      | 15               |                |
| DIL 14          |                                               | ted: Read as 0                         | da hit                                  |                              |                                       |                  |                |
| DIE 13          | 1 - Discontinu                                | x Stop in Idle Mo                      | de bli<br>ation whon dow                | ico ontore an l              | dlo modo                              |                  |                |
|                 | 0 = Continues                                 | s module operation                     | on in Idle mode                         |                              | die mode                              |                  |                |
| bit 12          | SCLREL: SC                                    | Lx Release Cont                        | rol bit (when or                        | perating as I <sup>2</sup> C | slave)                                |                  |                |
|                 | 1 = Releases                                  | SCLx clock                             |                                         | U                            | ,                                     |                  |                |
|                 | 0 = Holds SC                                  | Lx clock low (cloo                     | ck stretch)                             |                              |                                       |                  |                |
|                 | $\frac{\text{If STREN} = 1}{\text{Distance}}$ | <u>:</u>                               |                                         |                              | · · · · · · · · · · · · · · · · · · · |                  |                |
|                 | Bit is R/W (i.e                               | ., software can w                      | rite '0' to initiate<br>o data byte tra | e stretch and w              | rite '1' to relea                     | se clock). Harc  | dware is clear |
|                 | address byte                                  | reception. Hardw                       | are is clear at                         | the end of eve               | ry slave data b                       | yte reception.   | l every slave  |
|                 | If STREN = 0                                  | <u>:</u>                               |                                         |                              | -                                     |                  |                |
|                 | Bit is R/S (i.e.                              | , software can on                      | ly write '1' to re                      | elease clock). I             | Hardware is cle                       | ar at the begin  | ning of every  |
|                 | slave data by                                 |                                        | Hardware is cle                         | ar at the end o              | of every slave a                      | address byte re  | eception.      |
| bit 11          | IPMIEN: Intel                                 | ligent Peripheral                      | Management I                            | nterface (IPMI)              | ) Enable bit                          |                  |                |
|                 | 1 = IPMI mod<br>0 = IPMI mod                  | e is enabled, all a                    |                                         | Acknowledged                 | I                                     |                  |                |
| bit 10          | A10M: 10-Bit                                  | Slave Address b                        | it                                      |                              |                                       |                  |                |
|                 | 1 = I2CxADD                                   | is a 10-bit slave                      | address                                 |                              |                                       |                  |                |
|                 | 0 = I2CxADD                                   | is a 7-bit slave a                     | ddress                                  |                              |                                       |                  |                |
| bit 9           | DISSLW: Disa                                  | able Slew Rate C                       | Control bit                             |                              |                                       |                  |                |
|                 | 1 = Slew rate<br>0 = Slew rate                | control is disable control is enable   | ed<br>d                                 |                              |                                       |                  |                |
| bit 8           | SMEN: SMBL                                    | us Input Levels bi                     | t                                       |                              |                                       |                  |                |
|                 | 1 = Enables I<br>0 = Disables \$              | /O pin thresholds<br>SMBus input thre  | compliant with<br>sholds                | SMBus speci                  | fication                              |                  |                |
| bit 7           | GCEN: Gene                                    | ral Call Enable bi                     | it (when operat                         | ing as I <sup>2</sup> C slav | re)                                   |                  |                |
|                 | 1 = Enables in<br>0 = General c               | terrupt when a ge<br>all address disab | neral call addre                        | ss is received ir            | 12CxRSR (mo                           | dule is enabled  | for reception) |
|                 |                                               |                                        |                                         |                              |                                       |                  |                |

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

### REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

| bit 5   | ABAUD: Auto-Baud Enable bit                                                                                                                                                                                                               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion</li> <li>0 = Baud rate measurement is disabled or completed</li> </ul> |
| bit 4   | URXINV: UARTx Receive Polarity Inversion bit                                                                                                                                                                                              |
|         | 1 = UxRX Idle state is '0'<br>0 = UxRX Idle state is '1'                                                                                                                                                                                  |
| bit 3   | BRGH: High Baud Rate Enable bit                                                                                                                                                                                                           |
|         | <ul> <li>1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)</li> <li>0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)</li> </ul>                                                        |
| bit 2-1 | PDSEL<1:0>: Parity and Data Selection bits                                                                                                                                                                                                |
|         | <ul> <li>11 = 9-bit data, no parity</li> <li>10 = 8-bit data, odd parity</li> <li>01 = 8-bit data, even parity</li> <li>00 = 8-bit data, no parity</li> </ul>                                                                             |
| bit 0   | STSEL: Stop Bit Selection bit                                                                                                                                                                                                             |
|         | 1 = Two Stop bits<br>0 = One Stop bit                                                                                                                                                                                                     |
| Note 1: | Refer to the " <b>UART</b> " (DS70582) section in the <i>"dsPIC33/PIC24 Family Reference Manual"</i> for information on enabling the UARTx module for receive or transmit operation.                                                      |

- 2: This feature is only available for the 16x BRG mode (BRGH = 0).
- 3: This feature is only available on 44-pin and 64-pin devices.
- 4: This feature is only available on 64-pin devices.

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| R/W-0                             | R/W-0    | R/W-0           | U-0           | R/W-0, HC                          | R/W-0                | R-0   | R-1   |  |
|-----------------------------------|----------|-----------------|---------------|------------------------------------|----------------------|-------|-------|--|
| UTXISEL1                          | UTXINV   | UTXISEL0        | —             | UTXBRK                             | UTXEN <sup>(1)</sup> | UTXBF | TRMT  |  |
| bit 15                            |          |                 |               |                                    |                      |       | bit 8 |  |
|                                   |          |                 |               |                                    |                      |       |       |  |
| R/W-0                             | R/W-0    | R/W-0           | R-1           | R-0                                | R-0                  | R/C-0 | R-0   |  |
| URXISEL1                          | URXISEL0 | ADDEN           | RIDLE         | PERR                               | FERR                 | OERR  | URXDA |  |
| bit 7                             |          |                 |               | -                                  |                      |       | bit 0 |  |
|                                   |          |                 |               |                                    |                      |       |       |  |
| Legend: HC = Hardwar              |          | e Clearable bit | C = Clearable | e bit                              |                      |       |       |  |
| R = Readable bit W = Writable bit |          |                 | bit           | U = Unimplemented bit, read as '0' |                      |       |       |  |

#### **REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER**

|                   |                  | 0 – Onimplemented bit, rea |                    |
|-------------------|------------------|----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |
|                   |                  |                            |                    |

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UARTx Transmit Polarity Inversion bit
  - If IREN = 0: 1 = UxTX Idle state is '0'
    - 0 = UxTX Idle state is '1'
    - If IREN = 1:
  - 1 = IrDA encoded, UxTX Idle state is '1'
  - 0 = IrDA encoded, UxTX Idle state is '0'
- bit 12 Unimplemented: Read as '0'
- bit 11 UTXBRK: UARTx Transmit Break bit
  - 1 = Sends Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
  - 0 = Sync Break transmission is disabled or completed
- **UTXEN:** UARTx Transmit Enable bit<sup>(1)</sup> bit 10 1 = Transmit is enabled, UxTX pin is controlled by UARTx
  - 0 = Transmit is disabled, any pending transmission is aborted and buffer is reset; UxTX pin is controlled by the PORT
- bit 9 **UTXBF:** UARTx Transmit Buffer Full Status bit (read-only)
  - 1 = Transmit buffer is full
  - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register Empty bit (read-only)
  - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
  - 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
  - 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)
  - 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
  - 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters
- Note 1: Refer to the "UART" (DS70582) section in the "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UARTx module for transmit operation.

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| R/W-x         | R/W-x                                | R/W-x                   | R/W-x         | R/W-x                                   | R/W-x            | R/W-x    | R/W-x |
|---------------|--------------------------------------|-------------------------|---------------|-----------------------------------------|------------------|----------|-------|
| EID5          | EID4                                 | EID3                    | EID2          | EID1                                    | EID0             | RTR      | RB1   |
| bit 15        |                                      |                         |               | ·                                       | -<br>-           | ·        | bit 8 |
|               |                                      |                         |               |                                         |                  |          |       |
| U-x           | U-x                                  | U-x                     | R/W-x         | R/W-x                                   | R/W-x            | R/W-x    | R/W-x |
| _             | —                                    | —                       | RB0           | DLC3                                    | DLC2             | DLC1     | DLC0  |
| bit 7         |                                      |                         |               |                                         |                  |          | bit 0 |
|               |                                      |                         |               |                                         |                  |          |       |
| Legend:       |                                      |                         |               |                                         |                  |          |       |
| R = Readable  | bit                                  | W = Writable            | bit           | U = Unimplei                            | mented bit, read | l as '0' |       |
| -n = Value at | POR                                  | '1' = Bit is set        | t             | '0' = Bit is cleared x = Bit is unknown |                  |          | nown  |
|               |                                      |                         |               |                                         |                  |          |       |
| bit 15-10     | EID<5:0>: E>                         | ktended Identifi        | er bits       |                                         |                  |          |       |
| bit 9         | RTR: Remote                          | e Transmission          | Request bit   |                                         |                  |          |       |
|               | When IDE =                           | <u>1:</u>               |               |                                         |                  |          |       |
|               | 1 = Message                          | will request re         | mote transmis | ssion                                   |                  |          |       |
|               |                                      | lessage                 |               |                                         |                  |          |       |
|               | <u>When IDE = (</u><br>The RTR bit i | <u>0:</u><br>is ignored |               |                                         |                  |          |       |
| hit 9         | <b>BB1</b> : Boson                   | od Dit 1                |               |                                         |                  |          |       |
| DILO          | Llear must so                        | t this hit to '0'       | oor CAN proto |                                         |                  |          |       |
|               |                                      |                         |               |                                         |                  |          |       |
| DIT 7-5       | Unimplemen                           | ted: Read as            | 0             |                                         |                  |          |       |
| bit 4         | <b>RB0:</b> Reserve                  | ed Bit 0                | <b></b>       |                                         |                  |          |       |
|               | User must se                         | t this bit to '0' p     | per CAN proto | COI.                                    |                  |          |       |
|               |                                      |                         |               |                                         |                  |          |       |

### BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 DLC<3:0>: Data Length Code bits

### BUFFER 21-4: ECAN<sup>™</sup> MESSAGE BUFFER WORD 3

| R/W-x                            | R/W-x | R/W-x            | R/W-x | R/W-x                                 | R/W-x | R/W-x | R/W-x |
|----------------------------------|-------|------------------|-------|---------------------------------------|-------|-------|-------|
|                                  |       |                  | B     | /te 1                                 |       |       |       |
| bit 15                           |       |                  |       |                                       |       |       | bit 8 |
| R/W-x                            | R/W-x | R/W-x            | R/W-x | R/W-x                                 | R/W-x | R/W-x | R/W-x |
|                                  |       |                  | B     | /te 0                                 |       |       |       |
| bit 7                            |       |                  |       |                                       |       |       | bit 0 |
| Legend:                          |       |                  |       |                                       |       |       |       |
| R = Readable                     | bit   | W = Writable     | bit   | U = Unimplemented bit, read as '0'    |       |       |       |
| -n = Value at POR '1' = Bit is s |       | '1' = Bit is set |       | '0' = Bit is cleared x = Bit is unkno |       |       | nown  |

bit 15-8 Byte 1<15:8>: ECAN Message Byte 1 bits

bit 7-0 Byte 0<7:0>: ECAN Message Byte 0 bits

# 23.4 ADC Control Registers

### REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

| R/W-0         | U-0              | R/W-0             | R/W-0                       | U-0                 | R/W-0             | R/W-0                  | R/W-0               |
|---------------|------------------|-------------------|-----------------------------|---------------------|-------------------|------------------------|---------------------|
| ADON          | —                | ADSIDL            | ADDMABM                     | —                   | AD12B             | FORM1                  | FORM0               |
| bit 15        |                  |                   |                             |                     |                   |                        | bit 8               |
|               |                  |                   |                             |                     |                   |                        |                     |
| R/W-0         | R/W-0            | R/W-0             | R/W-0                       | R/W-0               | R/W-0             | R/W-0, HC, HS          | R/C-0, HC, HS       |
| SSRC2         | SSRC1            | SSRC0             | SSRCG                       | SIMSAM              | ASAM              | SAMP                   | DONE <sup>(3)</sup> |
| bit 7         |                  |                   |                             |                     |                   | -                      | bit 0               |
|               |                  |                   |                             |                     |                   |                        |                     |
| Legend:       |                  | HC = Hardwa       | re Clearable bit            | HS = Hardwa         | re Settable bit   | C = Clearable bi       | t                   |
| R = Readab    | le bit           | W = Writable I    | bit                         | U = Unimpler        | nented bit, read  | d as '0'               |                     |
| -n = Value at | t POR            | '1' = Bit is set  |                             | '0' = Bit is clea   | ared              | x = Bit is unknow      | vn                  |
|               |                  |                   |                             |                     |                   |                        |                     |
| bit 15        | ADON: ADO        | C1 Operating N    | lode bit                    |                     |                   |                        |                     |
|               | 1 = ADC mo       | odule is operati  | ng                          |                     |                   |                        |                     |
|               | 0 = ADC is       | off               |                             |                     |                   |                        |                     |
| bit 14        | Unimpleme        | ented: Read as    | '0'                         |                     |                   |                        |                     |
| bit 13        | ADSIDL: AI       | DC1 Stop in Idle  | e Mode bit                  |                     |                   |                        |                     |
|               | 1 = Disconti     | inues module o    | peration when               | device enters       | Idle mode         |                        |                     |
|               | 0 = Continu      | es module ope     | ration in Idle mo           | ode                 |                   |                        |                     |
| bit 12        | ADDMABM          | : DMA Buffer E    | Build Mode bit              |                     |                   |                        |                     |
|               | 1 = DMA b        | uffers are writte | en in the order             | of conversion       | ; the module p    | provides an addre      | ess to the DMA      |
|               | 0 = DMA bi       | uffers are writte | en in Scatter/Ga            | ther mode: the      | e module prov     | ides a Scatter/Ga      | ther address to     |
|               | the DM           | A channel, bas    | ed on the index             | of the analog       | input and the     | size of the DMA        | ouffer.             |
| bit 11        | Unimpleme        | ented: Read as    | '0'                         |                     |                   |                        |                     |
| bit 10        | <b>AD12B:</b> AD | C1 10-Bit or 12   | 2-Bit Operation             | Mode bit            |                   |                        |                     |
|               | 1 = 12-bit, 1    | -channel ADC      | operation                   |                     |                   |                        |                     |
|               | 0 = 10-bit, 4    | -channel ADC      | operation                   |                     |                   |                        |                     |
| bit 9-8       | FORM<1:0         | >: Data Output    | Format bits                 |                     |                   |                        |                     |
|               | For 10-Bit C     | Operation:        |                             |                     |                   |                        |                     |
|               | 11 = Signed      | d fractional (Do  | UT = sddd ddd               | ld dd00 000         | 0, where $s = $ . | NOT.d<9>)              |                     |
|               | 10 = Fractions   | hai (DOUT = ac    | 100 0000 000<br>= cccc cccd |                     | where $c = N($    | (<0>b TC               |                     |
|               | 00 = Intege      | r (Dout = 0000    | 00dd dddd                   | dddd)               |                   | 51.u (0 <sup>2</sup> ) |                     |
|               | For 12-Bit C     | Deration:         |                             | ,                   |                   |                        |                     |
|               | 11 = Signed      | fractional (Do    | UT = sddd ddd               | ld dddd 000         | 0, where $s = .$  | NOT.d<11>)             |                     |
|               | 10 = Fractic     | onal (Dout = do   | ldd dddd ddd                | ld 0000)            |                   |                        |                     |
|               | 00 = Intege      | r (DOUT = 0000    | - ssss sada<br>) dddd dddd  | aaaa aaad,<br>dddd) | where $s = .NC$   | JI.U<112)              |                     |
|               |                  | . (2001 - 0000    |                             | adduj               |                   |                        |                     |
| Note 1: S     | See Section 24   | 1.0 "Peripheral   | l Trigger Gene              | rator (PTG) M       | odule" for info   | ormation on this s     | election.           |

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

NOTES:

| Bit Field             | Description                                                                                                                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WDTPRE                | Watchdog Timer Prescaler bit<br>1 = 1:128<br>0 = 1:32                                                                                                                                         |
| WDTPOST<3:0>          | Watchdog Timer Postscaler bits<br>1111 = 1:32,768<br>1110 = 1:16,384<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                         |
| WDTWIN<1:0>           | Watchdog Window Select bits<br>11 = WDT window is 25% of WDT period<br>10 = WDT window is 37.5% of WDT period<br>01 = WDT window is 50% of WDT period<br>00 = WDT window is 75% of WDT period |
| ALTI2C1               | Alternate I2C1 pin<br>1 = I2C1 is mapped to the SDA1/SCL1 pins<br>0 = I2C1 is mapped to the ASDA1/ASCL1 pins                                                                                  |
| ALTI2C2               | Alternate I2C2 pin<br>1 = I2C2 is mapped to the SDA2/SCL2 pins<br>0 = I2C2 is mapped to the ASDA2/ASCL2 pins                                                                                  |
| JTAGEN <sup>(2)</sup> | JTAG Enable bit<br>1 = JTAG is enabled<br>0 = JTAG is disabled                                                                                                                                |
| ICS<1:0>              | ICD Communication Channel Select bits<br>11 = Communicate on PGEC1 and PGED1<br>10 = Communicate on PGEC2 and PGED2<br>01 = Communicate on PGEC3 and PGED3<br>00 = Reserved, do not use       |

### TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

| Base<br>Instr<br># | Assembly<br>Mnemonic |                        | Assembly Syntax             | Description                                       | # of<br>Words | # of<br>Cycles <sup>(2)</sup> | Status Flags<br>Affected |
|--------------------|----------------------|------------------------|-----------------------------|---------------------------------------------------|---------------|-------------------------------|--------------------------|
| 53                 | NEG                  | NEG Acc <sup>(1)</sup> |                             | Negate Accumulator                                | 1             | 1                             | OA,OB,OAB,<br>SA,SB,SAB  |
|                    |                      | NEG                    | f                           | $f = \overline{f} + 1$                            | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | NEG                    | f,WREG                      | WREG = $\overline{f}$ + 1                         | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | NEG                    | Ws,Wd                       | Wd = Ws + 1                                       | 1             | 1                             | C,DC,N,OV,Z              |
| 54                 | NOP                  | NOP                    |                             | No Operation                                      | 1             | 1                             | None                     |
|                    |                      | NOPR                   |                             | No Operation                                      | 1             | 1                             | None                     |
| 55                 | POP                  | POP                    | f                           | Pop f from Top-of-Stack (TOS)                     | 1             | 1                             | None                     |
|                    |                      | POP                    | Wdo                         | Pop from Top-of-Stack (TOS) to Wdo                | 1             | 1                             | None                     |
|                    |                      | POP.D                  | Wnd                         | Pop from Top-of-Stack (TOS) to<br>W(nd):W(nd + 1) | 1             | 2                             | None                     |
|                    |                      | POP.S                  |                             | Pop Shadow Registers                              | 1             | 1                             | All                      |
| 56                 | PUSH                 | PUSH                   | f                           | Push f to Top-of-Stack (TOS)                      | 1             | 1                             | None                     |
|                    |                      | PUSH                   | Wso                         | Push Wso to Top-of-Stack (TOS)                    | 1             | 1                             | None                     |
|                    |                      | PUSH.D                 | Wns                         | Push W(ns):W(ns + 1) to Top-of-Stack<br>(TOS)     | 1             | 2                             | None                     |
|                    |                      | PUSH.S                 |                             | Push Shadow Registers                             | 1             | 1                             | None                     |
| 57                 | PWRSAV               | PWRSAV                 | #lit1                       | Go into Sleep or Idle mode                        | 1             | 1                             | WDTO,Sleep               |
| 58                 | RCALL                | RCALL                  | Expr                        | Relative Call                                     | 1             | 4                             | SFA                      |
|                    |                      | RCALL                  | Wn                          | Computed Call                                     | 1             | 4                             | SFA                      |
| 59                 | REPEAT               | REPEAT                 | #lit15                      | Repeat Next Instruction lit15 + 1 times           | 1             | 1                             | None                     |
|                    |                      | REPEAT                 | Wn                          | Repeat Next Instruction (Wn) + 1 times            | 1             | 1                             | None                     |
| 60                 | RESET                | RESET                  |                             | Software device Reset                             | 1             | 1                             | None                     |
| 61                 | RETFIE               | RETFIE                 |                             | Return from interrupt                             | 1             | 6 (5)                         | SFA                      |
| 62                 | RETLW                | RETLW                  | #lit10,Wn                   | Return with literal in Wn                         | 1             | 6 (5)                         | SFA                      |
| 63                 | RETURN               | RETURN                 |                             | Return from Subroutine                            | 1             | 6 (5)                         | SFA                      |
| 64                 | RLC                  | RLC                    | f                           | f = Rotate Left through Carry f                   | 1             | 1                             | C,N,Z                    |
|                    |                      | RLC                    | f,WREG                      | WREG = Rotate Left through Carry f                | 1             | 1                             | C,N,Z                    |
|                    |                      | RLC                    | Ws,Wd                       | Wd = Rotate Left through Carry Ws                 | 1             | 1                             | C,N,Z                    |
| 65                 | RLNC                 | RLNC                   | f                           | f = Rotate Left (No Carry) f                      | 1             | 1                             | N,Z                      |
|                    |                      | RLNC                   | f,WREG                      | WREG = Rotate Left (No Carry) f                   | 1             | 1                             | N,Z                      |
|                    |                      | RLNC                   | Ws,Wd                       | Wd = Rotate Left (No Carry) Ws                    | 1             | 1                             | N,Z                      |
| 66                 | RRC                  | RRC                    | f                           | f = Rotate Right through Carry f                  | 1             | 1                             | C,N,Z                    |
|                    |                      | RRC                    | f,WREG                      | WREG = Rotate Right through Carry f               | 1             | 1                             | C,N,Z                    |
|                    |                      | RRC                    | Ws,Wd                       | Wd = Rotate Right through Carry Ws                | 1             | 1                             | C,N,Z                    |
| 67                 | RRNC                 | RRNC                   | f                           | f = Rotate Right (No Carry) f                     | 1             | 1                             | N,Z                      |
|                    |                      | RRNC                   | f,WREG                      | WREG = Rotate Right (No Carry) f                  | 1             | 1                             | N,Z                      |
|                    |                      | RRNC                   | Ws,Wd                       | Wd = Rotate Right (No Carry) Ws                   | 1             | 1                             | N,Z                      |
| 68                 | SAC                  | SAC                    | Acc,#Slit4,Wdo()            | Store Accumulator                                 | 1             | 1                             | None                     |
|                    |                      | SAC.R                  | Acc,#Slit4,Wdo\''           | Store Rounded Accumulator                         | 1             | 1                             | None                     |
| 69                 | SE                   | SE                     | Ws,Wnd                      | Wnd = sign-extended Ws                            | 1             | 1                             | C,N,Z                    |
| 10                 | SEIM                 | SEIM                   | I                           |                                                   | 1             | 1                             | None                     |
|                    |                      | SEIM                   | WREG                        |                                                   | 1             | 1                             | None                     |
| 71                 | SFTAC                | SETM                   | ws<br>Acc,Wn <sup>(1)</sup> | Arithmetic Shift Accumulator by (Wn)              | 1             | 1                             | OA,OB,OAB,               |
|                    |                      | SFTAC                  | Acc,#Slit6 <sup>(1)</sup>   | Arithmetic Shift Accumulator by Slit6             | 1             | 1                             | OA,OB,OAB,               |

### TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

# 31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between  $-40^{\circ}$ C to  $+150^{\circ}$ C are identical to those shown in **Section 30.0** "**Electrical Characteristics**" for operation between  $-40^{\circ}$ C to  $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 30.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

# Absolute Maximum Ratings<sup>(1)</sup>

| Ambient temperature under bias <sup>(2)</sup>                                     | 40°C to +150°C        |
|-----------------------------------------------------------------------------------|-----------------------|
| Storage temperature                                                               | 65°C to +160°C        |
| Voltage on VDD with respect to Vss                                                | -0.3V to +4.0V        |
| Voltage on any pin that is not 5V tolerant with respect to Vss <sup>(3)</sup>     | -0.3V to (VDD + 0.3V) |
| Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V <sup>(3)</sup> | -0.3V to 3.6V         |
| Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$      | -0.3V to 5.5V         |
| Maximum current out of Vss pin                                                    | 60 mA                 |
| Maximum current into VDD pin <sup>(4)</sup>                                       | 60 mA                 |
| Maximum junction temperature                                                      | +155°C                |
| Maximum current sourced/sunk by any 4x I/O pin                                    |                       |
| Maximum current sourced/sunk by any 8x I/O pin                                    |                       |
| Maximum current sunk by all ports combined                                        |                       |
| Maximum current sourced by all ports combined <sup>(4)</sup>                      | 70 mA                 |

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
  - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
  - 3: Refer to the "Pin Diagrams" section for 5V tolerant pins.
  - 4: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

### 33.2 Package Details

### 28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | Units    |       | INCHES   |       |
|----------------------------|----------|-------|----------|-------|
| Dimensio                   | n Limits | MIN   | NOM      | MAX   |
| Number of Pins             | Ν        |       | 28       |       |
| Pitch                      | е        |       | .100 BSC |       |
| Top to Seating Plane       | А        | -     | -        | .200  |
| Molded Package Thickness   | A2       | .120  | .135     | .150  |
| Base to Seating Plane      | A1       | .015  | -        | -     |
| Shoulder to Shoulder Width | E        | .290  | .310     | .335  |
| Molded Package Width       | E1       | .240  | .285     | .295  |
| Overall Length             | D        | 1.345 | 1.365    | 1.400 |
| Tip to Seating Plane       | L        | .110  | .130     | .150  |
| Lead Thickness             | С        | .008  | .010     | .015  |
| Upper Lead Width           | b1       | .040  | .050     | .070  |
| Lower Lead Width           | b        | .014  | .018     | .022  |
| Overall Row Spacing §      | eB       | _     | _        | .430  |

### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

# 36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-187C Sheet 1 of 2

# APPENDIX A: REVISION HISTORY

### **Revision A (April 2011)**

This is the initial released version of the document.

### Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

### TABLE A-1: MAJOR SECTION UPDATES

| Section Name                                                                     | Update Description                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "High-Performance, 16-bit<br>Digital Signal Controllers<br>and Microcontrollers" | Changed all pin diagrams references of VLAP to TLA.                                                                                                                                                                                                                                                                     |
| Section 4.0 "Memory<br>Organization"                                             | Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).                                                                                                                                                                                                                |
| Section 5.0 "Flash Program<br>Memory"                                            | Updated "one word" to "two words" in the first paragraph of <b>Section 5.2 "RTSP Operation"</b> .                                                                                                                                                                                                                       |
| Section 9.0 "Oscillator<br>Configuration"                                        | Updated the PLL Block Diagram (see Figure 9-2).<br>Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL<br>(FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).                                                                                                                                 |
|                                                                                  | Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and<br>NOSC<2:0> = 001 in the Oscillator Control Register (see Register 9-1).                                                                                                                                                                                   |
|                                                                                  | Changed the POR value from 0 to 1 for the DOZE<1:0> bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE<2:0> and FRCDIV<2:0> bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2). |
|                                                                                  | Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).                                                                                                                                       |
| Section 22.0 "Charge Time<br>Measurement Unit (CTMU)"                            | Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3).                                                                                                                                                                                                            |
| Section 25.0 "Op amp/<br>Comparator Module"                                      | Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).                                                                                                                                                                                                                                         |