

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gp504-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

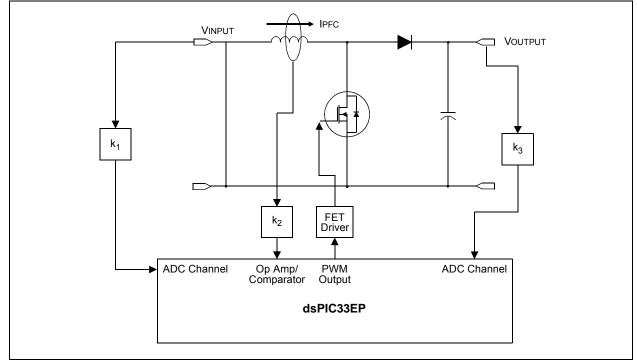
2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < F_{IN} < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.


Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

																		All
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
PTGCST	0AC0	PTGEN	—	PTGSIDL	PTGTOGL		PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWTO	_	_	—	—	PTGIT	M<1:0>	0000
PTGCON	0AC2	F	PTGCLK<2:0> PTGDIV<4:0>						PTGPWD	<3:0>		_	P	TGWDT<2:	0>	0000		
PTGBTE	0AC4	ADCTS<4:1> IC4TSS IC3TSS IC2TSS IC1TSS				IC1TSS	OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS	0000			
PTGHOLD	0AC6	PTGHOLD<15:0>								0000								
PTGT0LIM	0AC8		PTGT0LIM<15:0>								0000							
PTGT1LIM	0ACA		PTGT1LIM<15:0>								0000							
PTGSDLIM	0ACC		PTGSDLIM<15:0>								0000							
PTGC0LIM	0ACE	PTGC0LIM<15:0>								0000								
PTGC1LIM	0AD0	PTGC1LIM<15:0>								0000								
PTGADJ	0AD2								PTGADJ<	:15:0>								0000
PTGL0	0AD4								PTGL0<	15:0>								0000
PTGQPTR	0AD6	—	—	—	—	_	—	—	_	—	—	-		P	TGQPTR<4	4:0>		0000
PTGQUE0	0AD8				STEP	1<7:0>							STEPO)<7:0>				0000
PTGQUE1	0ADA				STEP	'3<7:0>							STEP2	2<7:0>				0000
PTGQUE2	0ADC				STEP	25<7:0>							STEP4	<7:0>				0000
PTGQUE3	0ADE				STEP	7<7:0>							STEP6	6<7:0>				0000
PTGQUE4	0AE0	STEP9<7:0>					STEP8<7:0>				0000							
PTGQUE5	0AE2	STEP11<7:0>					STEP10<7:0>					0000						
PTGQUE6	0AE4	STEP13<7:0>					STEP12<7:0>					0000						
PTGQUE7	0AE6				STEP	15<7:0>				STEP14<7:0>				0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 78

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address prior to modification addresses an EDS or PSV page
- The EA calculation uses Pre-Modified or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-61 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

	-	SV SI ACE BOON						
0/11			Before		After			
O/U, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DATPAG		Page Description	
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1	
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page	
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1	
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1	
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1	
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1	
U, Read	[//11 -]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page	

TABLE 4-61: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and PSV SPACE BOUNDARIES^(2,3,4)

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudo-Linear Addressing is not supported for large offsets.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your brouger.
	this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

9.2.1 KEY RESOURCES

- "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **"Oscillator"** (DS70580) in the *"dsPIC33/ PIC24 Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	_	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				INT2R<6:0>				
bit 7							bit 0	
Legend:								
R = Readal	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-7	Unimplemen	ted: Read as 'd)'					
bit 6-0		Assign Externa -2 for input pin			orresponding RI	Pn Pin bits		
	1111001 = lr	put tied to RPI	121					
	0000001 – Ir	put tied to CMI	⊃1					
		put tied to Civil						

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — T2CKR<6:0>											
U-0 R/W-0 R	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
U-0 R/W-0 R	_	-	—	_	—	—	—	—			
— T2CKR<6:0> bit 7 t Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . .	bit 15							bit 8			
bit 7 Image: Constraint of the system of	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . <td< td=""><td>—</td><td></td><td colspan="9">T2CKR<6:0></td></td<>	—		T2CKR<6:0>								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . <	bit 7							bit 0			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . <											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	Legend:										
bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1	R = Readab	ole bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'				
bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121	-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121											
(see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1	bit 15-7	Unimplemen	ted: Read as 'd)'							
1111001 = Input tied to RPI121	bit 6-0		•		· · ·	he Correspondir	ng RPn pin bits	5			
					,						
		0000001 = Ir	nout tied to CM	⊃1							
·											
		0000000 - II	iput tied to vss								

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		RP39R<5:0>						
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP38R<5:0>						
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bi				'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-14	Unimplemer	nted: Read as '	0'						
bit 13-8	RP39R<5:0>: Peripheral Output Function is Assigned to RP39 Output Pin bits								

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP38R<5:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits
	(see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP41	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP40R<5:0>					
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP41R<5:0>:** Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	—	—	_	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	<u> </u>	—	_		_	FRMDLY	SPIBEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	pit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	FRMEN: Fra	med SPIx Suppo	ort bit				
		SPIx support is e SPIx support is d		x pin is used as	Frame Sync	oulse input/outpu	ıt)
bit 14	SPIFSD: Fra	me Sync Pulse [Direction Co	ontrol bit			
		ync pulse input (ync pulse output					
bit 13	FRMPOL: Fr	ame Sync Pulse	Polarity bit	t			
		ync pulse is activ	•				
		ync pulse is activ					
bit 12-2	-	nted: Read as '0					
bit 1		ame Sync Pulse	-				
		ync pulse coincio ync pulse preceo					
bit 0	SPIBEN: En	hanced Buffer Er	nable bit				
		d buffer is enable					
	0 = Enhance	d buffer is disabl	ed (Standa	rd mode)			

REGISTER 18-3: SPIXCON2: SPIX CONTROL REGISTER 2

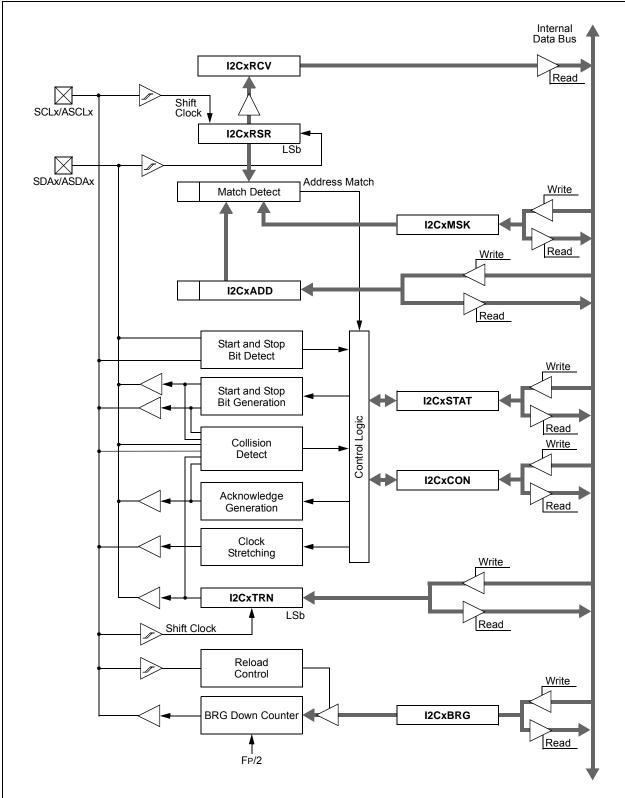


FIGURE 19-1: I2Cx BLOCK DIAGRAM (X = 1 OR 2)

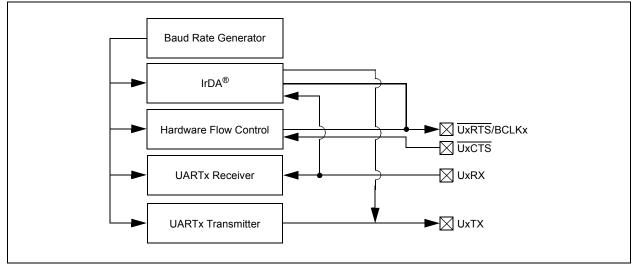
20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "UART" (DS70582) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

Note: <u>Hardware</u> flow control using UxRTS and UxCTS is not available on all pin count devices. See the "**Pin Diagrams**" section for availability.


The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 20-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UARTx SIMPLIFIED BLOCK DIAGRAM

© 2011-2013 Microchip Technology Inc.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	iber bits				
		1 = Invalid sele npares up to Da		6 with EID<17	>			
	•							
	•							
	•							
00001 = Compares up to Data Byte 1, bit 7 with EID<0> 00000 = Does not compare data bytes								

REGISTER 24-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown				

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGADD command.

REGISTER 24-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL0	<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		PTGL0<7:0>						
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PTGL0<15:0>: PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ Step command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Base Instr #	Assembly Mnemonic				# of Words	# of Cycles ⁽²⁾	Status Flags Affected
46 MOV		MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#litl6,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws , Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

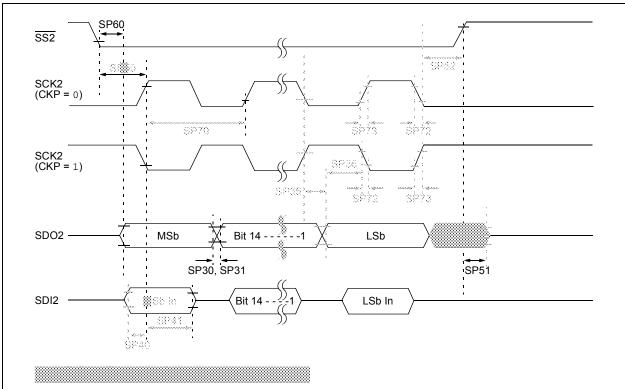
29.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

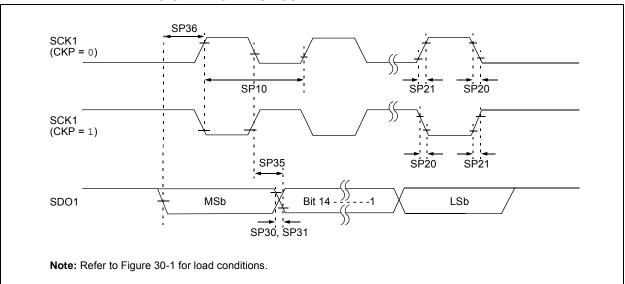
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools


Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-42: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	—		15	MHz	(Note 3)	
SP20	TscF	SCK1 Output Fall Time	-	-	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	-	-	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30			ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

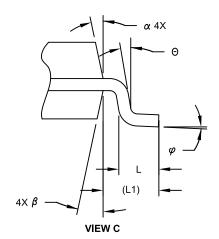
3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

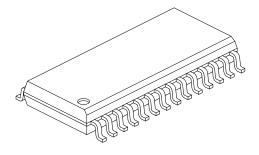
4: Assumes 50 pF load on all SPI1 pins.

TABLE 30-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1	1.5 Tcy + 40	—		ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

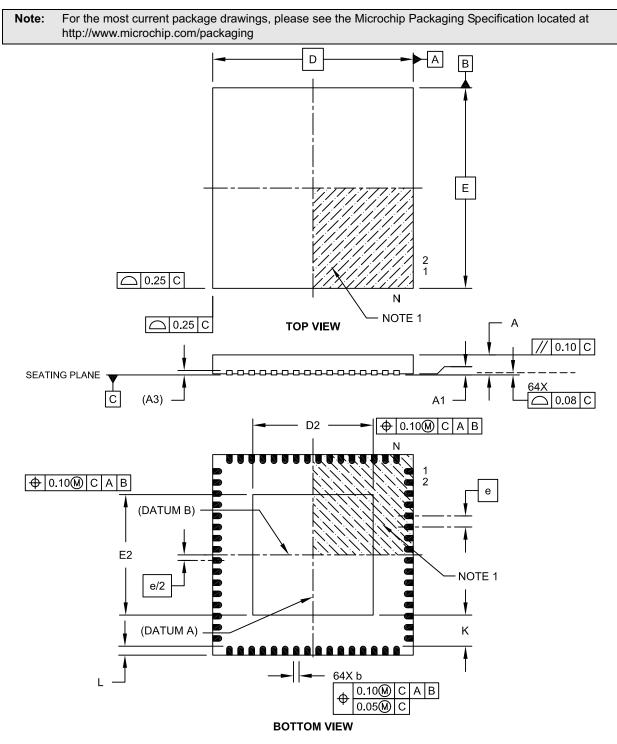

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.


3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


	N	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		1.27 BSC			
Overall Height	Α	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	Е		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length	D		17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.