

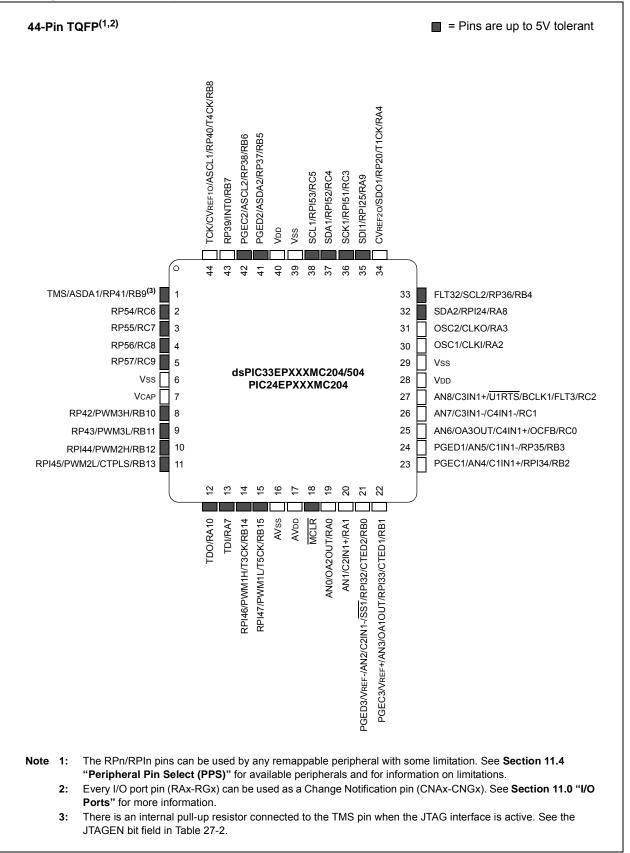
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

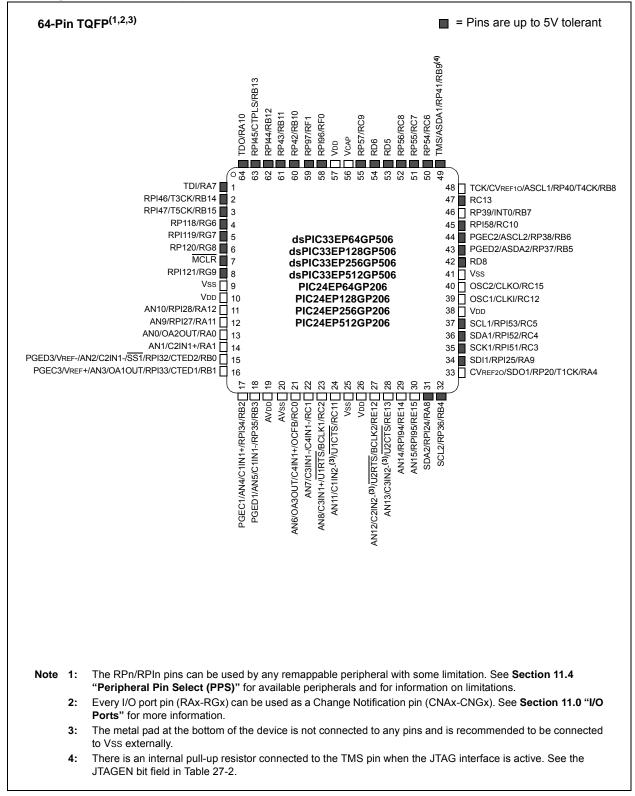
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

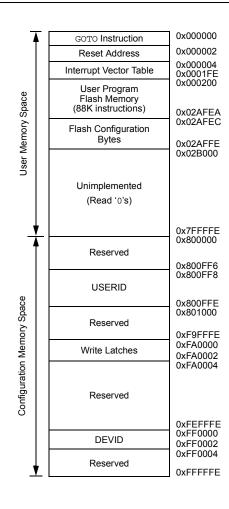
Details


E·XFl

Betails	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gp504-i-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin Diagrams (Continued)

Pin Diagrams (Continued)

FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP256GP50X, dsPIC33EP256MC20X/50X AND PIC24EP256GP/MC20X DEVICES

Note: Memory areas are not shown to scale.

TABLE 4	4-31:	PER	IPHERA	L PIN S	ELECT	INPUT F	REGISTI	ER MAP	FOR de	sPIC33E	EPXXXG	P50X D	EVICES	SONLY	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>				_	_	—	—	—	—	—	_	0000
RPINR1	06A2		_	_	_	_	_	_	_	_				INT2R<6:0>	•			0000
RPINR3	06A6		_	_	_	_	_	_			٦	[2CKR<6:0	>			0000		
RPINR7	06AE			IC2R<6:0>						_				IC1R<6:0>				0000
RPINR8	06B0					IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6		_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000
RPINR18	06C4		_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6		_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC				S	CK2INR<6:0)>			_			:	SDI2R<6:0>	•			0000
RPINR23	06CE	_	_	_	—	—	_	_	—	—	0000 -0.0							0000
RPINR26	06D4	—	_	_	-	_	_	—		—			(C1RXR<6:0	>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0>				—	—	—	—	—	—	—	_	0000
RPINR1	06A2		_	_	_	_	_	_	_	_				INT2R<6:0>				0000
RPINR3	06A6		_	_	_	_	_	_	_	_			-	F2CKR<6:0	>			0000
RPINR7	06AE					IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0			IC4R<6:0>					_				IC3R<6:0>				0000	
RPINR11	06B6		_					_	_			(DCFAR<6:0	>			0000	
RPINR12	06B8					FLT2R<6:0>	•			_				FLT1R<6:0>	•			0000
RPINR14	06BC				(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE				Н	OME1R<6:0)>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4		_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6		_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC	_			S	CK2INR<6:()>			—				SDI2R<6:0>	•			0000
RPINR23	06CE	_	—	—		—	—		—	—				SS2R<6:0>				0000
RPINR26	06D4	_	_	_		—	—		—	—			(C1RXR<6:0	>			0000
RPINR37	06EA	_		SYNCI1R<6:0>						—	—	—	—	—				0000
RPINR38	06EC	_			D	CMP1R<6:	0>			—	—	—	—	_				0000
RPINR39	06EE	_			D	FCMP3R<6:	0>			_			D	CMP2R<6:	0>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TABLE 4-34: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets				
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	—	_	_	_	_	—		NVMC)P<3:0>		0000				
NVMADRL	072A								NVMAD)R<15:0>							0000					
NVMADRH	072C	_	_	_	_	-	_	_	_				NVMADF	R<23:16>			0000					
NVMKEY	072E			_	—	_		—	-				NVMKE	Y<7:0>								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	_	VREGSF	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	0	COSC<2:0>		—		NOSC<2:0>		CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	[OOZE<2:0>		DOZEN	F	RCDIV<2:0	>	PLLPOS	T<1:0>	_		F	LLPRE<	4:0>		0030
PLLFBD	0746	_	_	_	_	—	_	_	DLL DNL 60					0030				
OSCTUN	0748	_	_	_	_	—	_	_	_	_				TUN≤	<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration Fuses.

TABLE 4-36: REFERENCE CLOCK REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	—	ROSSLP	ROSEL		RODI	V<3:0>		_	_	—	_	_	—	_	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-49: PORTD REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30	_	_	_		_	_	_	TRISD8		TRISD6	TRISD5					_	0160
PORTD	0E32	_	_		_	_	_		RD8	—	RD6	RD5	—	_	_	_		xxxx
LATD	0E34	_	_		_	_	_		LATD8	—	LATD6	LATD5	—	_	_	_		xxxx
ODCD	0E36	_			-				ODCD8	—	ODCD6	ODCD5	—	_	_	_		0000
CNEND	0E38	_			-				CNIED8	—	CNIED6	CNIED5	—	_	_	_		0000
CNPUD	0E3A	_	_		_	_	_		CNPUD8	—	CNPUD6	CNPUD5	—	_	_	_		0000
CNPDD	0E3C	_	_		_	_	_		CNPDD8	—	CNPDD6	CNPDD5	—	_	_	_		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

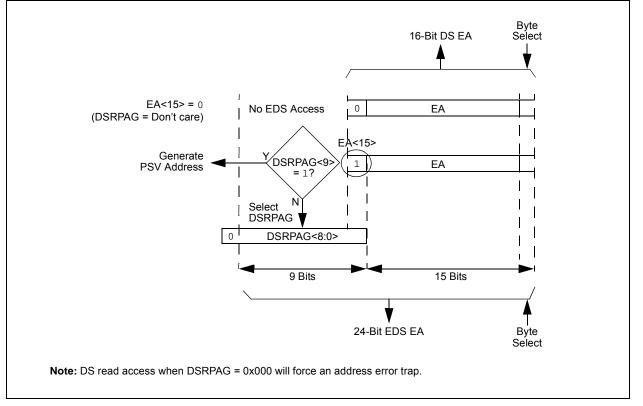
TABLE 4-50: PORTE REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40	TRISE15	TRISE14	TRISE13	TRISE12	—	_	_	—	_		-	—	—	_	—		F000
PORTE	0E42	RE15	RE14	RE13	RE12	_	—	—	—	-	—	—	_	—	—	—	—	xxxx
LATE	0E44	LATE15	LATE14	LATE13	LATE12	_	_		—	_	_		_	—	-	—	_	xxxx
ODCE	0E46	ODCE15	ODCE14	ODCE13	ODCE12	—	-	-	_			-	—	—	_	_	-	0000
CNENE	0E48	CNIEE15	CNIEE14	CNIEE13	CNIEE12	_	—	—	—	-	—	—	_	—	—	—	—	0000
CNPUE	0E4A	CNPUE15	CNPUE14	CNPUE13	CNPUE12	_	_		—	_	_		_	—	-	—	_	0000
CNPDE	0E4C	CNPDE15	CNPDE14	CNPDE13	CNPDE12	_	_	_	_	-	_	—	_	—	_	_	_	0000
ANSELE	0E4E	ANSE15	ANSE14	ANSE13	ANSE12		—	_	—	_	_	_			_		_	F000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-51: PORTF REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	—	-	—		—		—	-	-	—	-	-	—	-	TRISF1	TRISF0	0003
PORTF	0E52	—	—	_	—	—	—	—	_	—	—	—	—	—	—	RF1	RF0	xxxx
LATF	0E54	—	—	—	—	—	—	—	—	—	—	—	—	—	—	LATF1	LATF0	xxxx
ODCF	0E56	_	-	_	-	—	-	—			—			_	-	ODCF1	ODCF0	0000
CNENF	0E58		—	-		—	-	_	-	-	—	-	-	—	-	CNIEF1	CNIEF0	0000
CNPUF	0E5A	—	—	—	—	—	—	—	—	—	—	—	—	—	—	CNPUF1	CNPUF0	0000
CNPDF	0E5C	_	_	_	_	-		_	_	_	_	_	_	_	-	CNPDF1	CNPDF0	0000


Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Example 4-1. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when base address bit, EA<15> = 1, DSWPAG<8:0> are concatenated onto EA<14:0> to form the 24-bit EDS write address.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С
bit 7							bit 0

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
-	—	—	—	—	—	—	—			
bit 15										
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1			
_	_	_	_	LSTCH<3:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value a	-n = Value at POR '1' = Bit is			'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-4	Unimplemen	ted: Read as '	0'							
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	e Status bits						
	1111 = No DI 1110 = Rese	MA transfer has rved	s occurred sir	nce system Res	set					
	•									
	•									
	•									
		data transfer wa								
	0010 = Last data transfer was handled by Channel 2 0001 = Last data transfer was handled by Channel 1									

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

0000 = Last data transfer was handled by Channel 0 0000 = Last data transfer was handled by Channel 0

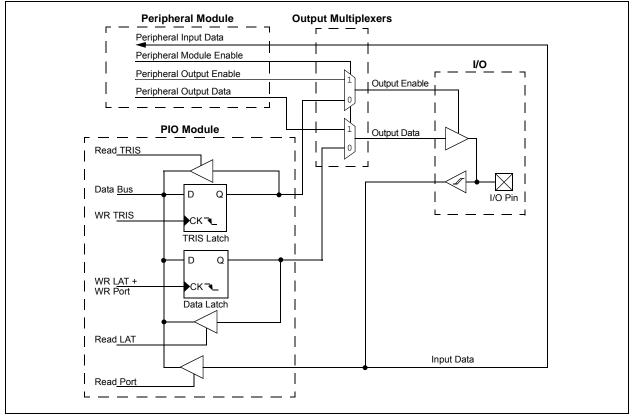
11.0 I/O PORTS

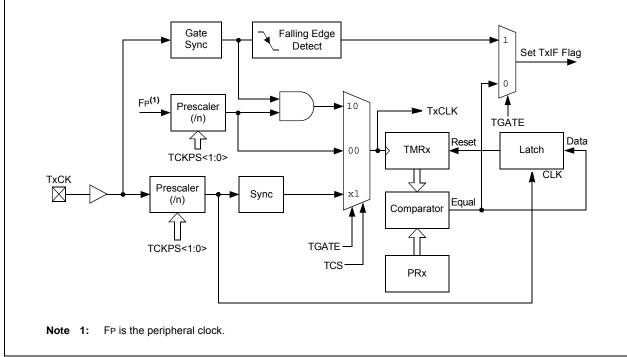
- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70598) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.


All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx) read the latch. Writes to the Latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

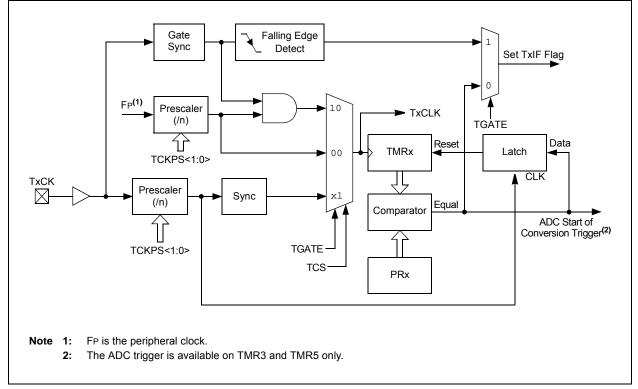

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)

FIGURE 13-1:TYPE B TIMER BLOCK DIAGRAM (x = 2 AND 4)

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		QEIG	EC<31:24>					
						bit 8		
	DAMO				DAMO			
R/W-U	R/W-0			R/W-U	R/W-U	R/W-0		
		QEIGE	EC<23:16>					
						bit (
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		ared	x = Bit is unknown			
		W = Writable bi	R/W-0 R/W-0 QEIGI W = Writable bit	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplem	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplemented bit, real	R/W-0 R/W-0 R/W-0 R/W-0 QEIGEC<23:16> U = Unimplemented bit, read as '0'		

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit i			nown	

bit 15-0 QEIGEC<15:0>: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CH0NB	_	—	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾				
bit 15	•			•			bit 8				
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CH0NA			CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾				
bit 7							bit (
Legend:											
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'											
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15		nannel 0 Negative	Input Soloot fo	r Samala MUV	'D hit						
DIL 15		el 0 negative input									
		el 0 negative input									
bit 14-13	Unimplem	ented: Read as 'o)'								
bit 12-8	CH0SB<4:	0>: Channel 0 Po	sitive Input Sele	ect for Sample	MUXB bits ⁽¹⁾						
		pen; use this sele				ement					
	11110 = C	nannel 0 positive in	put is connected	to the CTMU te	emperature mea	surement diode	(CTMU TEMF				
		11101 = Reserved 11100 = Reserved									
		11100 = Reserved 11011 = Reserved									
		11011 – Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)									
		11001 = Channel 0 positive input is the output of OA2/AN0 ⁽²⁾									
	11000 = C	hannel 0 positive	input is the outp	out of OA1/AN3	₃ (2)						
	10111 = R	eserved									
	•										
	•										
	10000 = R	eserved									
	01111 = C	01111 = Channel 0 positive input is AN15 ⁽³⁾									
	01110 = C	01110 = Channel 0 positive input is AN14 ⁽³⁾ 01101 = Channel 0 positive input is AN13 ⁽³⁾									
	01101 = C	nannel 0 positive	Input is AN130								
	•										
	•										
	00010 = C	hannel 0 positive	input is AN2 ⁽³⁾								
		00001 = Channel 0 positive input is AN1 ⁽³⁾ 00000 = Channel 0 positive input is AN0 ⁽³⁾									
L:1 7		•	•		A 64						
bit 7		nannel 0 Negative	·	r Sample MUX	ADI						
		el 0 negative input									
bit 6-5		ented: Read as '									
Note 1:	to determine I	AN7 are repurpos now enabling a pa									
-	and 3.						- >				
2:	The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1);										

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

3: See the "**Pin Diagrams**" section for the available analog channels for each device.

otherwise, the ANx input is used.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
OC4CS		OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS					
bit 7		00100					bit (
Legend:												
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown					
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	OC bit								
	1 = Generate	es Trigger wher	the broadcas	t command is	executed							
	0 = Does not	generate Trigg	er when the b	roadcast com	mand is execute	ed						
bit 14		mple Trigger P										
		1 = Generates Trigger when the broadcast command is executed										
bit 13		 0 = Does not generate Trigger when the broadcast command is executed ADCTS2: Sample Trigger PTGO13 for ADC bit 										
DIE 13		es Trigger wher			evecuted							
					mand is execute	ed						
bit 12		mple Trigger P										
	1 = Generate	es Trigger wher	the broadcas	t command is	executed							
		0 = Does not generate Trigger when the broadcast command is executed										
bit 11	-	ger/Synchroniz										
					ast command is broadcast con		ited					
bit 10	IC3TSS: Trig	ger/Synchroniz	ation Source f	for IC3 bit								
					ast command is broadcast con		ited					
bit 9	IC2TSS: Trig	ger/Synchroniz	ation Source f	for IC2 bit								
					ast command is broadcast con		ited					
bit 8		ger/Synchroniz										
					ast command is broadcast con		ited					
bit 7		= Does not generate Trigger/Synchronization when the broadcast command is executed DC4CS: Clock Source for OC4 bit										
		es clock pulse v generate clock			d is executed command is exe	cuted						
bit 6		ck Source for C	-									
		es clock pulse v aenerate clock			d is executed command is exe	cuted						
bit 5		ck Source for C	-									
	1 = Generate	es clock pulse v	when the broad		d is executed command is exe	cuted						
	This register is rea PTGSTRT = 1).	-					and					
	This register is on	lv used with the	PTGCTRI. OI	PTION = 1111	Step command	L						
		.,			c.op commune	•						

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Condition			Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes
OS51	Fvco	On-Chip VCO System Frequency	120	—	340	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

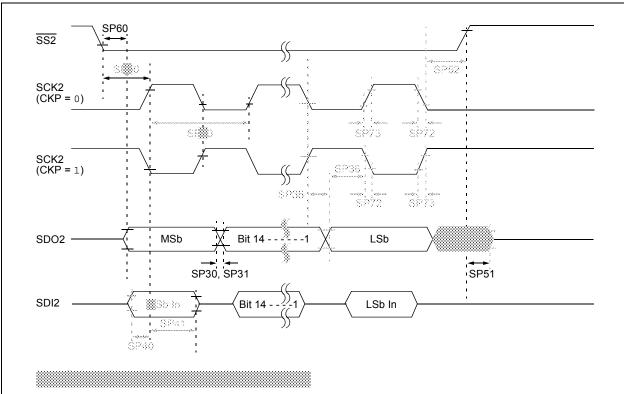
2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY


AC CHA	RACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T A \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq T A \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
Internal	FRC Accuracy @ FRC Fre	equency =	: 7.37 MHz	<u>,(1)</u>				
F20a	FRC	-1.5	0.5	+1.5	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V	
		-1	0.5	+1	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V	
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
LPRC (@ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-30	—	+30	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V	
		-20	_	+20	%	$-10^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 3.0-3.6V	
F21b	LPRC	-30	_	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: The change of LPRC frequency as VDD changes.

FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

AC CHA	ARACTER	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
		Cloci	k Parame	eters					
AD50	TAD	ADC Clock Period	76	_	_	ns			
AD51	tRC	ADC Internal RC Oscillator Period ⁽²⁾		250	_	ns			
		Conv	version F	Rate		•			
AD55	tCONV	Conversion Time		12 Tad	_				
AD56	FCNV	Throughput Rate	_	—	1.1	Msps	Using simultaneous sampling		
AD57a	TSAMP	Sample Time when Sampling any ANx Input	2 Tad	—	_	—			
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	4 Tad	_	—	—			
		Timin	g Param	eters					
AD60	tPCS	Conversion Start from Sample Trigger ^(2,3)	2 Tad	—	3 Tad	_	Auto-convert trigger is not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ^(2,3))	2 Tad	—	3 Tad	—			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)	_	0.5 Tad		—			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)		—	20	μs	(Note 6)		

TABLE 30-61: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADC result is indeterminate.

TABLE 30-62: DMA MODULE TIMING REQUIREMENTS

AC CH			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)	-	_	ns			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

^{© 2011-2013} Microchip Technology Inc.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	—	—	0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	—	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	—	—	V	IOH ≥ -10 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	—	—	V	ІОн ≥ 15 mA, VDD = 3.3V (Note 1)
HDO20A	Voн1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	—	—	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)
			2.0	—	—		IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)
			3.0	—	—		IOH ≥ -2 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	_	_	V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)
			2.0	—	—		$IOH \ge -6.8 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$ (Note 1)
			3.0	—	—		IOH ≥ -3 mA, VDD = 3.3V (Note 1)

TABLE 31-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<15:7> and RC3
 For 64-pin devices: RA4, RA9, RB<15:7>, RC3 and RC15