

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gp504-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP128GP50X, dsPIC33EP128MC20X/50X AND PIC24EP128GP/MC20X DEVICES

TABLE 4	4-9:	INPU		URE 1 T	HROUG	SH INPU	IT CAPI	URE 4	REGIST	ER MA	Р										
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets			
IC1CON1	0140	_	_	ICSIDL		CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000			
IC1CON2	0142	_	—	_	—	—	—	—	IC32	ICTRIG	TRIGSTAT	_		S	/NCSEL<4	:0>		000D			
IC1BUF	0144							Inp	ut Capture	1 Buffer Re	gister							xxxx			
IC1TMR	0146								Input Cap	ture 1 Time	r							0000			
IC2CON1	0148	_	—																		
IC2CON2	014A	_	IC32 ICTRIG TRIGSTAT - SYNCSEL<4:0> 01											000D							
IC2BUF	014C							Inp	ut Capture	2 Buffer Re	gister							xxxx			
IC2TMR	014E								Input Cap	ture 2 Time	r							0000			
IC3CON1	0150	_	—	ICSIDL		CTSEL<2:0	>	_	—	_	ICI<'	1:0>	ICOV	ICBNE		ICM<2:0>		0000			
IC3CON2	0152	_	—	_	—	—	—	—	IC32	ICTRIG	TRIGSTAT	_		S	/NCSEL<4	:0>		000D			
IC3BUF	0154							Inp	ut Capture	3 Buffer Re	gister							xxxx			
IC3TMR	0156								Input Cap	ture 3 Time	r							0000			
IC4CON1	0158	_	_	ICSIDL	I	CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000			
IC4CON2	015A	_	IC32 ICTRIG TRIGSTAT - SYNCSEL<4:0> 000D																		
IC4BUF	015C		Input Capture 4 Buffer Register xxxx																		
IC4TMR	015E								Input Cap	Input Capture 4 Timer 0000											

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

			ERIFHERAL FIN SELECT INFUT REGISTER MAP FOR FIC24EF AANNICZUA DEVICES UNLT															
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0>	>			—	-	-	_	—	—	—	—	0000
RPINR1	06A2	_	_	_	_	_	—	_	—	_				INT2R<6:0>	•			0000
RPINR3	06A6	_	_	_	_		_		—	– – T2CKR<6:0>						0000		
RPINR7	06AE	_				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0			IC4R<6:0>						_	IC3R<6:0>							0000
RPINR11	06B6	_	_						—	_	OCFAR<6:0>							0000
RPINR12	06B8	_		FLT2R<6:0>						_				FLT1R<6:0>	>			0000
RPINR14	06BC	_			(QEB1R<6:0	>						(QEA1R<6:0	>			0000
RPINR15	06BE				Н	OME1R<6:0	0>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4		_	_	_	_	—	_	_	_	U1RXR<6:0>							0000
RPINR19	06C6		_	_	_	_	—	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC				S	CK2INR<6:	0>			_				SDI2R<6:0>	>			0000
RPINR23	06CE		_	_	_	_	—	_	_	_				SS2R<6:0>				0000
RPINR26	06D4		_						_	_	_	_	_	_	_	_	_	0000
RPINR37	06EA		SYNCI1R<6:0>						_	_	_	_	_	_	_	_	0000	
RPINR38	06EC	_		DTCMP1R<6:0>					_							0000		
RPINR39	06EE	_		DTCMP3R<6:0>						_	DTCMP2R<6:0>							0000

TABLE 4-29: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
RPINR0	06A0	—				INT1R<6:0>	•			_	—	_	—	_	—	—		0000		
RPINR1	06A2	—	_	_	—	_	—	—	—	_	- INT2R<6:0>						0000			
RPINR3	06A6	—	_	_	—	_	—	—	—	_	T2CKR<6:0>					– T2CKR<6:0>				0000
RPINR7	06AE	—				IC2R<6:0>				_				IC1R<6:0>				0000		
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000		
RPINR11	06B6	_	_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000		
RPINR18	06C4	_	_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000		
RPINR19	06C6	_	_	_	_	_	_	_	_	_	U2RXR<6:0>					0000				
RPINR22	06CC	_			S	CK2INR<6:0)>			_	SDI2R<6:0>					0000				
RPINR23	06CE	_	_	_	_	—	_	_	_	_				SS2R<6:0>				0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A		_		_		PWM3MD	PWM2MD	PWM1MD			—	—	—	_	—		0000
													DMA0MD					
	0760												DMA1MD	DTOMD				0000
FINDT	0700	_	_	_	_	_	_	_	_	—	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 4-3: PAGED DATA MEMORY SPACE

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8
R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

bit 7			bit 0
Legend:	HS = Hardware Settal	ble bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	

SYNCSEL4⁽⁴⁾ SYNCSEL3⁽⁴⁾ SYNCSEL2⁽⁴⁾ SYNCSEL1⁽⁴⁾

SYNCSEL0⁽⁴⁾

		P	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

TRIGSTAT⁽³⁾

ICTRIG⁽²⁾

bit 8

- IC32: Input Capture 32-Bit Timer Mode Select bit (Cascade mode)
 - 1 = Odd IC and Even IC form a single 32-bit input capture module⁽¹⁾
 - 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture Trigger Operation Select bit⁽²⁾

- 1 = Input source used to trigger the input capture timer (Trigger mode)
- 0 = Input source used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear

bit 5 Unimplemented: Read as '0'

- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO8 = IC1 PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

DS70000657H-page 216

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from the slave
	0 = Write – Indicates data transfer is input to the slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.

20.3 UARTx Control Registers

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0								
UARTEN	יין <u>-</u>	USIDL	IREN ⁽²⁾	RTSMD	—	UEN1	UEN0								
bit 15							bit 8								
R/W-0, H	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL								
bit 7							bit 0								
Legend:		HC = Hardwa	re Clearable bi	t											
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'									
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown								
bit 15	UARTEN: UA 1 = UARTx is 0 = UARTx is minimal	NRTx Enable bit s enabled; all U s disabled; all U	(1) ARTx pins are IARTx pins are	controlled by U controlled by F	IARTx as define PORT latches; L	ed by UEN<1:0: JARTx power c	> onsumption is								
bit 14	Unimplemen	Unimplemented: Read as '0'													
bit 13	USIDL: UART	USIDL: UARTx Stop in Idle Mode bit													
	1 = Discontin 0 = Continue	1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode													
bit 12	IREN: IrDA [®] I	Encoder and D	ecoder Enable	bit ⁽²⁾											
	1 = IrDA ence	oder and decor	der are enabled	ł											
	0 = IrDA enco	oder and decod	der are disable	d											
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bit												
	1 = UXRISp 0 = UXRISp	in is in Simplex	mode												
bit 10		ted: Read as '	n'												
hit 9-8			ole hits												
	11 = UxTX. U	JxRX and BCL	(x pins are ena	bled and used:	UxCTS pin is c	ontrolled by PC)RT latches ⁽³⁾								
	10 = UxTX , U	IxRX, UxCTS a	nd UxRTS pin	s are enabled a	nd used ⁽⁴⁾	, ,									
	01 = UxTX, U	JxRX and UxRT	S pins are ena	bled and used;	UxCTS pin is c	ontrolled by PC	ORT latches ⁽⁴⁾								
	00 = UXIX ai PORT la	nd UXRX pins a	are enabled ar	id used; UXCTS	S and UXRIS/E	CLKx pins are	controlled by								
hit 7	WAKE: Wake	-un on Start hit	Detect During	Sleen Mode Fr	hable bit										
	1 = UARTx c	ontinues to sar	nple the UxRX	pin: interrupt is	generated on t	he falling edge	: bit is cleared								
	in hardwa	are on the follow	wing rising edg	e	g		,								
	0 = No wake	-up is enabled													
bit 6	LPBACK: UA	RTx Loopback	Mode Select b	bit											
	1 = Enables	Loopback mod	e												
	0 = Loopbacl	k mode is disab	Died												
Note 1:	Refer to the "UAF enabling the UAR	RT " (DS70582) Tx module for r	section in the " eceive or transi	dsPIC33/PIC24 mit operation.	Family Referen	<i>ce Manual"</i> for i	nformation on								
2:	This feature is on	ly available for	the 16x BRG r	mode (BRGH =	0).										
3:	This feature is on	ly available on	44-pin and 64-	pin devices.											

4: This feature is only available on 64-pin devices.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 24-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			PTGT0	_IM<15:8>								
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			PTGTC	LIM<7:0>								
bit 7							bit 0					
Legend:												
R = Readable I	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits General Purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1LI	IM<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1L	_IM<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits

General Purpose Timer1 Limit register (effective only with a PTGT1 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

RW-0 U-0 R/W-0 R-0 R-0 R-0 R-0 R-0 CRCEN - CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWOR bit 15 - CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWOR CRCFUL CRCMPT CRCISEL CRCGO LENDIAN - - - - bit 7 -					<u> </u>		<u> </u>			
CRCEN — CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWOR bit 15	R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0		
bit 15 R-0 R-1 R/W-0 R/W-0 U-0 U-0 U-0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — — — bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset SFRs are not reset bit 14 Unimplemented: Read as '0'	CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0		
R.0 R.1 R/W-0 R/W-0 U-0 U-0 U-0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — …	bit 15							bit 8		
R-0 R-1 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — — — bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' — …										
CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — # #	R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is enabled 0 = CRC module is enabled; 0 = CRC module is enabled; 0 = CRC WDAT/CRCDAT are reset; or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0> : Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not empty 0 = FIFO is not empty 0 = FIFO is not empty 0 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 1 = St	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	_	—		
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0-> Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 1 = Data word is biffed in the CPC startion with the 1 Sh (ittle notion)	bit 7							bit 0		
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD -> Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Full bit 1 = FIFO is not full 1 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 1 = Dita word is chifte										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD-4:00: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not full 0 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial	Legend:									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0' = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' 5 Enable bit 1 = Discontinues module operation when device enters ldle mode 0 = Continues module operation in ldle mode bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation in ldle mode 0 = Continues module operation in ldle mode bit 12-8 VWORD -4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not full 0 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = FIFO is not fift is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter<	R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, of SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD VWORD Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> < 7.	-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not full 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 1 = Data word is still be CRC starting with the LSh (little endiap)	bit 15	CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, other SERs are not reset						re reset, other		
bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty 0 = FIFO is not full CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off Dit 3 LENDIAN: Data Word Little-Endian Configuration bit	bit 14	Unimplemen	ted: Read as '	0'						
1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> ≤ 0r 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 0 = CRC serial shifter is turned off	bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit						
bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty 0 = FIFO is not empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit		1 = Discontin 0 = Continue	ues module op s module oper	peration when ation in Idle m	device enters lode	Idle mode				
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is ont full 1 = FIFO is empty 0 = FIFO is not empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit	bit 12-8	VWORD<4:0	>: Pointer Valu	e bits						
bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit		Indicates the or 16 when Pl	number of valid LEN<4:0> \leq 7.	d words in the	FIFO. Has a r	naximum value	of 8 when PLE	N<4:0> > 7		
1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit	bit 7	CRCFUL: CRC FIFO Full bit								
0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit		1 = FIFO is fu	ull							
bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit			iot full							
0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little andian)	bit 6	1 = FIFO is empty								
bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little endian)		0 = FIFO is n	ot empty							
1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little andian)	bit 5	CRCISEL: CRC Interrupt Selection bit								
bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little andian)		1 = Interrupt 0 = Interrupt	on FIFO is em on shift is com	pty; final word plete and CR(of data is still CWDAT results	shifting through are ready	CRC			
 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little endian) 	bit 4	CRCGO: Start CRC bit								
bit 3 LENDIAN: Data Word Little-Endian Configuration bit		1 = Starts CF 0 = CRC seri	RC serial shifter is tur	r ned off						
1 = Data word is shifted into the CPC starting with the LSh (little and ign)	bit 3	LENDIAN: Data Word Little-Endian Configuration bit								
0 = Data word is shifted into the CRC starting with the MSb (big endian)		1 = Data wor 0 = Data wor	d is shifted into d is shifted into	the CRC sta	rting with the L rting with the N	Sb (little endiar ISb (big endian	1))			
bit 2-0 Unimplemented: Read as '0'	bit 2-0	Unimplemen	ted: Read as '	0'	-					

27.6 JTAG Interface

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"
	(DS70608) in the "dsPIC33/PIC24 Family
	Reference Manual" for further information
	on usage, configuration and operation of the
	JTAG interface.

27.7 In-Circuit Serial Programming

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.8 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.9 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

Note: Refer to "CodeGuard[™] Security" (DS70634) in the "dsPIC33/PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

29.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 30-34: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency	—	_	15	MHz	(Note 3)
SP20	TscF	SCK2 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK2 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2

Section Name	Update Description
Section 30.0 "Electrical	These SPI2 Timing Requirements were updated:
Characteristics" (Continued)	 Maximum value for Parameter SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-36, Table 30-37, and Table 30-38)
	Maximum value for Parameter SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-40 and Table 30-42)
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-43)
	These SPI1 Timing Requirements were updated:
	Maximum value for Parameters SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-44, Table 30-45, and Table 30-46)
	 Maximum value for Parameters SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-47 through Table 30-50)
	 Minimum value for Parameters SP40 and SP41 see Table 30-44 through Table 30-50)
	Updated all Typical values for the CTMU Current Source Specifications (see Table 30-55).
	Updated Note1, the Maximum value for Parameter AD06, the Minimum value for AD07, and the Typical values for AD09 in the ADC Module Specifications (see Table 30-56).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 30-57).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 30-58).
	Updated the Minimum and Maximum values for Parameter AD21b in the 10-bit Mode ADC Module Specifications (see Table 30-58).
	Updated Note 2 in the ADC Conversion (12-bit Mode) Timing Requirements (see Table 30-59).
	Updated Note 1 in the ADC Conversion (10-bit Mode) Timing Requirements (see Table 30-60).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

Revision F (November 2012)

Removed "Preliminary" from data sheet footer.

Revision G (March 2013)

This revision includes the following global changes:

- changes "FLTx" pin function to "FLTx" on all occurrences
- adds Section 31.0 "High-Temperature Electrical Characteristics" for high-temperature (+150°C) data

This revision also includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-5.

Section Name	Update Description
Cover Section	 Changes internal oscillator specification to 1.0% Changes I/O sink/source values to 12 mA or 6 mA Corrects 44-pin VTLA pin diagram (pin 32 now shows as 5V tolerant)
Section 4.0 "Memory Organization"	 Deletes references to Configuration Shadow registers Corrects the spelling of the JTAGIP and PTGWDTIP bits throughout Corrects the Reset value of all IOCON registers as C000h Adds footnote to Table 4-42 to indicate the absence of Comparator 3 in 28-pin devices
Section 6.0 "Resets"	 Removes references to cold and warm Resets, and clarifies the initial configuration of the device clock source on all Resets
Section 7.0 "Interrupt Controller"	Corrects the definition of GIE as "Global Interrupt Enable" (not "General")
Section 9.0 "Oscillator Configuration"	 Clarifies the behavior of the CF bit when cleared in software Removes POR behavior footnotes from all control registers Corrects the tuning range of the TUN<5:0> bits in Register 9-4 to an overall range ±1.5%
Section 13.0 "Timer2/3 and Timer4/5"	Clarifies the presence of the ADC Trigger in 16-bit Timer3 and Timer5, as well as the 32-bit timers
Section 15.0 "Output Compare"	Corrects the first trigger source for SYNCSEL<4:0> (OCxCON2<4:0>) as OCxRS match
Section 16.0 "High-Speed PWM Module"	 Clarifies the source of the PWM interrupts in Figure 16-1 Corrects the Reset states of IOCONx<15:14> in Register 16-13 as '11'
Section 17.0 "Quadrature Encoder Interface (QEI) Module"	 Clarifies the operation of the IMV<1:0> bits (QEICON<9:8>) with updated text and additional notes Corrects the first prescaler value for QFVDIV<2:0> (QEI10C<13:11>), now 1:128
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	 Adds note to Figure 23-1 that Op Amp 3 is not available in 28-pin devices Changes "sample clock" to "sample trigger" in AD1CON1 (Register 23-1) Clarifies footnotes on op amp usage in Registers 23-5 and 23-6
Section 25.0 "Op Amp/ Comparator Module"	 Adds Note text to indicate that Comparator 3 is unavailable in 28-pin devices Splits Figure 25-1 into two figures for clearer presentation (Figure 25-1 for Op amp/ Comparators 1 through 3, Figure 25-2 for Comparator 4). Subsequent figures are renumbered accordingly. Corrects reference description in xxxxx (now (AVDD+AVss)/2) Changes CMSTAT<15> in Register 25-1 to "PSIDL"
Section 27.0 "Special Features"	Corrects the addresses of all Configuration bytes for 512 Kbyte devices

TABLE A-5: MAJOR SECTION UPDATES

Revision H (August 2013)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-6.

TABLE A-6:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
Cover Section	Adds Peripheral Pin Select (PPS) to allow Digital Function Remapping and Change
	Notification Interrupts to Input/Output section
	Adds heading information to 64-Pin TQFP
Section 4.0 "Memory	Corrects Reset values for ANSELE, TRISF, TRISC, ANSELC and TRISA
Organization"	Corrects address range from 0x2FFF to 0x7FFF
	 Corrects DSRPAG and DSWPAG (now 3 hex digits)
	 Changes Call Stack Frame from <15:1> to PC<15:0>
	Word length in Figure 4-20 is changed to 50 words for clarity
Section 5.0 "Flash Program Memory"	Corrects descriptions of NVM registers
Section 9.0 "Oscillator	Removes resistor from Figure 9-1
Configuration"	Adds Fast RC Oscillator with Divide-by-16 (FRCDIV16) row to Table 9-1
	Removes incorrect information from ROI bit in Register 9-2
Section 14.0 "Input Capture"	Changes 31 user-selectable Trigger/Sync interrupts to 19 user-selectable Trigger/ Sync interrupts
	Corrects ICTSEL<12:10> bits (now ICTSEL<2:0>)
Section 17.0 "Quadrature Encoder Interface (QEI)	Corrects QCAPEN bit description
Module	
(dsPIC33EPXXXMC20X/50X	
Devices Only)"	
Section 19.0 "Inter-	Adds note to clarify that 100kbit/sec operation of I ² C is not possible at high processor
Integrated Circuit™ (I ² C™)"	speeds
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Clarifies Figure 22-1 to accurately reflect peripheral behavior
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Correct Figure 23-1 (changes CH123x to CH123Sx)
Section 24.0 "Peripheral Trigger Generator (PTG) Module"	 Adds footnote to Register 24-1 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled.
Section 25.0 "Op Amp/ Comparator Module"	• Adds note to Figure 25-3 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled)
	 Adds footnote to Register 25-2 (COE is not available when OPMODE (CMxCON<10>) = 1)
Section 27.0 "Special Features"	Corrects the bit description for FNOSC<2:0>
Section 30.0 "Electrical	Corrects 512K part power-down currents based on test data
Characteristics"	Corrects WDT timing limits based on LPRC oscillator tolerance
Section 31.0 "High-	Adds Table 31-5 (DC Characteristics: Idle Current (IIDLE)
Temperature Electrical Characteristics"	