

Welcome to E-XFL.COM

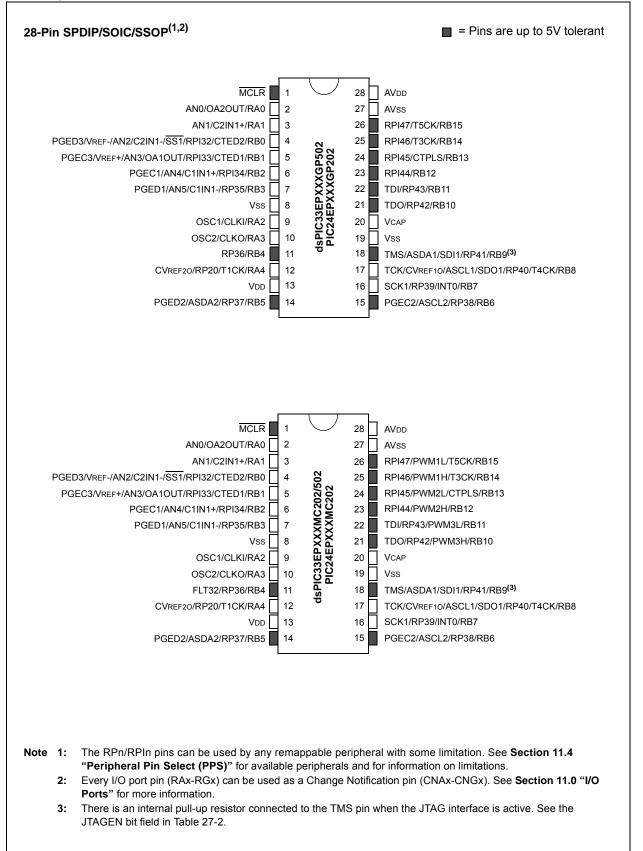
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gp504t-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Pin Diagrams

TABLE 4	4-31:	PER	IPHERA	L PIN S	ELECT	INPUT F	REGISTI	ER MAP	FOR de	sPIC33E	EPXXXG	P50X D	EVICES	SONLY	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>				_	_	—	—	—	—	—	_	0000
RPINR1	06A2		_	_	_	_	_	_	_	_				INT2R<6:0>	•			0000
RPINR3	06A6		_	_	_	_	_	_	_	_			٦	[2CKR<6:0	>			0000
RPINR7	06AE					IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0					IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6		_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000
RPINR18	06C4		_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6		_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC				S	CK2INR<6:0)>			_			:	SDI2R<6:0>	•			0000
RPINR23	06CE	_	_	_	—	—	_	_	—	—				SS2R<6:0>				0000
RPINR26	06D4	—	_	_	-	_	_	—		—			(C1RXR<6:0	>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0>				—	—	—	—	—	—	—	_	0000
RPINR1	06A2		_	_	_	_	_	_	_	_				INT2R<6:0>				0000
RPINR3	06A6		_	_	_	_	_	_	_	_			-	F2CKR<6:0	>			0000
RPINR7	06AE					IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0					IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6		_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000
RPINR12	06B8					FLT2R<6:0>	•			_				FLT1R<6:0>	•			0000
RPINR14	06BC				(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE				Н	OME1R<6:0)>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4		_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6		_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC	_			S	CK2INR<6:()>			—				SDI2R<6:0>	•			0000
RPINR23	06CE	_	—	—		—	—		—	—				SS2R<6:0>				0000
RPINR26	06D4	_	_	_		—	—		—	—			(C1RXR<6:0	>			0000
RPINR37	06EA	_			S	YNCI1R<6:0)>			—	—	—	—	—				0000
RPINR38	06EC	_			D	CMP1R<6:	0>			—	—	—	—	_				0000
RPINR39	06EE	_			D	FCMP3R<6:	0>			_			D	CMP2R<6:	0>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TABLE 4-34: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets				
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	—	_	_	_	_	—		NVMC)P<3:0>		0000				
NVMADRL	072A								NVMAD)R<15:0>							0000					
NVMADRH	072C	_	_	_	_	-	_	_	_				NVMADF	R<23:16>	<23:16>							
NVMKEY	072E			_	—	_		—	-				NVMKE		0000							

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	_	VREGSF	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	0	COSC<2:0>		—		NOSC<2:0>		CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	[OOZE<2:0>		DOZEN	FRCDIV<2:0>			PLLPOS	T<1:0>	_		F	LLPRE<	4:0>		0030
PLLFBD	0746	_	_	_	_	—						PLLD	IV<8:0>					0030
OSCTUN	0748	_	_	_	_	—	_	_	TUN<5:0>						0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration Fuses.

TABLE 4-36: REFERENCE CLOCK REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	—	ROSSLP	ROSEL		RODI	V<3:0>		_	_	—	_	_	—	_	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD				I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762		_	_	-	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD			CRCMD	_	—	—		—	I2C2MD		0000
PMD4	0766	_	_	_	_	_	_			_	_	—	—	REFOMD	CTMUMD			0000
PMD6	076A	_		_	_	_				_		—	_		—			0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIND7	0700	_	_	_	_	_	_	_	_	_	—	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD	_	—	—	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	—		_	_	PWM3MD	PWM2MD	PWM1MD	—			_	—		—	-	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIVID7	0700	_	_	_	_	_	_	_	_	—	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 95

TABLE 4-42: OP AMP/COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	_	-	—	C4EVT	C3EVT	C2EVT	C1EVT	_	-	—	—	C4OUT	C3OUT	C2OUT	C10UT	0000
CVRCON	0A82		CVR2OE	_	_	_	VREFSEL	_	_	CVREN	CVR10E	CVRR	CVRSS CVR<3:0> C CREF — — CCH<1:0> C SELSRCA<3:0> C C C C ACNEN ABEN AAEN AANEN C CO> CFLTREN CFDIV<2:0> C C CREF — — CCH<1:0> C ACNEN ABEN AAEN AANEN C ACREF — — CCH<1:0> C ACNEN ABEN ABNEN AAEN AANEN C				0000	
CM1CON	0A84	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM1MSKSRC	0A86		_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A		_	_	_	_	_	_	_	_	C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	—	_	CCH	<1:0>	0000
CM2MSKSRC	0A8E		_	_	_	- SELSRCC<3:0> SELSRCB<3:0> SELSRCA<3:0>						0000						
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_	_	_	_	_	_	_		C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM3CON ⁽¹⁾	0A94	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	—	_	CCH	<1:0>	0000
CM3MSKSRC(1)	0A96	_	_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM3MSKCON ⁽¹⁾	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR ⁽¹⁾	0A9A	_	_	_	_	_	_	_	_		C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM4CON	0A9C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL	_<1:0>	_	CREF	—	_	CCH	<1:0>	0000
CM4MSKSRC	0A9E	_	_				SELSR	CC<3:0>	-		SELSRC	B<3:0>	•		SELSRC	A<3:0>		0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	_	_		_	_	_	_	_	—	C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are unavailable on dsPIC33EPXXXGP502/MC502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

TABLE 4-43: CTMU REGISTER MAP

File N	lame	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUC	CON1	033A	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	_	_	_	_	_	_	_	0000
CTMUC	CON2	033C	EDG1MOD	EDG1POL		EDG1	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2S	EL<3:0>		_	-	0000
CTMU	ICON	033E			ITRIM<5	5:0>			IRNG	<1:0>		_	_	_	_	_	-	_	0000

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

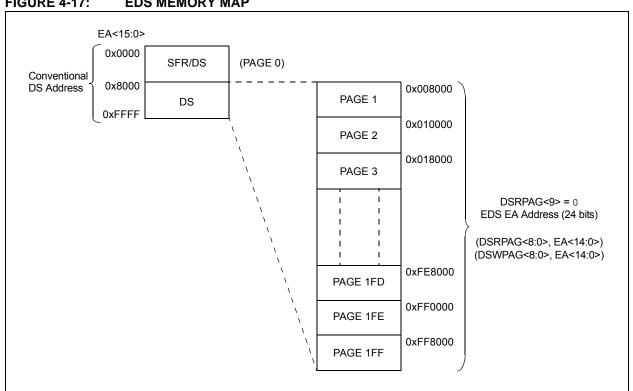
TABLE 4-44: JTAG INTERFACE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	—	_	_												xxxx	
JDATAL	0FF2					JDATAL<15:0>												

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 97

4.4.2 EXTENDED X DATA SPACE


The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the Data Space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-17.

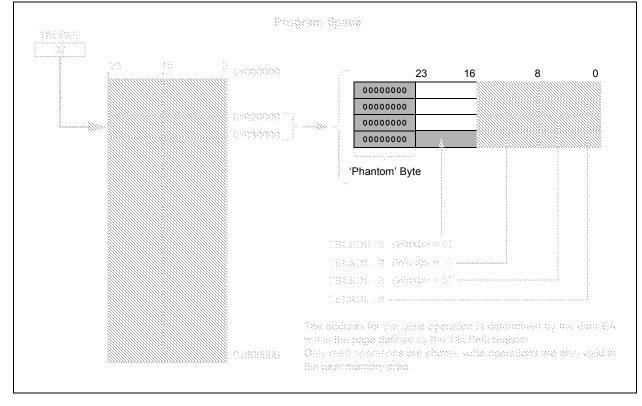
For more information on the PSV page access using Data Space Page registers, refer to the "**Program Space Visibility from Data Space**" section in "**Program Memory**" (DS70613) of the "*dsPIC33/ PIC24 Family Reference Manual*".

FIGURE 4-17: EDS MEMORY MAP

4.8.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-23: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in **Section 30.0 "Electrical Characteristics"**.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (DS70609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper 8 bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 7-5:	INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	—	—	—	—	_
bit 15						•	bit 8
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	—	DAE	DOOVR	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at POR '1' = Bit is set		t	'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-6	Unimplemented: Read as '0'						
bit 5	DAE: DMA A	DAE: DMA Address Error Soft Trap Status bit					
1 = DMA address error soft trap has occurred							
	0 = DMA add	ress error soft	trap has not o	ccurred			
bit 4	DOOVR: DO	DOOVR: DO Stack Overflow Soft Trap Status bit					
	1 = DO stack	overflow soft t	rap has occurre	ed			

I = D0	Stack Overnow	3011 11 ap 11 a3	occurred
0 = DO	stack overflow	soft trap has	not occurred

bit 3-0	Unimplemented: Read as '0'
---------	----------------------------

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—		—	—	—	SGHT
bit 7					•		bit 0
Legend:							

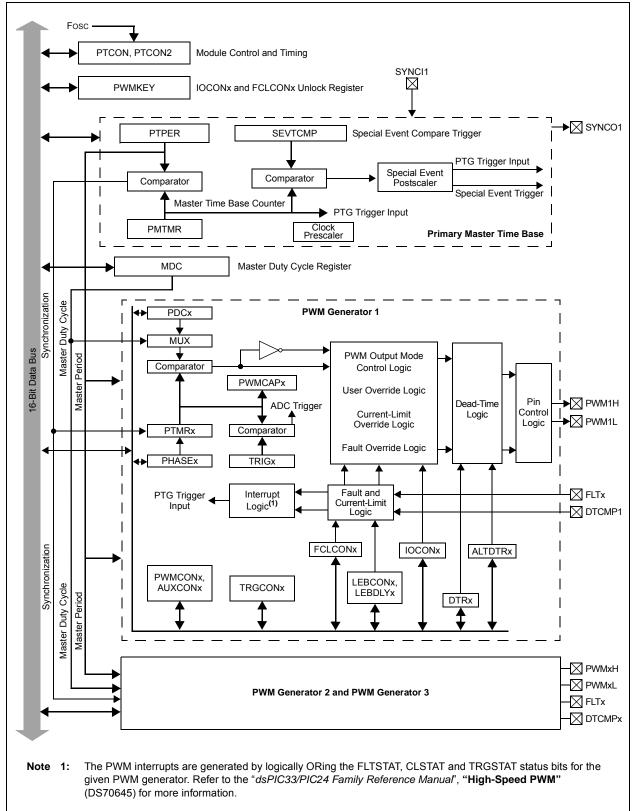
3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 0

SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred


15.1 Output Compare Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

15.1.1 KEY RESOURCES

- "Output Compare" (DS70358) in the "dsPIC33/ PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL
bit 15	•	•	•	•		•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7						onornen	bit
Legend:						(0)	
R = Readab		W = Writable bit		-	ented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	D'				
bit 11-8	-			urce Select bits			
	The selected	state blank sig	nal will block t	he current-limit	and/or Fault inp	out signals (if e	nabled via th
	BCH and BCI	L bits in the LEI			·	5 (
	1001 = Rese	rved					
	•						
	•						
	• • • 0100 = Rese	rved					
	• • 0100 = Rese 0011 = PWM	rved 3H selected as	state blank so	ource			
	0011 = PWM 0010 = PWM	3H selected as 2H selected as	state blank so	ource			
	0011 = PWM 0010 = PWM 0001 = PWM	3H selected as 2H selected as 1H selected as	state blank so	ource			
hit 7-6	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st	3H selected as 2H selected as 1H selected as ate blanking	state blank so state blank so	ource			
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '	state blank so state blank so o'	burce burce			
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as 't :0>: PWMx Ch signal will enab rved	state blank so state blank so o' op Clock Sour ole and disable	ource ource rce Select bits e (CHOP) the se	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved rved 3H selected as	state blank so state blank so op Clock Sour ole and disable	ource ource rce Select bits e (CHOP) the se source	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as	state blank so state blank so op Clock Sour ole and disable CHOP clock	source source	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • • 0100 = Rese 0011 = PWM 0010 = PWM	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as	state blank so state blank so op Clock Sour ole and disable CHOP clock s CHOP clock s CHOP clock s	source source		outputs.	
bit 7-6 bit 5-2 bit 1	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • 0100 = Rese 0011 = PWM 0010 = PWM 0001 = PWM	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as	state blank so state blank so op Clock Sour- ole and disable cHOP clock so cHOP clock so cHOP clock so cHOP clock so	ource ource rce Select bits e (CHOP) the se source source source CHOP clock so		outputs.	
bit 5-2	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '0 :0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato	 state blank so state blank so op Clock Sour chOP clock so chopping Enso on is enabled 	ource ource rce Select bits e (CHOP) the se source source source CHOP clock so		outputs.	
bit 5-2	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • • • • • • • • • • • • • • • •	3H selected as 2H selected as 1H selected as ate blanking ted: Read as 'i :0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato PWMxH Output chopping function	CHOP clock so CHOP clock so Chopping En	source source source source source source CHOP clock so able bit		putputs.	
bit 5-2 bit 1	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato PWMxH Output chopping function	CHOP clock so CHOP clock so Chopping Ena	source source source source source source CHOP clock so able bit		putputs.	

REGISTER 16-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

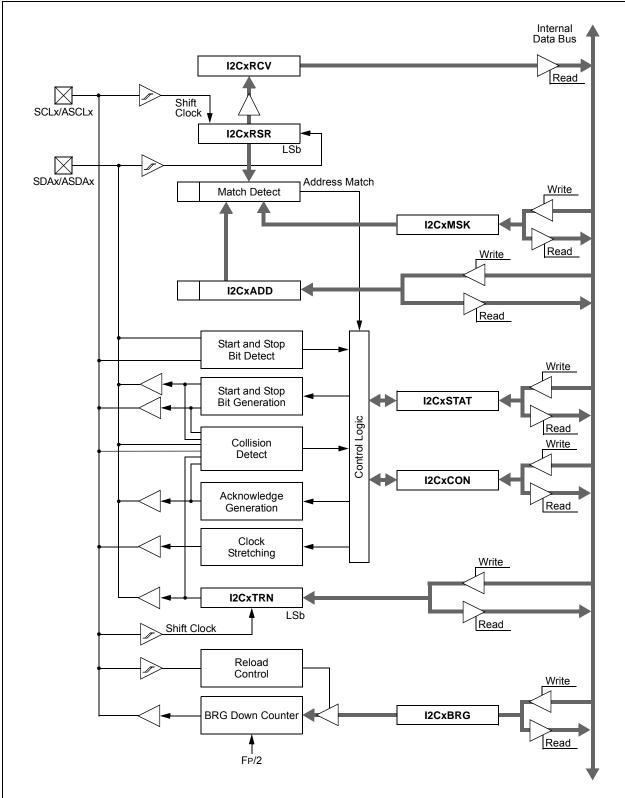
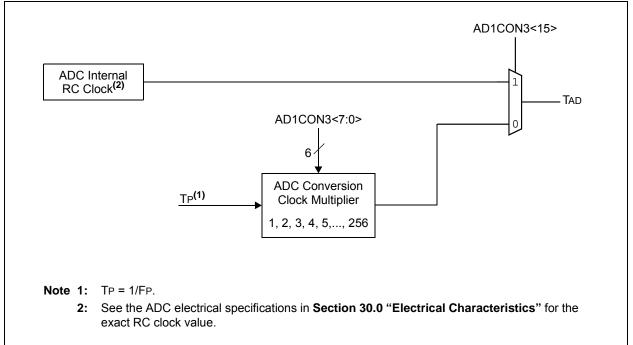
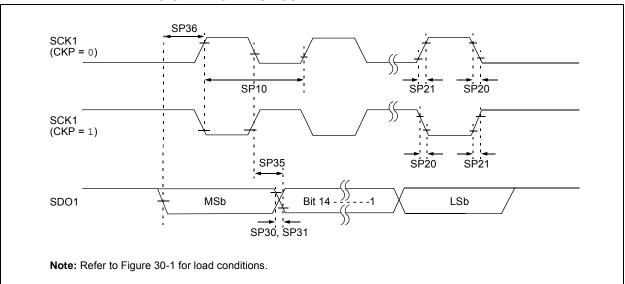



FIGURE 19-1: I2Cx BLOCK DIAGRAM (X = 1 OR 2)

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from the slave
	0 = Write – Indicates data transfer is input to the slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.



REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0									
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN		
bit 7							bit		
Legend:									
R = Readable bit		W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unknown			
bit 15	HLMS: High	or Low-Level N	Asking Select	bits					
	HLMS: High or Low-Level Masking Select bits 1 = The masking (blanking) function will prevent any asserted ('0') comparator signal from propagating								
					erted ('1') compa				
bit 14	Unimplemen	ted: Read as '	0'						
bit 13	OCEN: OR G	Sate C Input Er	able bit						
	1 = MCI is connected to OR gate								
	0 = MCI is no	ot connected to	OR gate						
bit 12	OCNEN: OR Gate C Input Inverted Enable bit								
	1 = Inverted MCI is connected to OR gate								
	0 = Inverted MCI is not connected to OR gate								
bit 11	OBEN: OR Gate B Input Enable bit								
	1 = MBI is connected to OR gate								
bit 10	0 = MBI is not connected to OR gate								
bit 10	OBNEN: OR Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to OR gate								
		-		e dit					
	1 = Inverted I	-	ed to OR gate						
bit 9	1 = Inverted 0 = Inverted	MBI is connect	ed to OR gate nected to OR g						
bit 9	1 = Inverted I 0 = Inverted I OAEN: OR G	MBI is connect MBI is not conr	ed to OR gate nected to OR g able bit						
bit 9	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co	MBI is connect MBI is not conr Gate A Input En	ed to OR gate nected to OR g able bit gate						
bit 9 bit 8	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no	MBI is connect MBI is not conr Gate A Input En nnected to OR	ed to OR gate nected to OR g hable bit gate OR gate	jate					
	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect	ed to OR gate nected to OR g able bit gate OR gate nverted Enable ed to OR gate	jate e bit					
bit 8	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr	ed to OR gate nected to OR g hable bit OR gate OR gate nverted Enable ed to OR gate nected to OR g	jate e bit jate					
	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND	MBI is connect MBI is not conr Gate A Input En Innected to OR It connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir	ed to OR gate nected to OR g hable bit OR gate OR gate nverted Enable nected to OR gate nected to OR g	pate e bit pate e bit					
bit 8	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0ANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect	ed to OR gate nected to OR g hable bit OR gate NVerted Enable nected to OR gate nected to OR gate nected to OR gate	pate e bit pate e bit e					
bit 8 bit 7	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 1 = Inverted I 0 = Inverted I 0 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input In MAI is connect MAI is not conr Gate Output In ANDI is connect ANDI is not cor	ed to OR gate nected to OR g able bit gate OR gate nverted Enable nected to OR gate nected to OR gate nected to OR gat nuected to OR gat	pate e bit pate e bit e					
bit 8	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 0 = Inverted J 0 = Inverted J 0 = Inverted J	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect	ed to OR gate nected to OR g nable bit gate OR gate nverted Enable nected to OR gate nected to OR gate nected to OR gat nected to OR gat nected to OR gat	pate e bit pate e bit e					
bit 8 bit 7	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 1 = ANDI is co	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is not cor Gate Output E	ed to OR gate nected to OR g able bit gate OR gate nverted Enable d to OR gate nected to OR g nverted Enable cted to OR gat nected to OR gat nected to OR gat nected to OR gat nected to OR gat	pate e bit pate e bit e					
bit 8 bit 7	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 ANEN: OR 1 = Inverted I 0 = ANDI is co 0 = ANDI is co 0 = ANDI is co 0 = ANDI is co	MBI is connect MBI is not conn Gate A Input En innected to OR of connected to Gate A Input In MAI is connect MAI is not connect ANDI is not connect Gate Output En connected to O not connected t Gate C Input En	ed to OR gate nected to OR g able bit gate OR gate nverted Enable d to OR gate nected to OR gate nected to OR gate to OR gate nable bit R gate o OR gate finable bit	pate e bit pate e bit e					
bit 8 bit 7 bit 6	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 1 = ANDI is co 0 = ANDI is co 1 = MCI is co	MBI is connect MBI is not conn Gate A Input En Innected to OR of connected to Gate A Input In MAI is connect MAI is not connect ANDI is not connected ANDI is not connected to Gate Output En Connected to On Gate C Input En Innected to AN	ed to OR gate nected to OR g nable bit gate OR gate nverted Enable ed to OR gate nected to OR gate nected to OR gat the data to OR gate nected to OR gate nable bit R gate o OR gate finable bit D gate	pate e bit pate e bit e					
bit 8 bit 7 bit 6 bit 5	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 ANEN: OR 1 = Inverted I 0 = ANDI is co 0 = ANDI is co 0 = MCI is no	MBI is connect MBI is not conn Gate A Input En innected to OR of connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connect ANDI is not connected to Gate Output En connected to On to connected to AN of connected to AN of connected to AN	ed to OR gate nected to OR g able bit gate OR gate nverted Enable det to OR gate nected to OR gate nected to OR gate the dto OR gate the dto OR gate shable bit R gate o OR gate finable bit D gate AND gate	ate e bit ate bit e gate					
bit 8 bit 7 bit 6	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 ANEN: OR 1 = Inverted I 0 = ANDI is co 0 = ANDI is co 0 = MCI is co 0 = MCI is co 0 = MCI is co	MBI is connect MBI is not conn Gate A Input En Innected to OR of connected to Gate A Input In MAI is connect MAI is not connect ANDI is not connected ANDI is not connected to Gate Output En Connected to On Gate C Input En Innected to AN	ed to OR gate nected to OR g able bit gate OR gate nverted Enable de to OR gate nected to OR gate nected to OR gate the to OR gate the bit R gate o OR gate able bit D gate AND gate Inverted Enable	pate e bit pate e bit gate					

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-42: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—		15	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	-	_	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	-	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

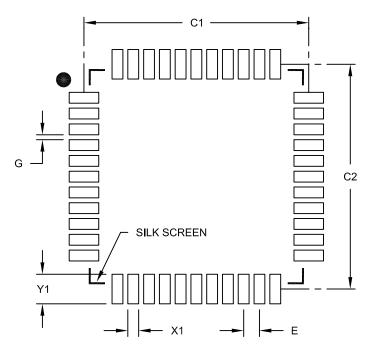
2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		ADC A	Accuracy	(12-Bit	Mode)			
AD20a	Nr	Resolution	12 Data Bits		bits			
AD21a INL	INL	Integral Nonlinearity	-2.5		2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)	
			-5.5	_	5.5	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD22a	DNL	Differential Nonlinearity	-1	—	1	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-1	—	1	LSb	+85°C < TA \leq +125°C (Note 2)	
AD23a	Gerr	Gain Error ⁽³⁾	-10	—	10	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-10	_	10	LSb	+85°C < TA \leq +125°C (Note 2)	
AD24a	EOFF	Offset Error	-5	_	5	LSb	$-40^{\circ}C \leq TA \leq +85^{\circ}C \text{ (Note 2)}$	
			-5	_	5	LSb	+85°C < TA \leq +125°C (Note 2)	
AD25a	—	Monotonicity	—	—	—		Guaranteed	
		Dynamic	Performa	ance (12-	Bit Mod	e)		
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75	_	dB		
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	—	68	_	dB		
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	80	—	dB		
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	—	250	—	kHz		
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3	_	bits		

TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)


Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension Limits		MIN	NOM	MAX		
Contact Pitch	E		0.80 BSC			
Contact Pad Spacing	C1		11.40			
Contact Pad Spacing	C2		11.40			
Contact Pad Width (X44)	X1			0.55		
Contact Pad Length (X44)	Y1			1.50		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

NOTES: