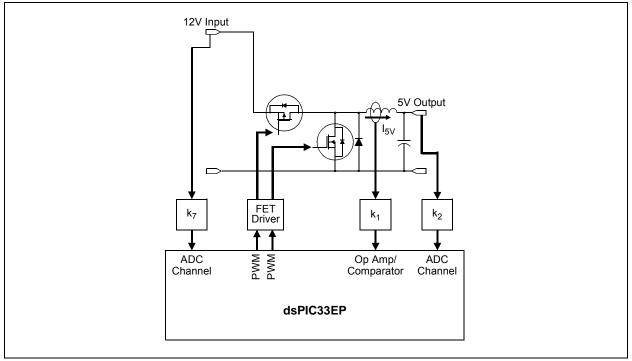


Welcome to E-XFL.COM

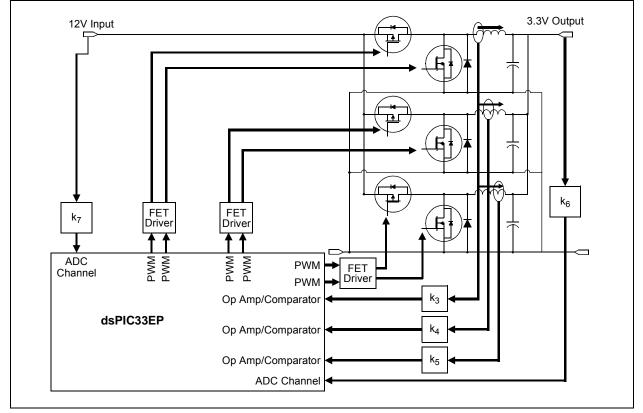
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc202-i-sp


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

TABLE 4	4-9:	-9: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 4 REGISTER MAP																
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	—	ICSIDL	10	ICTSEL<2:0> —			-	—	ICI<	:0>	ICOV ICBNE ICM<2:0>				0000	
IC1CON2	0142	_	<u>− − − − − − − − − − − − − − − − − − − </u>									000D						
IC1BUF	0144		Input Capture 1 Buffer Register x											xxxx				
IC1TMR	0146		Input Capture 1 Timer 0											0000				
IC2CON1	0148		ICSIDL ICTSEL<2:0> ICI<1:0> ICOV ICBNE ICM<2:0>							0000								
IC2CON2	014A		IC32 ICTRIG TRIGSTAT SYNCSEL<4:0>										000D					
IC2BUF	014C							Inp	ut Capture 2	2 Buffer Reg	gister							xxxx
IC2TMR	014E								Input Capt	ture 2 Time	r							0000
IC3CON1	0150		_	ICSIDL	10	CTSEL<2:0	>	—	_		ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3CON2	0152		_				—	—	IC32	ICTRIG	TRIGSTAT			S	YNCSEL<4	:0>		000D
IC3BUF	0154							Inp	ut Capture 3	3 Buffer Reg	gister							xxxx
IC3TMR	0156								Input Capt	ture 3 Time	r							0000
IC4CON1	0158		_	ICSIDL	10	CTSEL<2:0	>	—	_		ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC4CON2	015A	_	_		_		-	_	IC32	ICTRIG	TRIGSTAT	-		S	YNCSEL<4	:0>		000D
IC4BUF	015C							Inp	ut Capture 4	4 Buffer Reg	gister							xxxx
IC4TMR	015E								Input Capt	ure 4 Time	r							0000

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	_E 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN	—	QEISIDL		PIMOD<2:0>		IMV	<1:0>	-		INTDIV<2:0	>	CNTPOL	GATEN	CCM	<1:0>	0000
QEI1IOC	01C2	QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	NC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI1STAT	01C4	_	_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6		POSCNT<15:0> 00											0000				
POS1CNTH	01C8		POSCNT<31:16> 00											0000				
POS1HLD	01CA								POSHLD<15	0>								0000
VEL1CNT	01CC								VELCNT<15	0>								0000
INT1TMRL	01CE								INTTMR<15:	0>								0000
INT1TMRH	01D0		INTTMR<31:16> 0									0000						
INT1HLDL	01D2								INTHLD<15:)>								0000
INT1HLDH	01D4								INTHLD<31:1	6>								0000
INDX1CNTL	01D6								INDXCNT<15	:0>								0000
INDX1CNTH	01D8								NDXCNT<31:	16>								0000
INDX1HLD	01DA								INDXHLD<15	:0>								0000
QEI1GECL	01DC								QEIGEC<15	0>								0000
QEI1ICL	01DC								QEIIC<15:0	>								0000
QEI1GECH	01DE								QEIGEC<31:	16>								0000
QEI1ICH	01DE		QEIIC<31:16> 0000										0000					
QEI1LECL	01E0								QEILEC<15:)>								0000
QEI1LECH	01E2								QEILEC<31:1	6>								0000

TABLE 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-33 :	PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
---------------------	---

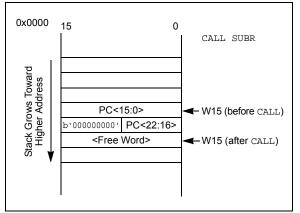
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_		INT1R<6:0>							_	_	_	_		_	_	0000
RPINR1	06A2		—	—	-		-	-	-	-	INT2R<6:0>						0000	
RPINR3	06A6	-	_	_	_	_	_	_	_	_	T2CKR<6:0>						0000	
RPINR7	06AE	_		IC2R<6:0>						—				IC1R<6:0>				0000
RPINR8	06B0	_		IC4R<6:0>						—				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	—	_	_	_	_	—			(DCFAR<6:0	>			0000
RPINR12	06B8	_		FLT2R<6:0>						—	FLT1R<6:0>						0000	
RPINR14	06BC	_			(QEB1R<6:0	>			—	QEA1R<6:0>						0000	
RPINR15	06BE	_			Н	OME1R<6:0)>			—	INDX1R<6:0>						0000	
RPINR18	06C4	_	_	_	—	—	_	_	_	—	U1RXR<6:0>						0000	
RPINR19	06C6	_	_	_	_	_	_	_	_	—			ι	J2RXR<6:0>	>			0000
RPINR22	06CC	_		•	S	CK2INR<6:0)>			_				SDI2R<6:0>	•			0000
RPINR23	06CE	_	_		_	_	_	_	_	_				SS2R<6:0>				0000
RPINR37	06EA	_	SYNCI1R<6:0>					_	_	_	_	_	_	_	_	0000		
RPINR38	06EC	_		DTCMP1R<6:0>						_	_	_	_		_	_	_	0000
RPINR39	06EE	_			DT	CMP3R<6:	0>			—	DTCMP2R<6:0>						0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the hardware.


W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-19 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-19. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-19: CALL STACK FRAME

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: These bits are available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 7-5:	INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	_	—	—	—	—	_	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—	—	DAE	DOOVR	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'		
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-6	Unimplemen	ted: Read as	'0'					
bit 5	DAE: DMA A	ddress Error S	Soft Trap Status	s bit				
	1 = DMA add	ress error soft	trap has occur	red				
	0 = DMA add	ress error soft	trap has not o	ccurred				
bit 4	DOOVR: DO	Stack Overflov	v Soft Trap Sta	tus bit				
	1 = DO stack	overflow soft t	rap has occurre	ed				

I = D0	Stack Overnow	3011 11 ap 11 a3	occurred
0 = DO	stack overflow	soft trap has	not occurred

bit 3-0	Unimplemented: Read as '0'
---------	----------------------------

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—		—	—	—	SGHT
bit 7					•		bit 0
Legend:							

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 0

SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SCK2INR<6:0	>		
bit 15							bit 8
					5444.6	D 444 A	5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SDI2R<6:0>			
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		nput tied to RPI nput tied to CMI nput tied to Vss	P1				
bit 7	Unimpleme	nted: Read as 'o	כי				
bit 6-0	(see Table 1 [^] 1111001 = I	: Assign SPI2 D 1-2 for input pin nput tied to RPI nput tied to CMI	selection num	,	esponding RPi	ר Pin bits	

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP43R<5:0>						
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP42R<5:0>							

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

	bit	7
1		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP55	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP54R<5:0>					
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP55R<5:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPIxTXB is full
 - 0 = Transmit started, SPIxTXB is empty

Standard Buffer mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²C™)" (DS70330) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.
 - 3: There are minimum bit rates of approximately FCY/512. As a result, high processor speeds may not support 100 Kbit/second operation. See timing specifications, IM10 and IM11, and the "Baud Rate Generator" in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I^2C module has a 2-pin interface:

- · The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7 and 10-bit addressing
- I²C Master mode supports 7 and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly
- Intelligent Platform Management Interface (IPMI)
 support
- System Management Bus (SMBus) support

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
_		FBP5	FBP4	FBP3	FBP2	FBP1	FBP0				
bit 15							bit 8				
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
		FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0				
bit 7							bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown				
bit 15-14	Unimpleme	ented: Read as '	0'								
bit 13-8	FBP<5:0>: FIFO Buffer Pointer bits										
		011111 = RB31 buffer									
	011110 = F	RB30 buffer									
	•										
	•										
	•	TRB1 buffer									
		TRB0 buffer									
bit 7-6	Unimpleme	ented: Read as '	0'								
bit 5-0	FNRB<5:0	>: FIFO Next Rea	ad Buffer Poir	iter bits							
	011111 = F	RB31 buffer									
	011110 = F	RB30 buffer									
	•										
	•										
	•										
		FRB1 buffer FRB0 buffer									

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

PTG Output Number	PTG Output Description
PTGO0	Trigger/Synchronization Source for OC1
PTGO1	Trigger/Synchronization Source for OC2
PTGO2	Trigger/Synchronization Source for OC3
PTGO3	Trigger/Synchronization Source for OC4
PTGO4	Clock Source for OC1
PTGO5	Clock Source for OC2
PTGO6	Clock Source for OC3
PTGO7	Clock Source for OC4
PTGO8	Trigger/Synchronization Source for IC1
PTGO9	Trigger/Synchronization Source for IC2
PTGO10	Trigger/Synchronization Source for IC3
PTGO11	Trigger/Synchronization Source for IC4
PTGO12	Sample Trigger for ADC
PTGO13	Sample Trigger for ADC
PTGO14	Sample Trigger for ADC
PTGO15	Sample Trigger for ADC
PTGO16	PWM Time Base Synchronous Source for PWM ⁽¹⁾
PTGO17	PWM Time Base Synchronous Source for PWM ⁽¹⁾
PTGO18	Mask Input Select for Op Amp/Comparator
PTGO19	Mask Input Select for Op Amp/Comparator
PTGO20	Reserved
PTGO21	Reserved
PTGO22	Reserved
PTGO23	Reserved
PTGO24	Reserved
PTGO25	Reserved
PTGO26	Reserved
PTGO27	Reserved
PTGO28	Reserved
PTGO29	Reserved
PTGO30	PTG Output to PPS Input Selection
PTGO31	PTG Output to PPS Input Selection

TABLE 24-2: PTG OUTPUT DESCRIPTIONS

Note 1: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

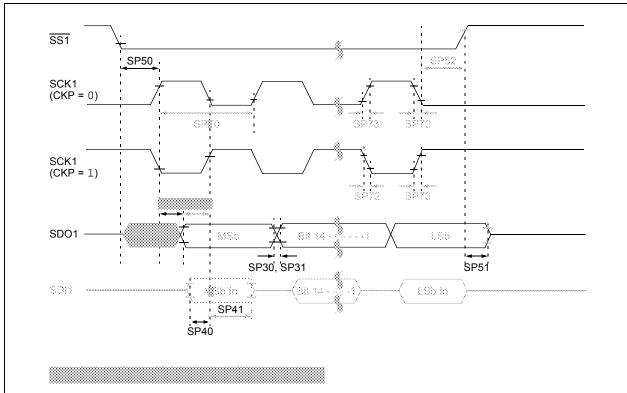
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—	_	—		—	_				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown				
							-				
bit 15-7	Unimplemen	ted: Read as	ʻ0'								
bit 6-4	CFSEL<2:0>	: Comparator	Filter Input Clo	ock Select bits							
		CFSEL<2:0>: Comparator Filter Input Clock Select bits 111 = T5CLK ⁽¹⁾									
		$110 = T4CLK^{(2)}$									
	101 = T3CLK	$101 = T3CLK^{(1)}$									
	$100 = T2CLK^{(2)}$										
		011 = Reserved									
	010 = SYNC	01 ⁽³⁾									
		$001 = Fosc^{(4)}$									
	000 = FP ⁽⁴⁾										
bit 3	CFLTREN: Comparator Filter Enable bit										
	1 = Digital filter is enabled										
	•	er is disabled									
bit 2-0	CFDIV<2:0>: Comparator Filter Clock Divide Select bits										
	111 = Clock Divide 1:128										
	110 = Clock Divide 1:64										
	101 = Clock Divide 1:32										
	100 = Clock	100 = Clock Divide 1:16									
		011 = Clock Divide 1:8									
	010 = Clock Divide 1:4										
	001 = Clock Divide 1:2										
	000 = Clock	Divide 1:1									
Note 1: S	See the Type C Ti	mer Block Diag	gram (Figure 1	3-2).							
	See the Type B Timer Block Diagram (Figure 13-1).										
•											

REGISTER 25-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

- 3: See the High-Speed PWMx Module Register Interconnection Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 26-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
X<31:24>									
bit 15 bi									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			X<2	23:16>					
bit 7 bit 0									
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown		
	-						-		

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 26-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-1X<15:1>: XOR of Polynomial Term Xⁿ Enable bitsbit 0Unimplemented: Read as '0'

FIGURE 30-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

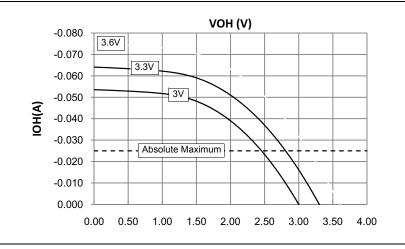
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions:3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No. Symbol Characteristic			Min.	Тур.	Max.	Units	Conditions	
CTMU Current Source								
CTMUI1	Ιουτ1	Base Range ⁽¹⁾	0.29		0.77	μA	CTMUICON<9:8> = 01	
CTMUI2	IOUT2	10x Range ⁽¹⁾	3.85		7.7	μA	CTMUICON<9:8> = 10	
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	38.5	_	77	μA	CTMUICON<9:8> = 11	
CTMUI4	IOUT4	1000x Range ⁽¹⁾	385	_	770	μA	CTMUICON<9:8> = 00	
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	_	0.598	_	V	TA = +25°C, CTMUICON<9:8> = 01	
		_	0.658	_	V	TA = +25°C, CTMUICON<9:8> = 10		
			_	0.721	_	V	TA = +25°C, CTMUICON<9:8> = 11	
CTMUFV2	VFVR	/FVR Temperature Diode Rate of Change ^(1,2,3)	_	-1.92	_	mV/ºC	CTMUICON<9:8> = 01	
			_	-1.74	_	mV/ºC	CTMUICON<9:8> = 10	
				-1.56	_	mV/ºC	CTMUICON<9:8> = 11	

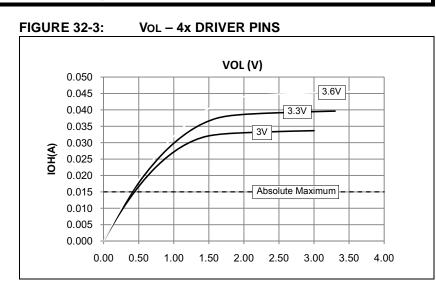
TABLE 30-56: CTMU CURRENT SOURCE SPECIFICATIONS

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing.

3: Measurements taken with the following conditions:


- VREF+ = AVDD = 3.3V
- ADC configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- Executing a while(1) statement
- · Device operating from the FRC with no PLL


32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

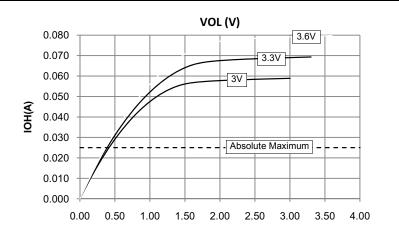
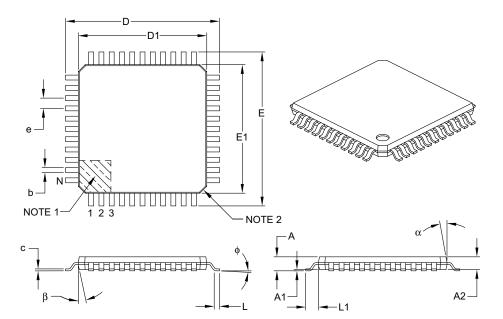

FIGURE 32-1: VOH – 4x DRIVER PINS VOH (V) -0.050 -0.045 3.6V -0.040 3.3V -0.035 3V -0.030 IOH(A) -0.025 -0.020 Absolute Maximum -0.015 -0.010 -0.005 0.000 0.50 1.00 2.00 2.50 3.00 3.50 0.00 1.50 4.00

FIGURE 32-2: VOH – 8x DRIVER PINS


FIGURE 32-4: Vol – 8x DRIVER PINS

NOTES:

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6			
Dimens	sion Limits	MIN	NOM	MAX			
Number of Leads	Ν		44				
Lead Pitch	е		0.80 BSC				
Overall Height	А	-	-	1.20			
Molded Package Thickness	A2	0.95	1.00	1.05			
Standoff	A1	0.05	-	0.15			
Foot Length	L	0.45	0.60	0.75			
Footprint	L1 1.00 REF						
Foot Angle	φ	0°	3.5°	7°			
Overall Width	E	12.00 BSC					
Overall Length	D	12.00 BSC					
Molded Package Width	E1	10.00 BSC					
Molded Package Length	D1	10.00 BSC					
Lead Thickness	с	0.09	-	0.20			
Lead Width	b	0.30	0.37	0.45			
Mold Draft Angle Top	α	11°	12°	13°			
Mold Draft Angle Bottom	β	11°	12°	13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B