

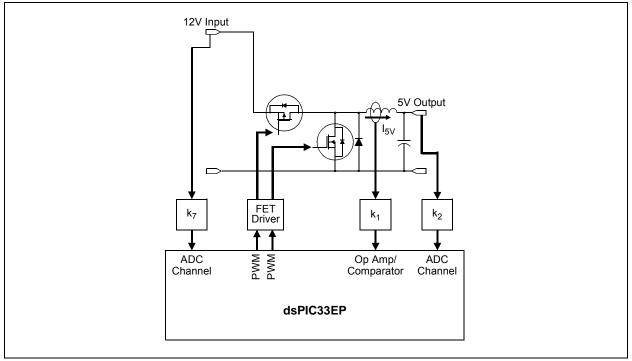
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

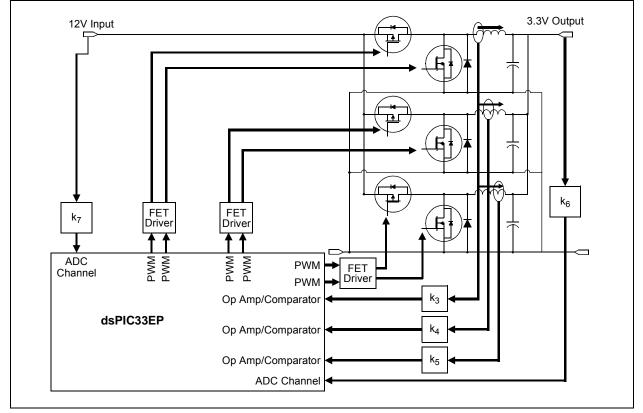
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


⊡XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc202t-e-mm


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

3.7 CPU Control Registers

REGISTER	3-1: SR: Cl	PU STATUS I	REGISTER				
R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC
bit 15							bit 8
R/W-0 ^(2,3)	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2	IPL1	IPL0	RA	N	OV	Z	С
bit 7	·	•		•			bit (
Legend:		C = Clearable	e bit				
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	t POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	OA: Accumul	ator A Overflov	v Status bit ⁽¹⁾				
	1 = Accumula	ator A has over	flowed				
	0 = Accumula	ator A has not o	verflowed				
bit 14	OB: Accumul	ator B Overflov	v Status bit ⁽¹⁾				
	1 = Accumula	ator B has over	flowed				
		ator B has not c					
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	tus bit ^(1,4)			
		ator A is saturat ator A is not sat		en saturated at	some time		
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ^(1,4)			
	1 = Accumula	ator B is saturat ator B is not sat	ted or has bee		some time		
bit 11		B Combined A		vorflow Status	ы#(1)		
		ators A or B have		vernow Status	DIL		
		ccumulators A		erflowed			
bit 10		B Combined Ad			(1)		
					urated at some	time	
	0 = Neither A	ccumulators A	or B are satur	ated			
bit 9	DA: DO Loop	Active bit ⁽¹⁾					
	1 = DO loop is	s in progress					
	0 = DO loop is	s not in progres	S				
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit				
		out from the 4th sult occurred	low-order bit (for byte-sized c	lata) or 8th low-	order bit (for wo	rd-sized data
	0 = No carry			oit (for byte-siz	ed data) or 8th	low-order bit (f	or word-size
	his bit is available						-
L	he IPL<2:0> bits evel. The value ir PL<3> = 1.						

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

4.4 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND dsPIC33EPXXXGP50X DEVICES ONLY

		0.00				011 401			20/00/							-	r	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000								W4									xxxx
W5	000A								W5									xxxx
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLI	N								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	H								0000
ACCAU	0026			Si	gn Extensior	n of ACCA<	39>						ACO	CAU				0000
ACCBL	0028								ACCB	L								0000
ACCBH	002A								ACCB	Н								0000
ACCBU	002C			Si	gn Extensior	n of ACCB<	39>						ACO	CBU				0000
PCL	002E							F	PCL<15:0>								—	0000
PCH	0030	_	_	_	—	_	_	—	_	_				PCH<6:0>				0000
DSRPAG	0032	_	_	_	—	_	_					DSRPAC	6<9:0>					0001
DSWPAG	0034	_		_	—		_	_				DS	WPAG<8:	0>				0001
RCOUNT	0036								RCOUNT<	:15:0>								0000
DCOUNT	0038								DCOUNT<	:15:0>								0000
DOSTARTL	003A							DOS	STARTL<15:1	>								0000
DOSTARTH	003C	_	—	—	_	—	—	_	_	_	—			DOSTAF	RTH<5:0>			0000
DOENDL	003E							DO	ENDL<15:1>	>								0000
DOENDH	0040	_	—	—	—	—	—	_	—	—	—			DOEND)H<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	_		JTAGIP<2:0)>	—		ICDIP<2:0	>	_	—	—	_	—	_	-		4400
IPC36	0888	-	l	PTG0IP<2:0)>	_	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	:0>	—	—			4440
IPC37	088A		_	_	_	_	F	PTG3IP<2:0)>	_		PTG2IP<2:0>	>	_	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	—	_			—	_	—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	—	—	—	_			—	_	DAE	DOOVR	_	—			0000
INTCON4	08C6	-	_	—	_	_	_		_	_	_	—	—	—	—	_	SGHT	0000
INTTREG	08C8	-	—	—	_		ILR<	3:0>					VECNU	M<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

																		All
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
PTGCST	0AC0	PTGEN	—	PTGSIDL	PTGTOGL		PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWTO	_	_	—	—	PTGIT	M<1:0>	0000
PTGCON	0AC2	F	PTGCLK<2	:0>		F	PTGDIV<4:0	>			PTGPWD	<3:0>		_	P	TGWDT<2:	0>	0000
PTGBTE	0AC4		ADC	TS<4:1>		IC4TSS	IC3TSS	IC2TSS	IC1TSS	OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS	0000
PTGHOLD	0AC6								PTGHOLD	<15:0>								0000
PTGT0LIM	0AC8								PTGT0LIM	<15:0>								0000
PTGT1LIM	0ACA								PTGT1LIM	<15:0>								0000
PTGSDLIM	0ACC								PTGSDLIN	l<15:0>								0000
PTGC0LIM	0ACE								PTGC0LIN	<15:0>								0000
PTGC1LIM	0AD0								PTGC1LIN	<15:0>								0000
PTGADJ	0AD2								PTGADJ<	:15:0>								0000
PTGL0	0AD4								PTGL0<	15:0>								0000
PTGQPTR	0AD6	—	—	—	—	_	—	—	_	—	—	-		P	TGQPTR<4	4:0>		0000
PTGQUE0	0AD8				STEP	1<7:0>							STEPO)<7:0>				0000
PTGQUE1	0ADA				STEP	'3<7:0>							STEP2	2<7:0>				0000
PTGQUE2	0ADC				STEP	25<7:0>							STEP4	<7:0>				0000
PTGQUE3	0ADE				STEP	7<7:0>							STEP6	6<7:0>				0000
PTGQUE4	0AE0				STEP	9<7:0>							STEP8	8<7:0>				0000
PTGQUE5	0AE2				STEP	11<7:0>							STEP1	0<7:0>				0000
PTGQUE6	0AE4				STEP	13<7:0>							STEP1	2<7:0>				0000
PTGQUE7	0AE6				STEP	15<7:0>							STEP1	4<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 78

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address prior to modification addresses an EDS or PSV page
- The EA calculation uses Pre-Modified or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-61 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

	-	SV SI ACE BOON					
0/11			Before			After	
O/U, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1
U, Read	[//11 -]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page

TABLE 4-61: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and PSV SPACE BOUNDARIES^(2,3,4)

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudo-Linear Addressing is not supported for large offsets.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB<	23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

REGISTER 8-5: DMAXSTBH: DMA CHANNEL X START ADDRESS REGISTER B (HIGH)

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAXSTBL: DMA CHANNEL X START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown

bit 15-0 **STB<15:0>:** Secondary Start Address bits (source or destination)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
-	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
_	_	_	_		LSTC	H<3:0>	
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	e Status bits			
	1111 = No DI 1110 = Rese	MA transfer has rved	s occurred sir	nce system Res	set		
	•						
	•						
	•						
		rved data transfer wa data transfer wa					
		data transfer wa					

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

0001 = Last data transfer was handled by Channel 0 0000 = Last data transfer was handled by Channel 0

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pir Select Input Register Value		Pin Assignment
000 0000	I	Vss	010 1101		RPI45
000 0001	I	C1OUT ⁽¹⁾	010 1110	I	RPI46
000 0010	I	C2OUT ⁽¹⁾	010 1111	I	RPI47
000 0011	I	C3OUT ⁽¹⁾	011 0000	_	_
000 0100	I	C4OUT ⁽¹⁾	011 0001		_
000 0101	—	_	011 0010	_	_
000 0110	I	PTGO30 ⁽¹⁾	011 0011	I	RPI51
000 0111	I	PTGO31 ⁽¹⁾	011 0100	I	RPI52
000 1000	I	FINDX1 ^(1,2)	011 0101	I	RPI53
000 1001	I	FHOME1 ^(1,2)	011 0110	I/O	RP54
000 1010	_	_	011 0111	I/O	RP55
000 1011	—	_	011 1000	I/O	RP56
000 1100	—	—	011 1001	I/O	RP57
000 1101	_		011 1010	I	RPI58
000 1110	—	—	011 1011	_	—
000 1111	—	—	011 1100	_	—
001 0000	—	—	011 1101	—	_
001 0001	—	—	011 1110	_	—
001 0010	—	—	011 1111	—	—
001 0011	—	—	100 0000	—	_
001 0100	I/O	RP20	100 0001		—
001 0101	—	—	100 0010	—	—
001 0110	—	—	100 0011	_	—
001 0111	—	—	100 0100		—
001 1000	I	RPI24	100 0101	_	—
001 1001	I	RPI25	100 0110	_	—
001 1010	—	—	100 0111		—
001 1011	I	RPI27	100 1000	_	_
001 1100	I	RPI28	100 1001	_	
001 1101	—	_	100 1010	_	_
001 1110	—		100 1011	_	
001 1111	—		100 1100	—	_
010 0000	I	RPI32	100 1101	—	_
010 0001	I	RPI33	100 1110	_	_
010 0010	I	RPI34	100 1111	_	
010 0011	I/O	RP35	101 0000	_	<u> </u>
010 0100	I/O	RP36	101 0001	—	_
010 0101	I/O	RP37	101 0010	—	_
010 0110	I/O	RP38	101 0011	—	_
010 0111	I/O	RP39	101 0100	_	_

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

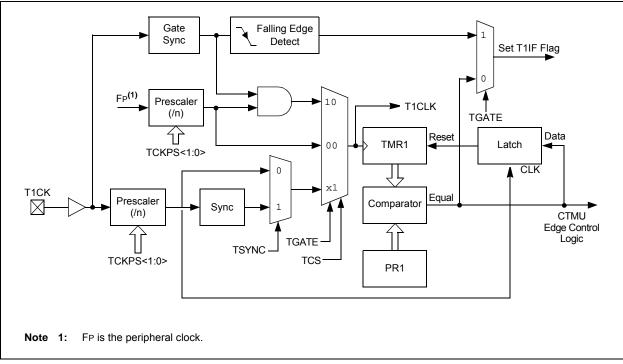
- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

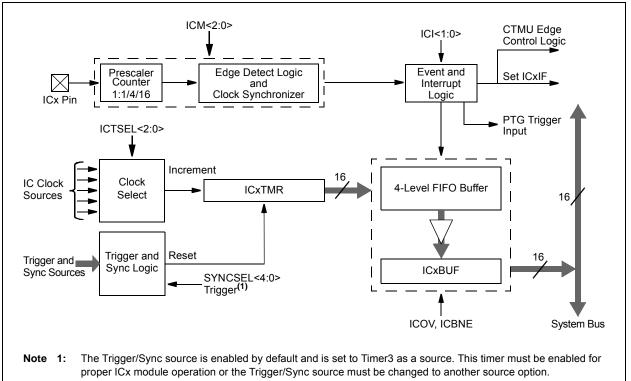
Timer control bit setting for different operating modes are given in the Table 12-1.

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	x
Synchronous Counter	1	х	1
Asynchronous Counter	1	x	0

TABLE 12-1: TIMER MODE SETTINGS

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

14.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70352) in the "dsPIC33/dsPIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices support four input capture channels.

Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 19 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL
bit 15	•	•	•	•		•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7						onornen	bit
Legend:						(0)	
R = Readab		W = Writable		-	ented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	D'				
bit 11-8	-			urce Select bits			
	The selected	state blank sig	nal will block t	he current-limit	and/or Fault inp	out signals (if e	nabled via th
	BCH and BCI	L bits in the LEI			·	5 (
	1001 = Rese	rved					
	•						
	•						
	• • 0100 = Rese	rved					
	• • 0100 = Rese 0011 = PWM	rved 3H selected as	state blank so	ource			
	0011 = PWM 0010 = PWM	3H selected as 2H selected as	state blank so	ource			
	0011 = PWM 0010 = PWM 0001 = PWM	3H selected as 2H selected as 1H selected as	state blank so	ource			
hit 7-6	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st	3H selected as 2H selected as 1H selected as ate blanking	state blank so state blank so	ource			
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '	state blank so state blank so o'	burce burce			
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved	state blank so state blank so o' op Clock Sour ole and disable	ource ource rce Select bits e (CHOP) the se	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '0 :0>: PWMx Ch signal will enab rved rved 3H selected as	state blank so state blank so op Clock Sour ole and disable	ource ource rce Select bits e (CHOP) the se source	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as	state blank so state blank so op Clock Sour ole and disable CHOP clock	source source	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • • 0100 = Rese 0011 = PWM 0010 = PWM	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as	state blank so state blank so op Clock Sour ole and disable CHOP clock s CHOP clock s CHOP clock s	source source		outputs.	
bit 7-6 bit 5-2 bit 1	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • 0100 = Rese 0011 = PWM 0010 = PWM 0001 = PWM	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as	state blank so state blank so op Clock Sour- ole and disable cHOP clock so cHOP clock so cHOP clock so cHOP clock so	ource ource rce Select bits e (CHOP) the se source source source CHOP clock so		outputs.	
bit 5-2	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '0 :0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato	 state blank so state blank so op Clock Sour chOP clock so chopping Enso on is enabled 	ource ource rce Select bits e (CHOP) the se source source source CHOP clock so		outputs.	
bit 5-2	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • • • • • • • • • • • • • • • •	3H selected as 2H selected as 1H selected as ate blanking ted: Read as 'f :0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato PWMxH Output chopping function	CHOP clock so CHOP clock so Chopping En	source source source source source source CHOP clock so able bit		putputs.	
bit 5-2 bit 1	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato PWMxH Output chopping function	CHOP clock so CHOP clock so Chopping Ena	source source source source source source CHOP clock so able bit		putputs.	

REGISTER 16-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1				
bit 15							bit 8				
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0				
bit 7							bit 0				
Lonondi											
Legend:	l. h.:.		L.11			-l (O)					
R = Readab		W = Writable		U = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 15-10	EID<5:0>: E	xtended Identifi	er bits								
bit 9	RTR: Remot	e Transmission	Request bit								
	When IDE =	1:									
	1 = Message will request remote transmission										
		0 = Normal message									
		When IDE = 0: The DTD bit is imported									
h :+ 0	The RTR bit is ignored. 8 RB1: Reserved Bit 1										
bit 8			or CAN proto								
		et this bit to '0' p	-	0001.							
bit 7-5	•	nted: Read as '	0								
bit 4	RB0: Reserv										
	User must se	et this bit to '0' p	per CAN proto	ocol.							
hit 2 0		Jota Longth Co.	da hita								

BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	/te 1				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	rte 0				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-8 Byte 1<15:8>: ECAN Message Byte 1 bits

bit 7-0 Byte 0<7:0>: ECAN Message Byte 0 bits

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM		AD12B	FORM1	FORM0
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0. HC. HS
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾
bit 7							bit (
Legend:		HC - Hardwar	e Clearable bit	HS - Hardwa	re Settable bit	C = Clearable bi	+
R = Readable	a hit	W = Writable b			nented bit, read		L
-n = Value at		'1' = Bit is set	nt -	'0' = Bit is clea		x = Bit is unknov	vp.
	FUR	I - DILIS SEL					
bit 15	ADON: ADO	C1 Operating M	ode bit				
	1 = ADC mo 0 = ADC is 0	odule is operatir off	ng				
bit 14	Unimpleme	nted: Read as	' 0 '				
bit 13	ADSIDL: A	DC1 Stop in Idle	e Mode bit				
	1 = Disconti	nues module oj	peration when o	device enters	ldle mode		
	0 = Continu	es module oper	ation in Idle mo	ode			
bit 12		: DMA Buffer B					
						rovides an addre	ess to the DM
						nd-alone buffer des a Scatter/Ga	ther address t
						size of the DMA b	
bit 11		nted: Read as					
bit 10	AD12B: AD	C1 10-Bit or 12	-Bit Operation I	Mode bit			
		-channel ADC	-				
	0 = 10-bit, 4	-channel ADC	operation				
bit 9-8	FORM<1:0>	Data Output I	Format bits				
	For 10-Bit C						
		l fractional (Dou nal (Dou⊤ = dd			0, where s = .I	NOT.d<9>)	
		l integer (DOUT			where $s = .NC$	(<9>)	
		r (Dout = 0000					
	For 12-Bit C	peration:					
	•	fractional (Dou			0, where s = .I	NOT.d<11>)	
		nal (Dout = dd I integer (Dout				(<11>)	

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

24.3 PTG Control Registers

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

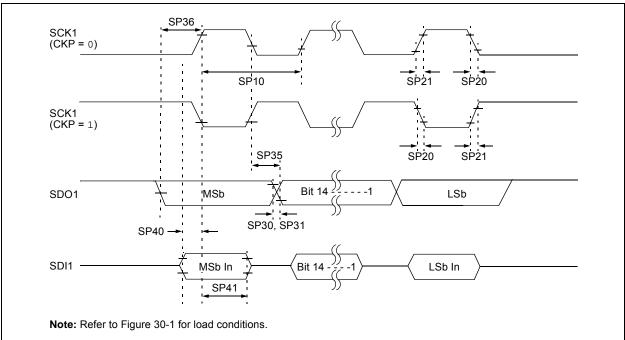
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN	—	PTGSIDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15							bit 8
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/V	V-0
PTGSTRT	PTGWDTO	_	_	_	_	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾

bit 7

Legend:	HS = Hardware Settable bit					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15		PTGEN: Module Enable bit
		1 = PTG module is enabled
		0 = PTG module is disabled
bit 14		Unimplemented: Read as '0'
bit 13		PTGSIDL: PTG Stop in Idle Mode bit
		 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12		PTGTOGL: PTG TRIG Output Toggle Mode bit
		 1 = Toggle state of the PTGOx for each execution of the PTGTRIG command 0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGPWDx bits
bit 11		Unimplemented: Read as '0'
bit 10		PTGSWT: PTG Software Trigger bit ⁽²⁾
		1 = Triggers the PTG module
		0 = No action (clearing this bit will have no effect)
bit 9		PTGSSEN: PTG Enable Single-Step bit ⁽³⁾
		1 = Enables Single-Step mode
		0 = Disables Single-Step mode
bit 8		PTGIVIS: PTG Counter/Timer Visibility Control bit
		1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx)
		 Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those limit registers
bit 7		PTGSTRT: PTG Start Sequencer bit
		1 = Starts to sequentially execute commands (Continuous mode)0 = Stops executing commands
bit 6		PTGWDTO: PTG Watchdog Timer Time-out Status bit
		1 = PTG Watchdog Timer has timed out
		0 = PTG Watchdog Timer has not timed out.
bit 5-2		Unimplemented: Read as '0'
Note	1: Th	nese bits apply to the PTGWHI and PTGWLO commands only.
	2: Th	is bit is only used with the PTGCTRL step command software trigger option.

3: Use of the PTG Single-Step mode is reserved for debugging tools only.


bit 0

Bit Field	Description
GCP	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source
PWMLOCK ⁽¹⁾	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence
FNOSC<2:0>	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Fast RC Oscillator with Divide-by-16 (FRCDIV16) 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use 011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled 0 = PLL lock is disabled nly available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

TABLE 27-2: CONFIGURATION BITS DESCRIPTION

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

FIGURE 30-24: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS		Operatin otherwise temperat	stated) ture -40	°C ≤ Ta ≤	7 to 3.6V +85°C for Industrial +125°C for Extended		
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP10	FscP	Maximum SCK1 Frequency	_	—	10	MHz	(Note 3)		
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)		
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns			
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30			ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACTERISTICS			(unless oth	Dperating Co nerwise state emperature	ed)		
Parameter No.	Typical	Мах	Units	Conditions			
Power-Down	Current (IPD)						
HDC60e	1400	2500	μA	+150°C	3.3V	Base Power-Down Current (Notes 1, 3)	
HDC61c	15	—	μA	+150°C	3.3V	Watchdog Timer Current: ∆IwDT (Notes 2, 4)	

TABLE 31-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

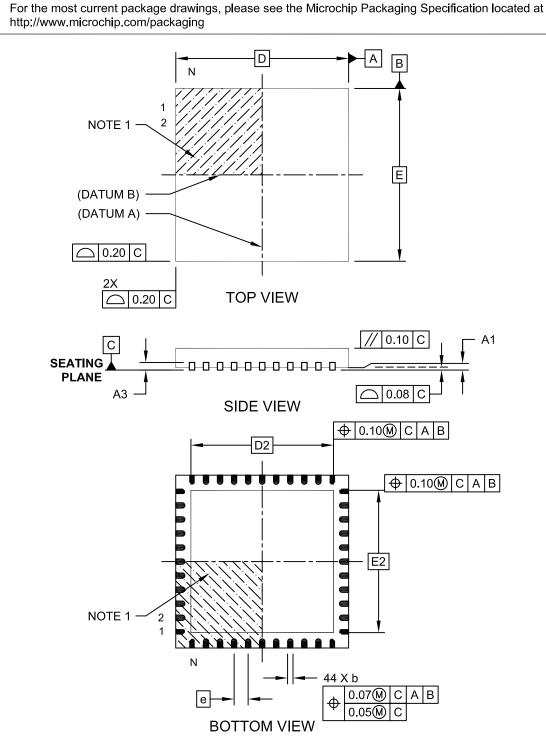
2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 31-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Мах	Units	Conditions			
HDC44e	12	30	mA	+150°C 3.3V 40 MIPS			


TABLE 31-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS (un			(unless othe	erating Condi rwise stated) nperature -40		
Parameter No.	Typical	Max	Units	Conditions		
HDC20	9	15	mA	+150°C	3.3V	10 MIPS
HDC22	16	25	mA	+150°C 3.3V 20 MIPS		20 MIPS
HDC23	30	50	mA	+150°C	3.3V	40 MIPS

TABLE 31-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Мах	Doze Ratio	Units	Conditions		
HDC72a	24	35	1:2	mA			
HDC72f ⁽¹⁾	14	—	1:64	mA	+150°C	3.3V	40 MIPS
HDC72g ⁽¹⁾	12		1:128	mA			

Note 1: Parameters with Doze ratios of 1:64 and 1:128 are characterized, but are not tested in manufacturing.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note:

Microchip Technology Drawing C04-103C Sheet 1 of 2

TABLE A-5: MAJOR SECTION UPDATES (CONTINUED)