

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc202t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-46: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	—	—	—	TRISA12	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	—	—	TRISA4	-	—	TRISA1	TRISA0	1F93
PORTA	0E02	_	_	_	RA12	RA11	RA10	RA9	RA8	RA7	_	_	RA4	_	_	RA1	RA0	0000
LATA	0E04	_	_	_	LATA12	LATA11	LATA10	LATA9	LATA8	LATA7	_	_	LATA4	_	_	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	ODCA12	ODCA11	ODCA10	ODCA9	ODCA8	ODCA7	_	_	ODCA4	_	_	ODCA1	ODCA0	0000
CNENA	0E08	_	_	_	CNIEA12	CNIEA11	CNIEA10	CNIEA9	CNIEA8	CNIEA7	_	_	CNIEA4	_	_	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	CNPUA12	CNPUA11	CNPUA10	CNPUA9	CNPUA8	CNPUA7	_	_	CNPUA4	_	_	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	CNPDA12	CNPDA11	CNPDA10	CNPDA9	CNPDA8	CNPDA7	_	_	CNPDA4	_	_	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	—	ANSA12	ANSA11	—	_	_	—		—	ANSA4	-	_	ANSA1	ANSA0	1813

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_	-	—	_	ANSB8		—	-		ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	_	TRISC13	TRISC12	TRISC11	TRISC10	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	BFFF
PORTC	0E22	RC15	-	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	LATC15		LATC13	LATC12	LATC11	LATC10	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	ODCC15	_	ODCC13	ODCC12	ODCC11	ODCC10	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	CNIEC15	_	CNIEC13	CNIEC12	CNIEC11	CNIEC10	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	CNPUC15	_	CNPUC13	CNPUC12	CNPUC11	CNPUC10	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	CNPDC15	_	CNPDC13	CNPDC12	CNPDC11	CNPDC10	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E		-	-	—	ANSC11	_		_	—	—	_		—	ANSC2	ANSC1	ANSC0	0807

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

11-0	R-0	R-0	R-0	U-O	R/W-v	R/W-v	R/W-v
	COSC2	COSC1	COSCO	_	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOC	CK IOLOCK	LOCK		CF ⁽³⁾		—	OSWEN
bit 7							bit 0
			(
Legend:	- h l - h :4	y = Value set	from Configur	ation bits on P	'OR	(0)	
		vv = vvritable	DIL	0 = 0	nented bit, read	as u	
-n = value	alpor	I = BILIS Set		0 = BIUS CIE	ared		IOWN
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only	')		
	111 = Fast R(C Oscillator (F	RC) with Divid	le-by-n	,		
	110 = Fast R	C Oscillator (F	RC) with Divid	le-by-16			
	101 = Low-Po	ower RC Oscill	ator (LPRC)				
	011 = Primary	v Oscillator (X	r, HS, EC) wit	h PLL			
	010 = Primary	y Oscillator (X	r, HS, EC)				
	001 = Fast R 000 = Fast R	C Oscillator (F C Oscillator (F	RC) with Divid RC)	le-by-N and PL	L (FRCPLL)		
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	_S (2)			
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n			
	110 = Fast R	C Oscillator (F	RC) with Divic	le-by-16			
	101 - Low-PC 100 = Reserv	ed					
	011 = Primary	y Oscillator (X	r, HS, EC) wit	h PLL			
	010 = Primary	y Oscillator (X	r, HS, EC)				
	001 = Fast R0 000 = Fast R0	C Oscillator (FI	RC) with Divid RC)	Ie-by-N and PL	L (FRCPLL)		
bit 7	CLKLOCK: C	lock Lock Ena	ble bit				
	1 = If (FCKS	M0 = 1), then c	lock and PLL	configurations	are locked; if (F	CKSM0 = 0), t	hen clock and
	0 = Clock and	d PLL selection	ns are not lock	ked, configurat	ions may be mo	dified	
bit 6	IOLOCK: I/O	Lock Enable b	it				
	1 = I/O lock is	active					
	0 = I/O lock is	not active	/ I I \				
bit 5	LOCK: PLL L	ock Status bit	(read-only)	ant un tincaria	a atiafia d		
	 1 = indicates 0 = Indicates 	that PLL is in	t of lock, start	-up timer is -up timer is in	progress or PLL	is disabled	
Note 1:	Writes to this regis	ter require an e erence Manual	unlock sequer " (available fro	nce. Refer to " om the Microch	Oscillator" (DS ip web site) for	70580) in the <i>"</i> o details.	dsPIC33/
2:	Direct clock switch This applies to cloc	es between an ck switches in o	y primary osci either direction	llator mode wit	h PLL and FRC ances, the appli	PLL mode are r cation must sw	not permitted. itch to FRC
	moue as a transitio	nai Clock Sour		IE IWO PLL IIIO	u c s.		

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	;	Put	the	device	into	Sleep mode
PWRSAV	#IDLE_MODE	;	Put	the	device	into	Idle mode

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

13.2 Timer Control Registers

R/M/ 0	11.0		11.0	11.0	11.0	11.0	11.0
	0-0		0-0	0-0	0-0	0-0	0-0
bit 15		TOIDE	_				
51115							bit 0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32	_	TCS	
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	When T32 = 1 1 = Starts 32-1 0 = Stops 32-1 When T32 = 0 1 = Starts 16-1 0 = Stops 16-1	On bit L: bit Timerx/y bit Timerx/y <u>):</u> bit Timerx bit Timerx					
bit 14	Unimplement	ted: Read as 'd)'				
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit				
	1 = Discontinu 0 = Continues	ues module opera	eration when o tion in Idle mo	device enters I ode	dle mode		
bit 12-7	Unimplement	ted: Read as '	י)				
bit 6	TGATE: Time When TCS = This bit is igno When TCS = 1 = Gated tim 0 = Gated tim	rx Gated Time <u>1:</u> pred. <u>0:</u> e accumulatior e accumulatior	Accumulation	Enable bit			
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Prescal	e Select bits			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3	T32: 32-Bit Til 1 = Timerx an 0 = Timerx an	mer Mode Sele d Timery form d Timery act as	ect bit a single 32-bit s two 16-bit tir	t timer ners			
bit 2	Unimplement	ted: Read as 'd	י)				
bit 1	TCS: Timerx (1 = External c 0 = Internal cl	Clock Source S clock is from pir ock (FP)	Select bit n, TxCK (on th	e rising edge)			
bit 0	Unimplement	ted: Read as ')'				

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	:R<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimpler	mented bit, read	d as '0'	

'0' = Bit is cleared

x = Bit is unknown

REGISTER 16-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

'1' = Bit is set

REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTO	CMP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVT	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

-n = Value at POR

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	EC<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	EC<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-0 QEIGEC<15:0>: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

FIGURE 19-1: I2Cx BLOCK DIAGRAM (X = 1 OR 2)

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

_							
	WAKFIL	_	—		SEG2PH2	SEG2PH1	SEG2PH0
bit 15						l	bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as ')' 				
bit 14	WAKFIL: Sel	ect CAN Bus L	ine Filter for V	Vake-up bit			
	1 = Uses CAP 0 = CAN bus	n dus line filter line filter is not	tor wake-up	2-UD			
hit 13-11	Unimplemen	ted: Read as '	n'				
bit 10-8	SEG2PH<2:0	>: Phase Sear	nent 2 bits				
	111 = Length	is 8 x TQ					
	•						
	•						
	•						
	000 = Length	is 1 x Tq					
bit 7	SEG2PHTS:	Phase Segmer	nt 2 Time Sele	ct bit			
	1 = Freely pro 0 = Maximum	ogrammable of SEG1PHx I	oits or Informa	tion Processin	g Time (IPT), w	/hichever is gre	ater
bit 6	SAM: Sample	of the CAN B	us Line bit		0 ()/	0	
	1 = Bus line is 0 = Bus line is	s sampled three s sampled once	e times at the at the sample	sample point e point			
bit 5-3	SEG1PH<2:0	>: Phase Segr	nent 1 bits	·			
	111 = Length	is 8 x Tq					
	•						
	•						
	•						
	000 = Length	is 1 x Tq					
bit 2-0	PRSEG<2:0>	: Propagation	Time Segmen	t bits			
	111 = Length	is 8 x TQ					
	•						
	•						
		ie 1 v To					
	UUU - Lengin	UIAIG					

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

24.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Peripheral Trigger Generator (PTG)" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "Steps", that the user writes to the PTG Queue registers (PTGQUE0-PTGQUE7), which perform operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple clock sources
- Two 16-bit general purpose timers
- Two 16-bit general limit counters
- Configurable for rising or falling edge triggering
- Generates processor interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a Step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to receive trigger signals from these peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to trigger or synchronize to these peripherals:
 - Watchdog Timer
 - Output Compare
 - Input Capture
 - ADC
 - PWM
- Op Amp/Comparator

25.3 Op Amp/Comparator Registers

R/W-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
PSIDL				C4EVT ⁽¹⁾	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT ⁽¹⁾
bit 15				1	L		bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
		—		C4OUT ⁽²⁾	C3OUT ⁽²⁾	C2OUT ⁽²⁾	C10UT ⁽²⁾
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkn	iown
hit 15		arator Stop in	dla Mada hit				
DIL 15	1 = Discontinu	ues operation of	of all comparat	ors when devi	ce enters Idle n	node	
	0 = Continues	operation of a	Il comparators	s in Idle mode			
bit 14-12	Unimplement	ted: Read as ')'				
bit 11	C4EVT: Op A	mp/Comparato	r 4 Event Stat	us bit ⁽¹⁾			
	1 = Op amp/c	omparator eve	nt occurred				
h# 40	0 = Op amp/c	omparator eve		Jr			
DIE TU	1 = Comparat	or event occur	Status Diter				
	0 = Comparat	or event did no	ot occur				
bit 9	C2EVT: Comparator 2 Event Status bit ⁽¹⁾						
	1 = Comparator event occurred						
	0 = Comparat	or event did no	ot occur				
bit 8	C1EVT: Comp	parator 1 Event	Status bit ⁽¹⁾				
	1 = Comparat	or event occur	rea ot occur				
bit 7-4	Unimplement	ted: Read as ')'				
bit 3	C4OUT: Com	parator 4 Outp	ut Status bit ⁽²⁾				
	When CPOL =	<u>= 0:</u>					
	1 = VIN + > VIN	N-					
	0 = VIN + < VIN	N- = 1 ·					
	1 = VIN + < VIN	<u> </u>					
	0 = VIN + > VIN	N-					
bit 2	C3OUT: Com	parator 3 Outp	ut Status bit ⁽²⁾				
	When CPOL = $1 = V_{\rm IN} + > V_{\rm IN}$	<u>= 0:</u>					
	0 = VIN + < VIN	N- N-					
	When CPOL =	= 1:					
	1 = VIN + < VIN	N-					
	v = v i N + > V I N	N-					

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER

- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON<9>.
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON<8>.

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity-selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage⁽²⁾ 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	 11 = Unimplemented 10 = Unimplemented 01 = Inverting input of the comparator connects to the CxIN2- pin⁽²⁾ 00 = Inverting input of the op amp/comparator connects to the CxIN1- pin

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

RW-0 U-0 R/W-0 R-0 R-0 R-0 R-0 R-0 CRCEN - CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWOR bit 15 - CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWOR CRCFUL CRCMPT CRCISEL CRCGO LENDIAN - - - - bit 7 -					<u> </u>		<u> </u>			
CRCEN — CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWOR bit 15	R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0		
bit 15 R-0 R-1 R/W-0 R/W-0 U-0 U-0 U-0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — — — bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset SFRs are not reset bit 14 Unimplemented: Read as '0'	CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0		
R.0 R.1 R/W-0 R/W-0 U-0 U-0 U-0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — …	bit 15 bit 8									
R-0 R-1 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — — — bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' — …										
CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — # #	R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is enabled 0 = CRC module is enabled; 0 = CRC module is enabled; 0 = CRC WDAT/CRCDAT are reset; or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0> : Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not empty 0 = FIFO is not empty 0 = FIFO is not empty 0 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 1 = St	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	_	—		
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0-> Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 1 = Data word is biffed in the CPC startion with the 1 Sh (ittle notion)	bit 7							bit 0		
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD -> Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Full bit 1 = FIFO is not full 1 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 1 = Dita word is chifte										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD-4:00: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not full 0 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial	Legend:									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0' = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' 5 Enable bit 1 = Discontinues module operation when device enters ldle mode 0 = Continues module operation in ldle mode bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation in ldle mode 0 = Continues module operation in ldle mode bit 12-8 VWORD -4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not full 0 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = FIFO is not fift is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter<	R = Readable	bit	W = Writable	W = Writable bit U = Unimpleme			l as '0'			
bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, of SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD VWORD Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> < 7.	-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not full 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 1 = Data word is still be CRC starting with the LSh (little endiap)	bit 15	CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, other SFRs are not reset								
bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty 0 = FIFO is not full CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off Dit 3 LENDIAN: Data Word Little-Endian Configuration bit	bit 14	Unimplemen	ted: Read as '	0'						
1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> ≤ 0r 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 0 = CRC serial shifter is turned off	bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit						
bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty 0 = FIFO is not empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit		 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 								
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is ont full 1 = FIFO is empty 0 = FIFO is not empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit	bit 12-8	VWORD<4:0	>: Pointer Valu	e bits						
bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit		Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > 7 or 16 when PLEN<4:0> \leq 7.					N<4:0> > 7			
1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit	bit 7	CRCFUL: CR	C FIFO Full bi	t						
0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit		1 = FIFO is fu	ull							
bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit			iot full							
0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little andian)	bit 6	1 = FIFO is empty								
bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little endian)		0 = FIFO is n	ot empty							
1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little andian)	bit 5	CRCISEL: CRC Interrupt Selection bit								
bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little andian)		1 = Interrupt 0 = Interrupt	on FIFO is em on shift is com	pty; final word plete and CR(of data is still CWDAT results	shifting through are ready	CRC			
 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little endian) 	bit 4 CRCGO: Start CRC bit									
bit 3 LENDIAN: Data Word Little-Endian Configuration bit		1 = Starts CF 0 = CRC seri	RC serial shifter is tur	r ned off						
1 = Data word is shifted into the CPC starting with the LSh (little and ign)	bit 3	LENDIAN: Da	ata Word Little-	Endian Config	guration bit					
0 = Data word is shifted into the CRC starting with the MSb (big endian)		1 = Data wor 0 = Data wor	d is shifted into d is shifted into	the CRC sta	rting with the L rting with the N	Sb (little endiar ISb (big endian	1))			
bit 2-0 Unimplemented: Read as '0'	bit 2-0	Unimplemen	ted: Read as '	0'	-					

NOTES:

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Parameter No.	Тур.	Max.	Units Conditions			
Power-Down	Current (IPD) ⁽¹⁾ -	dsPIC33EP32GI	P50X, dsPIC33EF	P32MC20X/50X and PIC2	24EP32GP/MC20X	
DC60d	30	100	μA	-40°C		
DC60a	35	100	μA	+25°C	2 2)/	
DC60b	150	200	μA	+85°C	3.3V	
DC60c	250	500	μA	+125°C		
Power-Down	Current (IPD) ⁽¹⁾ -	dsPIC33EP64GI	P50X, dsPIC33EI	P64MC20X/50X and PIC2	24EP64GP/MC20X	
DC60d	25	100	μA	-40°C	3.3V	
DC60a	30	100	μA	+25°C		
DC60b	150	350	μA	+85°C		
DC60c	350	800	μA	+125°C		
Power-Down	Current (IPD) ⁽¹⁾ –	dsPIC33EP128G	P50X, dsPIC33E	P128MC20X/50X and PI	C24EP128GP/MC20X	
DC60d	30	100	μA	-40°C		
DC60a	35	100	μA	+25°C	3 3//	
DC60b	150	350	μA	+85°C	5.50	
DC60c	550	1000	μA	+125°C		
Power-Down	Current (IPD) ⁽¹⁾ –	dsPIC33EP256G	P50X, dsPIC33E	P256MC20X/50X and PIC	C24EP256GP/MC20X	
DC60d	35	100	μA	-40°C		
DC60a	40	100	μA	+25°C	3 3//	
DC60b	250	450	μA	+85°C	5.5 V	
DC60c	1000	1200	μA	+125°C		
Power-Down Current (IPD) ⁽¹⁾ – dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X and PIC24EP512GP/MC20X						
DC60d	40	100	μA	-40°C		
DC60a	45	100	μA	+25°C	3 3\/	
DC60b	350	800	μA	+85°C	3.3V	
DC60c	1100	1500	μΑ	+125°C		

TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

TABLE 30-48:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency		_	11	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	_		_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time			_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	Ι	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 30.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	-65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	-0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	-0.3V to 3.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	-0.3V to 5.5V
Maximum current out of Vss pin	60 mA
Maximum current into VDD pin ⁽⁴⁾	60 mA
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 4x I/O pin	10 mA
Maximum current sourced/sunk by any 8x I/O pin	
Maximum current sunk by all ports combined	70 mA
Maximum current sourced by all ports combined ⁽⁴⁾	70 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Refer to the "Pin Diagrams" section for 5V tolerant pins.
 - 4: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

Section Name	Update Description
Section 30.0 "Electrical	These SPI2 Timing Requirements were updated:
Characteristics" (Continued)	 Maximum value for Parameter SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-36, Table 30-37, and Table 30-38)
	Maximum value for Parameter SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-40 and Table 30-42)
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-43)
	These SPI1 Timing Requirements were updated:
	Maximum value for Parameters SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-44, Table 30-45, and Table 30-46)
	 Maximum value for Parameters SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-47 through Table 30-50)
	 Minimum value for Parameters SP40 and SP41 see Table 30-44 through Table 30-50)
	Updated all Typical values for the CTMU Current Source Specifications (see Table 30-55).
	Updated Note1, the Maximum value for Parameter AD06, the Minimum value for AD07, and the Typical values for AD09 in the ADC Module Specifications (see Table 30-56).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 30-57).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 30-58).
	Updated the Minimum and Maximum values for Parameter AD21b in the 10-bit Mode ADC Module Specifications (see Table 30-58).
	Updated Note 2 in the ADC Conversion (12-bit Mode) Timing Requirements (see Table 30-59).
	Updated Note 1 in the ADC Conversion (10-bit Mode) Timing Requirements (see Table 30-60).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

Revision H (August 2013)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-6.

TABLE A-6:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
Cover Section	Adds Peripheral Pin Select (PPS) to allow Digital Function Remapping and Change
	Notification Interrupts to Input/Output section
	Adds heading information to 64-Pin TQFP
Section 4.0 "Memory	Corrects Reset values for ANSELE, TRISF, TRISC, ANSELC and TRISA
Organization"	Corrects address range from 0x2FFF to 0x7FFF
	 Corrects DSRPAG and DSWPAG (now 3 hex digits)
	 Changes Call Stack Frame from <15:1> to PC<15:0>
	Word length in Figure 4-20 is changed to 50 words for clarity
Section 5.0 "Flash Program Memory"	Corrects descriptions of NVM registers
Section 9.0 "Oscillator	Removes resistor from Figure 9-1
Configuration"	Adds Fast RC Oscillator with Divide-by-16 (FRCDIV16) row to Table 9-1
	Removes incorrect information from ROI bit in Register 9-2
Section 14.0 "Input Capture"	Changes 31 user-selectable Trigger/Sync interrupts to 19 user-selectable Trigger/ Sync interrupts
	Corrects ICTSEL<12:10> bits (now ICTSEL<2:0>)
Section 17.0 "Quadrature Encoder Interface (QEI)	Corrects QCAPEN bit description
Module	
(dsPIC33EPXXXMC20X/50X	
Devices Only)"	
Section 19.0 "Inter-	Adds note to clarify that 100kbit/sec operation of I ² C is not possible at high processor
Integrated Circuit™ (I ² C™)"	speeds
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Clarifies Figure 22-1 to accurately reflect peripheral behavior
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Correct Figure 23-1 (changes CH123x to CH123Sx)
Section 24.0 "Peripheral Trigger Generator (PTG) Module"	 Adds footnote to Register 24-1 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled.
Section 25.0 "Op Amp/ Comparator Module"	• Adds note to Figure 25-3 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled)
	 Adds footnote to Register 25-2 (COE is not available when OPMODE (CMxCON<10>) = 1)
Section 27.0 "Special Features"	Corrects the bit description for FNOSC<2:0>
Section 30.0 "Electrical	Corrects 512K part power-down currents based on test data
Characteristics"	Corrects WDT timing limits based on LPRC oscillator tolerance
Section 31.0 "High-	Adds Table 31-5 (DC Characteristics: Idle Current (IIDLE)
Temperature Electrical Characteristics"	